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PREFACE

For over a hundred years, group theory has played an essential role in theoreti-
cal physics. Even before that it was known that the solution of many mechanical
systems (harmonic oscillator, Kepler problem) are possible because of symme-
tries. E. Noether showed that symmetries imply conservation laws in mechanics.
Groups were also useful in classifying periodic structures (crystals) and their X-ray
diffraction patterns.

Groups and their representation found its deepest uses in Quantum Theory.
Wigner and Weyl were the pioneers. Groups served as a powerful tool to clas-
sify and understand particles and their states in nuclear and high energy physics.
More fundamentally, interactions among elementary particles (electromagnetic
and strong forces) turn out to be a consequence of non-abelian gauge symmetries.
This idea has its roots in General Relativity, where Einstein found that general
covariance leads to gravitational interactions.

So you cannot understand modern theoretical physics without knowing some
group theory. The field is too broad for one person to know everything about every
group. Choices must be made.

My choice of topics is admittedly personal. I have tried to emphasize the con-
cepts (Lie theory, Peter-Weyl Theorem etc.) instead of techniques (listing of irre-
ducible representations, calculation of Casimir invariants etc.). There are already
excellent books that could train you in techniques. To say nothing of various online
resources (Wikipedia, Scholarpedia etc.) that give a quick summary. A good under-
standing can be obtained by studying a few representative cases in depth. Even if
you encounter different cases in your own research, the knowledge so obtained can
often be adapted.

There are also indications that future physicists will need symmetries that go
beyond groups. The most intriguing of these are “quantum groups”. So I have
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included them. I have tried to avoid symmetries that theorists love, but which have
not found much experimental support.

I wish there was time to do more. Among the omissions I regret most are: Co-
adjoint orbits, Virasoro and Kac-Moody algebras and Harish-Chandra’s theory of
unitary representations of non-compact groups.

The book is not meant to be read linearly, cover to cover. Several sections can
be omitted in a first reading; they will make more sense when you return to them
afterwards. They are denoted by a star in the section heading. The later chapters
are more terse and technically involved. They can also be omitted in a first reading.

The more examples and exercises you work out the better your understanding
will be. Some of the exercises are solved in detail. But look at the solution only
after a serious attempt.

My own knowledge and appreciation of group theory is from my teacher,
A. P. Balachandran; augmented by later interactions with Mark Bowick, Feza
Gursey and Susumu Okubo. I owe a debt of gratitude also to Rakesh Tibrewala,
who read most of the book with great care. His comments were very helpful. Of
course, I own entirely any mistakes or confusions that remain.

Thanks also to Christopher B Davis and Rhaimie B Wahap of World Scientific
for their encouragement and patience through the slow process of writing the book.
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Chapter 1

SYMMETRY BEFORE PHYSICS

Symmetries play a central role in modern physics. Very few problems in dynamics
can be solved exactly; only those with a high degree of symmetry (such as rotation
invariance in the Kepler problem.) At a deeper level, symmetries determine the
laws of physics: For example, conservation of energy is a consequence of symme-
try under time translations and conservation of momentum is due to translation
invariance in space. Further, the standard model of elementary particles is deter-
mined to a large extent by gauge invariance; Einstein’s theory of gravity by general
covariance and the Euler equations of a fluid by the Lie algebra of incompressible
vector fields. Modern Physics can only be understood through symmetries.

It is useful to step away for a moment to understand how symmetries appeared
originally, even before physics

1.1. Symmetries in Art and Architecture

1.1.1. Cultural references to symmetries can be found long before physics
Here is an example, from a Buddhist manual on meditation, quoted in [1]:

In the glistening surface of each pearl
are reflected all the other pearls

In each reflection, again are reflected
all the infinitely many other pearls,
So that by this process, reflections
of reflections continue without end.

Highly symmetric geometric patterns can be found in the mosaics of many temples
and mosques, on the Taj Mahal as well as in many Cathedrals of Europe. We seek
symmetry everywhere in life, and beyond. There is symmetry even in a cemetery.
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1.2. Symmetries in Geometry

Perhaps the first systematic study of symmetry in geometry is by Greek mathe-
maticians; for example, Plato classified regular solids.

Each Platonic solid (regular solid) has a finite set of rotations as a symmetry.
The simplest is the tetrahedron, whose symmetry contains the permutation of its
four vertices. If you connect the centers of the faces of a Platonic solid, you get
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another one, called its dual. The tetrahedron is self-dual; the dual of a cube is an
octahedron. The icosahedron and the duodecahedron are dual to each other. Dual
solids have the same symmetry. The symmetry group of the icosahedron plays an
interesting role in the theory of the quintic equation: It is the group As of even
permutations of five elements. There are intriguing connections between algebra
and geometry all over this subject.

The vertices of each Platonic solid lie on a sphere; projecting radially from
the center, we can associate points on the sphere with the midpoints of the edges
and faces. Using the stereographic co-ordinates, we can identify the sphere with
the complex projective space CP!. These devices allow us to make concrete the
relation of the geometry of Platonic solids to algebra. To each Platonic solid, there
is a rational function f : CP' — CP'which vanishes at the vertices, is equal to 1
at the mid-points of the edges and has a pole at the center of the faces. The most
sophisticated case, the icosahedron, is worked out in Ref. [2].

1.2.1. A word of warning

Like the Sirens who devoured sailors in the Odyssey, beauty can lead us astray.
Many physicists and astronomers were led to false theories because of their irre-
sistible beauty.

Kepler originally thought he could explain the orbits of planets as circles
centered at the Sun; each planet (there were five known at the time) was associated
to a Platonic solid. Such ideas were not unusual among astrologers of that time.
Since his model did not agree with Tycho Brahe’s data, Kepler persevered and
produced another model in which the orbits are ellipses. This discipline in sticking
to the less symmetric, but empirically correct, model is what distinguished him
from other astrologers; and made Kepler an astronomer. We now know that there
are even higher degrees of symmetry underlying mechanics than Kepler could have
ever imagined (e.g., symplectic transformations).

Truth has its own fierce beauty which far surpasses that of fancy.

Another example is Kelvin, who thought elements in the periodic table were
explained by vortices in ether. The shape of the vortex of hydrogen is a simple
knot, that of helium is the trefoil knot and so on. The correct theory (based on
Quantum Mechanics and the Coulomb potential) is much weirder and far more
beautiful.

The success of the standard model in unifying electromagnetism and weak
interactions led physicists to a quest for a Grand Unified Theory in the 1970s.
Groups such as SU(5), SO(10) (and the exquisite, irresistible Eg) seemed for
a while to be great candidates. They predicted that the proton should decay at a
certain rate. Experiments, which did not find these decays, have ruled these theories
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out.! However it turns out, the right answer will have a fierce beauty of its own,
which may not be evident at first.

We resist the temptation to follow the theory of Platonic solids and such further
(e.g., Coxeter groups), as they do not lead to currently useful physics. Odysseus
listened to the Sirens, but saved himself by being chained to the mast of his ship.
He sealed the ears of his crew with wax so they would not be led astray.

1.3. Symmetries in Algebra

1.3.1. The basic mathematical idea is a group

We will give a precise axiomatic definition later. For now, a group describes the
transformations (symmetries) of some physical or geometrical object. For example
an equilateral triangle PO R can be rotated around its center by 120 degrees to get
to an equivalent situation, changing only the labelling of the vertices to QRP . If
we do it again we get RPQ. A third iteration gets us back to the same triangle,
even labelled the same way. The set of these transformations is a group with three
elements: The identity 1 (which does nothing), an element oo : POR — QRP
which rotates by 120 degrees, an element o> which rotates by 240 degrees. The
condition

=1

expresses the fact that a rotation through 360 degrees is the same as the identity.
This group {1, o, 0'2} is called Z3, the cyclic group of three elements. This is an
example of an abelian group, one in which the product of two elements does not
depend on the order of multiplication. Abel was a Norwegian mathematician who,
along with Galois, invented the idea of a group.

An equilateral triangle also has a symmetry under reflections along the line
orthogonal to a side and passing through the opposite vertex: e.g., 7 : POR —
QPR. If we apply o followed by 7 we end up with POR — QRP — RQP;i.e.,
70 : POR — RQP.If we apply them in the opposite order POR — QPR +— PRQ
sothatot : POR — PRQ.Thusweseethatot # 70;1.e., the group is not abelian.

You can see moreover that all six permutations of the vertices can be obtained
by some combination of o~ and 7: POR,ORP,RPQ,QPR,PRQ, RQP. In other
words, o~ and 7 are generators of the permutation group S3 of a set of three objects.

In the next section we will see that the same group Sz appears in a totally
different context: The solution of a cubic equation.

IBut discovered neutrinos emitted by a supernova, a completely different phenomenon.



6 PHYSICS THROUGH SYMMETRIES

Exercise 1. Show that o7 = 70!

1.3.2. Which polynomial equations can you solve algebraically?

Everyone knows that the quadratic equation
ax>+bx+c=0

has the two solutions
—b +Vb? - dac
2a '

In the middle ages, it was found that cubic and fourth degree equations can also
be solved in a similar way, in terms of cube roots and fourth roots. The formulas are
much more complicated though. But no one could find a solution for the general
fifth order equation (quintic) in terms of fifth roots, and similarly for higher order
equations. But special cases could be solved that way. Galois, continuing ideas of
Abel, showed that the general quintic cannot be solved this way: There are fifth
order equations that cannot be solved even if you could calculate fifth roots.

To understand the connection of symmetries to algebraic equations, let us
take a closer look at the solution of the quadratic. Let a, 8 be the roots of ax” +
bx+c=0:

X =

ax> +bx+c=a(x—a)(x - p)
By comparing the coefficients of the powers of x we get
b=—a(a+ﬁ), c:aaﬁ

This is the easy part: The hard part is to go in the other direction and determine
a, B in terms of a, b, c. Before we do that, notice that the coefficients b, ¢ are sym-
metric functions of «, 8: If we interchange @ <> 3 they do not change. Moreover,
any symmetric function of the roots can be written in terms of the coefficients.
This is the key point. Of particular interest is the discriminant

A=(a-p)°
This is a function of the roots that vanishes iff the roots coincide. Being
symmetric in @, 8 we can express this in terms of the coefficients. It is not hard to
do this explicitly:

2 .
(@ =) = (a+ ) ~4ap = *— 1%

So,
Vb2 —dac

a

a—-fB=+
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Since we already know a + 8 = —%, we have reduced the problem of solving a
quadratic to solving two linear equations. So, one way to understand the solution
of the quadratic is to focus on the symmetries of the equation. We were able to
reduce the nonlinear part of the problem to solving for a radical y* = A.

Let us see if this generalizes to higher orders. The classical idea is to reduce
cubics (resp. quartics) to evaluating cube roots (resp. fourth roots) plus some
elementary operations of addition, multiplication and division.

1.3.3. Solving Cubics

Some cubic equations are easy to solve because they can be reduced to quadratic.
For example, x3 — 1 = 0 has an obvious solution 1. Since

P -l=x-DE2+x+1)

the other two roots are given by the roots of the quadratic x> + x + 1 = 0. If we
define

-1+3i
w=————
2

the three roots of x* — 1 = 0 are w° = 1, w, w?>. More generally, any equation of
the type

X -s5=0
has solutions in terms of the cube root of s:
x = Vs, wVs, s
What about more general equations?
ax> +bx’+cex+d=0

Clearly a = 0 can be excluded, since that would be merely a quadratic. Then
we can divide throughout by a and redefine % = —s1 etc. to reduce the cubic
equation to

- slx2 +5ox — 53 =0.

(The signs are chosen to make later formulas simpler.)
If the roots are aq, ap, @3 we must have

P osi?Esox—s3= (x—a1)(x —a2)(x — @3)
Comparing coefficients

S1=art+ax+az, S=aquay+ara3+a3a;, S3=Q1Q20a3.
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Notice that these are symmetric under permutations of the roots. There are six
permutations of three objects labeled by 1,2, 3. Of these,

123, 231, 312

involve an even number of pair-wise interchanges. (0 is an even number; so the
identity, which does nothing, is an even permutation.) The remaining are the odd
permutations

213, 132, 321

The composition of two even permutations is again even; so they form a
subgroup (i.e., a subset which contains all of the products and inverses of its
elements). The composition of two odd permutations is even; so they do not form
a subgroup. Define

o:123+— 231, 71:123+— 213

Clearly, o is even and generates the even permutations (i.e., all other even
permutations are its powers). 7 is odd. Moreover,
=1, =1
We will now find combinations of roots that transform nicely under o and 7.
The key is a “discrete Fourier transform” (also called the “Lagrange resolvent” )

A= ]+ way +a)2a3

where

2ri

w=e
is a cube root of unity. Clearly,

oA a)+was +a)2c11 =w! (al + way +a)2cy3)

using w? = w™ s ie.,

c:A—>wlA

Since w3 = 1 we see that A3 is invariant under o. But acting with 7 on A gives
something new:

T:A— B=a+wa +a)2cy3
Again B? is invariant under o . And 7 : B <> A since 7> = 1.Thus
C=A"+B, D=AB
are invariant under both o and 7; therefore they are invariant under all permuta-

tions of roots. But that means that C, D can be written in terms of the original
coefficients sy, s2, s3. This is the crucial point.
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It is good for your soul to work out C, D in terms of s1, 2, s3 explicitly. If
you don’t care about your soul, you can make Mathematica do this work (use an
operation called Symmetric Reduction).

Exercise 2. Show that
C= ZS? —Os150+27s3, D = s? - 95‘]‘s2 + 27s%s§ - 275%

We have climbed to a point from which we see the solution to any cubic. From
the coefficients of the cubic, we find C and D . Then find A® and B> because they
are solutions of the quadratic

(x-AHx-BH=x*-Cx+D=0.

Taking cube roots of these solutions will give A and B . Once you know A and
B we can find a1, @y, @3 by solving the linear system (i.e., inverting the discrete
Fourier transform)

si=a1+ax+a3, A=aq +wa2+w2a3, B =q +wzaz+wa3.

Exercise 3. Write a Mathematica (or python) program that implements this way
of solving a cubic.

Exercise 4. Express the discriminant A = (@) — @2)*(@2 — a3)?(a3 —a1)? asa
polynomial in the coefficients sy, s, 53 of the cubic.

Answer:
A= —453s% + sgs% + 18525351 — 453 — 275%.

The lesson is that understanding the symmetries of an equation allows us to
develop a strategy to solve it. Or, to show that it cannot be solved by the methods
under consideration.

1.3.4. Higher order equations*

A radical equation like x" = s has a commutative symmetry group Z, with n
elements (the group of cyclic permutations). The general nth order equation has
symmetry under the permutation group S, (which has n! elements). The reason
why cubics can be solved is that Sz, although non-commutative, can be built out
of two commutative groups Z3 and Z,.

The precise statement is that Z3 is a normal subgroup of 3 and that 1 — Z3 —
S3 — Z; is an exact sequence of group homomorphisms. Or equivalently that S3
is the extension of Z3 by Z,.
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The permutation group of four elements S4 also can be written as an iterated
extension of commutative groups. This explains why the quartic can also be solved
in general. The formulas are more complicated, but a “resolvent” (“discrete Fourier
transform”) allows us to reduce the general quartic to a system of linear equations
and taking fourth roots.

But the quintic is no longer solvable by such elementary methods. The permu-
tation group of five elements S5 can be written as an extension of the group of even
permutations As by Z,. But As is a simple group: It cannot be decomposed as the
extension of any smaller group. (A better name for such groups would have been
“prime groups”. But we are stuck with the name.) This was the insight of Abel and
Galois, who are founders of this branch of mathematics: The theory of groups and
fields.

Of course, nowadays, we would solve polynomial equations numerically by an
iterative approximation method such as Newton—Raphson. But the “complexity
theory” of algebraic equations continues as a fascinating subject; e.g., work by
McMullen et al. and various conjectures by Smale. Group theory continues to play
an important role.

1.3.5. The Erlangen Program

Before they became standard tools in physics, groups became important in geom-
etry through a visionary research program of Felix Klein at Erlangen. It is obvious
that a sphere has symmetry under rotations. Also, a square lattice (points on the
plane separated by equal steps along each axis), has a symmetry under some trans-
lations and rotations. Klein saw a way to extend these ideas to non-Euclidean
geometries such as a hyperboloid. These led Lie, Noether, Poincare and others to
study deeper connections between groups and physics. It was not until the discov-
ery of relativity and quantum mechanics that the deep role that symmetry plays in
physics became clear. A classic text by Hermann Weyl was important in bridging
physics and mathematics. The book [1] gives much more detailed account of the
mathematical side of this story.

1.3.6. Galois Theory in other disciplines™ (Speculative)

The essence of Klein’s idea is this: Each geometric object has a set of transforma-
tions which leave it invariant. For the plane, these are translations and rotations.
For the upper half-plane (which can be mapped invertibly to the hyperboloid), they
?ﬁs , forreal a, b, ¢, d. Similarly, what we
mean by a problem being solvable is that a solution can be found by combining

are the fractional transformations z —
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certain types of operations. For example, the classical definition of a solvable
algebraic equation allows for radicals plus the usual arithmetical operations of
addition, multiplication and division. Could there be a similar approach in other
disciplines?

Lie’s motivation in developing the theory of Lie groups was to find a “Galois
theory” of ordinary differential equations. To this day, only a part of his vision
has been realized (e.g., Differential Galois Theory). The class of operations
allowed to solve a dynamical system is now much broader than in Lie’s day: We
must include systems than can be solved to reasonable accuracy by numerical
methods. In this sense, celestial mechanics is solvable (despite chaos) but not
fluid mechanics (because of turbulence). How to make this precise?

McMullen et al., have extended Galois theory to include solution by iteration
(e.g., solvable numerically). Amazingly, the dividing line is at order six: Quintics
can also be solved by iteration of a rational function of one variable, but sextics
need such an iteration of a function of two variables! Smale has interesting
conjectures on further extensions of these ideas.

Is there a “Galois theory” or “Erlangen program” of solvability of quantum sys-
tems? One approach might be to consider as the “Galois group” the fundamental
group of the Riemann surface of the energy spectrum, thought of as a function of
the coupling constant (analytically continued to complex values). Typically, one
expects an infinite number of square root branch points, which might accumu-
late. Bender and Wu have worked this out in detail for the anharmonic oscillator.
But a general theory eludes us.

The Schrodinger equation of small atoms and molecules can be solved ab initio.
But large molecules and materials are beyond the ability of even the largest
computers. What is the precise measure of quantum complexity?

Quantum groups were discovered while solving certain spin chains (Bethe, Yang
and Baxter). Do they also appear in more realistic systems?

Tarski was inspired by the Erlangen program to consider a similar approach to
logic: Every logical system has some set of operations that are allowed, allowing
us to transform sentences without changing their truth value. This could lead to
a theory of Computational Complexity.

What kind of groups underlie computer science problems of class P (that can
be solved in Polynomial time)? Are they different from the groups of class NP?
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Chapter 2

GROUPS AND THEIR REPRESENTATIONS

Once you understand the basic structure of a physical or mathematical theory, it is
useful to summarize the basic laws as axioms: Independent facts from which all
others can be derived. This was first achieved for plane geometry by Euclid. For
mechanics by Newton. There is always a period of experimentation and discovery
before a subject become mature enough to be axiomatized. Algebraic concepts we
study in this book were developed over the nineteenth century and formalized in
the early twentieth century. It is time we gave a mathematically precise definition
of a group.

Definition. A group is a set G along with a binary operation G X G — G, which
obeys

e Associativity: (ab)c = a(bc), Va,b,c €G
e There is an identity element e € G such that ea = ae = a

e Forevery a € G there is an inverse such that aa™' = a~'a = e.

Usually, you should think of a group element as a transformation on some other
set of objects. For example, rotations of an equilateral triangle around its center.
Or the permutations of a deck of cards.

Definition. A subset of a group which contains all the products and inverses of its
elements is a subgroup.

2.1. Examples
Examples breathe life into an abstract theory. Group theory abounds in many

fascinating examples. Much of the following may not make sense in a first read-
ing, but I encourage the reader to look into each example and make as much

13
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sense of them as possible. On a later reading perhaps more of them will become

clear.
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The smallest group is the singleton set containing just one element. Its product
with itself is itself, and it is its own inverse. This is called the trivial group.
The empty set cannot be a group. (Why not?)

The only group of two elements is Z> = {1, w|w? = 1}.

The cyclic group of n elements is Z, = {1,w,w?,..., 0" " = 1}. The
multiplication law is w™wk = w™**. The inverse of w™ is w"~™. It describes
cyclic permutations of a set of n elements.

The group multiplication law does not have to be commutative. The group
of quaternions has 8 elements 1,7, j, k, —1,—i,—j, —k satisfying ij = k =
—ji,jk =i = —kj, ki = j = —ik,i* = j> = k* = —1. Exercise: Find 2x2
matrices that satisfy these relations.

The permutations on a set of n elements is a group, also called the symmetric
group S,. It has n! elements. Cyclic permutations are a subgroup. There
are volumes dedicated to the study of this group, and its representations.
Exercise: Show that any finite group is a subgroup of S,, for some » (Hint:
This is not as impressive as it sounds: Almost a tautology.)

Any permutation can be written as a product of transpositions (pairwise per-
mutations). Even permutations (product of an even number of transpositions)
form a subgroup called the alternating group A,,.

The set of integers is a group under addition. But not under multiplication.
(Why not?)

The set of rational numbers is a group under addition. Also, the set of non-zero
rational numbers is a group under multiplication.

Similarly for real and complex numbers.

Let Z/n’Z be the set of integers modulo some natural number n. This is an
additive group, isomorphic to the cyclic group Z,. It is not a group under
multiplication because for example, 0 does not have an inverse.

The subset (Z/nZ)* of elements of Z/nZ which are co-prime to n is a group
under multiplication as well. (That is, ab = 1 mod »n has a solution iff a
is co-prime to n). The number of elements in this group is the Euler totient
function 7(n), a central fascination of number theorists. Exercises: Show
that if p is a prime, all of the non-zero elements of Z/pZ have inverses. So,
7(p) = p — 1. Whatis 7(10)?

The set of n X n complex matrices of non-zero determinant is a group. It is
denoted by GL, (C) or GL(n,C). GL stands for “general linear”.
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(13) Similarly, GL, (R) is the group of real matrices of non-zero determinant.

(14) Matrices of determinant one used to be called “special”. Thus SL(n,C) C
GL(n,C) is the subgroup of complex n X n matrices of determinant one.
Similarly for SL(n, R).

(15) The inverse of a matrix with integer entries also has integer entries, as long
as the determinant is one. (Prove this.) Of course the product of two matrices
with integer entries is integral as well. Thus, SL(n, Z) is a group although
GL(n,Z) is not.

(16) For example, SL(2,Z) = {(3 Z) | ad — bc = 1} is a group. It is called the
modular group and is important in the study of doubly periodic functions
(i.e., elliptic functions).

(17) A real matrix is orthogonal if its transpose is also its inverse: gg’ = 1. The
set of real orthogonal matrices is a group, called O (n).

(18) The determinant of g € O(n) has to be +1. (Why?) The subset of orthogonal
matrices of determinant one is called SO (n). We will see that it is the group
of rotations in R”

(19) A complex matrix is said to be unitary if its inverse is its complex conjugate
transpose (hermitian conjugate): gg* = 1. The set of unitary matrices U(n)
is a group. The subset of unitary matrices of determinant one is the group
SU(n). Special cases such as SU(2), SU(3) are at the foundation of particle
physics.

(20) There is a close relationship between SU(2) and SO (3). They are the same
except for a sign. We will see that this is important in understanding the spin
of an electron.

(21) The set of twists you can do to a Rubik’s cube is a group. Exercise: How
many elements does it have? (This is a lot harder than it seems.)

(22) There is a huge literature on applying symmetry groups to molecular and
crystal physics. This used to be the main application of groups to physics.
We won’t do much of that in this book, saving our energy for more modern
applications.

(23) Many viruses have symmetric shapes. It is not yet clear if this is important
in understanding their biology.

(24) The set of all smooth co-ordinate transformations (of non-zero Jacobian) is
a group. This is the invariance group of General Relativity, Einstein’s theory
of gravity.

(25) The set of smooth functions from space-time to SU(n) is a group. The
invariance group (gauge group) of the standard model of elementary particle
physics is built out of this.
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(26) The set of smooth transformations on a manifold M (with Jacobian equal to
one) is a group, which we will call SDi f f (M). When the dimension of M is
two or three, this group is the configuration space of an incompressible fluid;
the Euler equations, which describe the flow of such a fluid, are equations for
geodesics on it.

2.1.1. A map from a group to another that preserves multiplication is
called a homomorphism. An isomorphism is a homomorphism
that is one-to-one and onto.

Thus, a homomorphism f : G — H will satisty

f(g182) = f(g1)f(g2)

The set of elements of G that are mapped to the identity of H is called the
kernel of this homomorphism. The kernel of any homomorphism is a subgroup.
If there is an isomorphism between two groups they have the same structure: At
some abstract level they are identical. A moment’s reflection will show you that
the kernel of an isomorphism is trivial.

2.1.2. An automorphism is a one-one and onto map f : G — G that
preserves the multiplication

In a sense, an automorphism is a symmetry of the group itself. The most obvious
example is a conjugation. Pick some element & € G and define

fu(g) = hgh™.
Then

fu(g1) fn(g2) = hg1h " hgah™ = hg1g2h™" = fu(g182).

Such an automorphism is called an “inner automorphism” . Many groups also
have “outer automorphisms” that are not of this type.

2.1.2.1. Examples

(1) There is an isomorphism from the cyclic group of n elements, Z,, to the group
of nth roots of unity: w +— et

(2) The determinant is a homomorphism from O(n) — {1,-1}. Its kernel is
SO (n).
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(3) There is a homomorphism R : SU(2) — SO(3) whose kernel is the subset
{1, =1} (where 1 stands for the identity matrix). We will study this one in more
detail later as it is important in quantum mechanics.

(4) Complex conjugation is an outer automorphism of the group SL(2, C).

2.2. Representations

2.2.1. A homomorphismr : G — GL(n,C) is called a representation

Representations allow us to think of group elements in terms of matrices, which
are much more concrete objects, almost as familiar as numbers.

2.2.1.1. A unitary representation is a homomorphismtor : G — U(n)

An orthogonal representation is r : G — O (n) etc.

In quantum mechanics, symmetries are unitary representations. They are there-
fore the most important representations. In general the representations might be
in terms of infinite dimensional matrices. But we will mostly confine ourselves
to finite dimensional matrices as the theory is so much simpler, but still useful in
physics. Most representations we study will be unitary or orthogonal.

2.2.1.2. Example

(1) Any element of the permutation group S3 can be written as a product of a
cyclic permutation o : POR — QRP and a reflection 7 : POR — QPR. We
say that S3 is generated by o, 7. A representation in O (3) is given by

010 010
oco—|0 0 1|, 7|1 0 0
1 0 0 0 0 1

2.2.1.3. Recall that the direct sum of two matrices is given by stacking

them as a bigger matrix A®B = ( 6‘ g ) . This can be extended to
the direct sum of two representations r1 ® r(g) = (r‘ (()g) rz?g) )

Clearly, the direct sum of unitary representations is also unitary. Physically, the
direct sum of representations describes two subsets of states of the same system,
that are not mixed into each other by the action of the symmetry group. For
example, rotations do not mix the p states of hydrogen with the d states. They
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belong to two separate direct summands in the representation of the rotation group
on the space of states of hydrogen. More on this later.

2.2.1.4. Conversely, if a representation can be decomposed as the sum
of two other representations (if every representation matrix is
the direct sum of two others) we say that the representation is
“completely reducible”

2.2.1.5. Two representations are equivalent if there is an invertible
matrix S (independent of g) such that ri(g) = Sr(g)S~!,
VgeG

If S is unitary we say that they are unitarily equivalent. Equivalent representations
only differ by a choice of basis: Not different in an essential way.

2.2.1.6. The direct product (also called tensor product) of two represen-
tations is defined in terms of the direct product of matrices in a
similar way

Physically the direct product describes a system that has two parts. For example,
the hydrogen atom has a proton and an electron. The representation of the rotation
group is the direct product of the representations on each constituent.

2.2.2. Group action

A group G is said to act on a set X if there is a map G X X — X which respects
the group multiplication

2182(x) = g1 (g2(x))

Given x € X, the set of all the elements you can get from it by acting with
some g is called its “orbit”.

The action is said to be transitive if there is a single orbit: Any element in X
can be taken to any other element by some g. More typically, the set of orbits G\ X
contains many elements.

(1) Of course, a representation is the particular case of a group action, where G
acts on a vector space through matrices.

(2) Rotations around the origin act on R3. The orbit of the origin is itself. The
orbit of every other point is the sphere (centered at the origin) passing through
it. Thus, an orbit is determined by its radius. In other words, there is a one-one
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correspondence between the set of orbits SO (3)\R? and the set of non-negative
real numbers.

(3) Another obvious example is the symmetric group S, acting on some set of n
elements by permutations.

(4) A group acts on itself by multiplication on the left. There is a single orbit,
which is the whole group.

(5) A subgroup H c G acts on G by multiplication on the left. In this case, there
can be several distinct orbits. The set of orbits H\G is called the “left coset
space” of H in G. (There is a similar story with right multiplication.) For
example, rotations around the third axis is a subgroup of SO (3). Since it only
affects the first two co-ordinates, this subgroup is isomorphic to SO(2). The
coset space SO(2)\SO(3) is S?, the sphere (Prove this!).

(6) Words like “orbit” are a reminder that this whole theory originates in mechan-
ics. Specifically, the time evolution of a system is an action of the addi-
tive group of real numbers on its phase space. The simplest example is
the harmonic oscillator with hamiltonian H = 1p? + 1w?g>. Its orbits are
ellipses:

q(t) =Acoswt, p(t) =—-wAsinwt

(7) The orbits of a chaotic dynamical system can be immensely complicated.
Your physical intuition can be misled if you spend too much time on exactly
solvable systems like the harmonic oscillator. In general, group actions are
deep, complicated things that describe all sorts of natural and mathematical
phenomena.

2.3. Quotient of Groups

Definition. A subgroup H of G is said to be normal if the left and right cosets are
equal.

That is, the sets gH and Hg are the same for every ¢ € G. Equivalently, for
every h € H and g € G there is an i € H (which may depend on g) such that

gh=h(g)g

If G is abelian every subgroup is normal. In general this is not the case. We
will denote a normal subgroup by H < G.

The importance of this idea is that given H < G we can define a multiplication
of cosets which turns G/H into a group. If we take a representative of the right
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coset gH and another of g’H and multiply them, we can rewrite

ghg'h’ = gg'h(g)h’
which is an element of the coset gg’H. This product can be seen to be associative
and has an inverse; thus F = G/H is itself a group. The map p : G — F which
sends every g € G to its right coset gH is a surjective group homomorphism. The
kernel is H, the coset of the identity.

Thus we can restate this situation as an “exact sequence” of group homomor-
phisms:

MoHL6LFS (1)

Here, “exact” means that the image of each map is equal to the kernel of the
next one. The first map simply sends the only element in the trivial group to the
identity of H. The second, 7 is simply the inclusion map of H into G as a subset.
The last map sends every element of F to the only element of the trivial group.

Since the image of the first map must be the kernel of 7, only the identity of
H is sent to the identity in G. Equivalently, i is injective. The projection map p is
surjective: Every element of ' comes from some element of G.

If we have such an exact sequence of groups, H is a normal subgroup and
F = G/H .We say that G is an extension of H by F.

2.3.1. Cardinality of a Group and the Index of a subgroup

If G is a finite set the number of elements of it #(G) is called its order or cardinality.
The set of left cosets G/H and right cosets H\G are the same set when H is a
normal subgroup of G. Even when H is not normal, there will always be a 1-1
correspondence between G /H and H\G. So the left and right cosets have the same
cardinality. It is called the index of H w.r.t. G. A moments thought will tell you
that the cardinality of G is the product of those of H and G/H:

#(G) =#(H) #(G/H).

So, the order of a subgroup H is a divisor of the order of G. In particular, a
group of prime order has no proper! subgroups!

The idea of cardinality even makes sense for some infinite groups; for example,
Z is a countable set, so has the same cardinality as any other countable set.
(Recall that there is a 1-1 correspondence between any two countable sets.) This
is usually denoted by the transfinite number 8. The idea continues to make sense

li.e., The only subgroups are the identity or the whole group.
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for uncountably infinite sets, but is more tricky and we will avoid thinking of it
this way.

It is possible for a countably infinite group to have a subgroup of finite index.
For example G = Z and H = 2Z. Although each is infinite, G/H is isomorphic to
the group of two elements, {1, —1}. Thus, H is an index two subgroup of G.

Exercise. Give an example of a group with no proper subgroup.

Answer: The group of cyclic permutations of prime order Z,, has no proper
subgroup.

Exercise. Show that the subgroup {1, 7} of S is not normal. However the subgroup
Aj = { 1,0, 0'2} of 3 is normal. Determine the factor group F = S3/Aj3. Construct
a homomorphism p : S3 — F whose kernel is precisely As.

Solution: Recall that S3 can be described by its generators o, 7 and relations as
S3=(o,7|c?=1=7* 01 =10"")
Its elements are
Sy ={l,0,0% 1,07,0°1}
The subgroup {1, 7} is not normal. The left coset of o € §3 is
o{l,t}={o,01}
while its right coset is
{1, 7}o0 ={o, 70}

These are not the same because 7o # o1, as we saw earlier.
But the subgroup A3 = {1,0, 0%} of S3 generated by o is indeed a normal
subgroup. The left coset of 7 is

TA3 = {1,710, 70'2}
while the right coset is
Azt ={1,07, 0'21'}
As sets these are the same because, as we saw earlier,
ro=cr=0%r
and similarly

To =0T
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The homomorphism p : S3 — Z, defined by
p:o—1, p:1t— -1
has Aj as its kernel. So,
1 > A3 > 83> 72, > 1

is an exact sequence: S3 is an extension of an abelian group A3 by another abelian
group Z».
We used this fact to solve the cubic.

Example. Some, but not all, of this can be generalized to arbitrary permutations.
Suppose G = §,, is the group of permutations of n objects and H is the subgroup
of even permutations A,,. Also, F' = {1, —1}. Then the map p that sends every even
permutation to 1 and every odd permutation to —1 is a surjective homomorphism
with kernel A,,. You can verify that A,, is indeed a normal subgroup: If g is an even
element of G, its left and right cosets are both just A,,. If g is an odd permutation,
its left as well as right cosets are both the set of all odd permutations.

The case n = 4 is more intricate than n = 3 but still understandable. Cyclic
permutations are no longer contained in A4, nor is it any more abelian. Yet, A4 has
an abelian normal subgroup K consisting of two pairwise interchanges

(12)(34), (13)(24), (14)(23)

as well as the identity. (Here, (12)(34) stands for the interchange of 1and 2 followed
by that of 3 and 4.)

In fact K < Ay; ie., K is a normal subgroup of A4. The quotient A4/K is
isomorphic to the cyclic group of three elements Z3:

1 >K—> Ay > 73— 1

Thus, S4 can be built as a succession of abelian extensions: First we get A4 as
an extension of K by Z3, and then Sy is an extension of A4 by Z;. This can be used
to devise a method for solving the quartic.

When n = 5 such ideas fail. A5 cannot any more be broken up into smaller
groups: It has no normal subgroups at all (other than the identity and itself). This
is why the quintic cannot be solved by algebraic methods.

2.3.2. Abelian Extensions, Solvable groups and Simple Groups

If H < G and F = G/H is abelian, we say that G is an abelian extension of H.
If a group can be obtained by iterating this construction (starting with an abelian
group), we say it is solvable. For example, S3 and S4 are solvable but not Ss.
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A group that has no normal subgroups (other than the identity and itself) is
said to be simple. That is, it cannot be obtained as an extension of any smaller
group. For example, As is simple [5].

Simple groups are the fundamental building blocks of group theory. So, it is
interesting to find all the finite simple groups (i.e., classify them up to isomor-
phism). After many decades of work this project has been completed. Fascinating
as it is, the connections to physics are somewhat tangential. So, we do not pursue
this direction.

2.4. The Fundamental Group

An important application of group theory is to another branch of mathematics,
algebraic topology. This field has its roots in Poincare’s foundational work on
dynamical systems. But now topology is a thriving branch of pure mathematics
which has turned out to be useful in modern physics in various ways. We will
not digress to review the basic ideas of continuous maps between topological
spaces. There are several standard textbooks, e.g., [6]. We will be content with
summarizing the notion of the fundamental group of a topological space, as it has
several uses within the theory of Lie groups.

Once we know that X is a topological space, it makes sense to talk of a
continuous map y : [0,1] — X; it defines a curve in X. A closed curve y in X,
based at a point xg € X, is a curve starting and ending at xo:

¥(0) =xo = y(1).

Given two closed curves y and ¥ based at the same point, we can get a third
curve as their composition; that is, we go around vy, (at twice the speed) and once
we return to xo we go around y, again with twice the speed. Translated into a
formula, this is

3 y(21) 0<r<i
Foy(t)=1" 1 2
yr-1) f<r<i

An interesting question is whether this can be turned into a group operation.
The identity would be the curve that simply stays at the base point xy; i.e., the
constant map:

e(t)y=x9, 0<tr<1
A way to define the inverse would be to traverse the curve in reversed time:

y ') =y(1-1).
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The idea does not quite work because the composition y~!(¢) o y(z) is not the
constant map. But we can tweak the idea a bit and get a group out of the composition
of curves. There is an equivalence relation among curves (continuous deformation)
such that the composition above becomes a group operation on equivalence classes
of curves.

To define this precisely, suppose y and ¥ are curves in a connected space X,
that start and end at the same point:

y(0) =7(0), y(1)=y(1)

We say that v can be continuously deformed to ¥ if there is a continuous
function of two variables

¢:10,1] x[0,1] - X
such that

$(0,0) =y(1),  ¢(1,1) =7(1).

In other words, there is a continuous function of two variables that interpolates
between y and . It is not hard to see that this is an equivalence relation.

The set of equivalence classes of closed curves based at xop € X is denoted
by 71 (X, x0). It is possible to show[6] that the equivalence class [y o y] depends
only on the equivalence classes [¥] and [y]. And moreover that y’ o (¥ o 7y) is
deformable to (y’ o) oy. Furthermore, y ! (¢) o y(¢) is deformable to the constant
map e(t). Thus the set of equivalence classes 71 (X, xg) is a group. It is called the
fundamental group of X based at x.

A connected space X (some would say path connected ) is one where there is
a continuous curve starting at any point x € X to any other point y € X. If X is
connected, 71 (X, xo) is isomorphic to 71 (X, yo), the fundamental group based at
some other point yp € X. (A continuous curve starting at xo and ending at yp can
be used to construct an isomorphism between the two fundamental groups.) So, in
this case, we can omit the base point and talk of the fundamental group 7 (X).

2.4.1. Examples

e Let C* = {z | z € C,z # 0} be the space of non-zero complex numbers. A
continuous closed curve in this space cannot pass through the origin. We can
pick any non-zero complex number as the base point zg. The space is connected
as there is always a continuous curve connecting any two non-zero points. Any
curve that does not contain the origin in its interior can be deformed to the
constant map; this equivalence class is the identity element in 7;(C*). But
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curves that surround the origin may not be deformable to each other. We can
associate a winding number to each continuously differentiable curve

R AN70)
"= 2mi 0 ’y([)

For example, the curves
yu(t) = > 0<t<1, neZ

wind around the origin n times. This winding number is invariant under smooth
deformations: If y and ¥y are boundary values of a function of two variables ¢,
a simple application of Stokes’ theorem of vector calculus shows that

ld,y_(t)_ ld’)N/—(l‘)_ 1 1 62¢ B
/0 D) /0 =) ‘/0 /0 gsai =0

In fact any two curves of the same winding number can be deformed into each
other. And thus 7{(C*) = Z as groups; composition of curves corresponds to
adding their winding numbers. The class of curves that winds once around the
origin in a counter-clockwise direction is the generator of the group. Its inverse
is the class that winds once around in the clock-wise direction.

If we remove two points from the complex plane, we get a space with a non-
abelian fundamental group.

X={z]z€eC,z#A,B}, A,BeC, A#+B

This group 71(X) is of some independent interest, so let us look into it in
a bit more detail. The continuous curves are curves in the plane that do not
pass through either A or B. For example, here is a curve that winds around A
once:

a(f)=A+ee’™, 0<e<|A-B|

It is a circle centered at Awhose radius is less than the distance from A to B;
so the circle does not contain B in its interior. Similarly there is a curve S that
winds around B. Let a be the equivalence class of curves deformable to a and
similarly for b and g. (It is important that the deformations are functions of two
variables ¢ : [0, 1] X [0, 1] — X that never take the values A or B). Again, we
have classes a” that wind around A some integer m times (and similarly b™).
But, knowing the winding numbers m, n around A and B no longer determines
a curve up to deformation. For example

b 'a 'ba
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(which goes around A, then B, then around A and then B in the opposite
direction) is not deformable to a constant curve. In fact there are no relations at
all among the generators a and b (except those implied by the group properties,
such as associativity.) The fundamental group is F», the Free group generated
by two elements a and b. This group can be pictured as a tree graph rooted at
the identity and branching at every vertex into three copies of itself: Start at the
identity and a move to the left (right) by one step is a (rep. a~!) and a move up
(down) by one step is b (resp. b~!). In the next generation, we reduce the step
size to a half (so that the picture will fit in a plane); starting at @ we can get a”, ba
or b~'a. (Of course a~'a just returns to the identity.) We can similarly depict
b2, ab,a'banda 2, ba ', b 'a Vand b2, ab',a 'b~". The generation after
that, edges have length 2—12 and so on. The resulting tree graph is shown in the
figure

The reduction of lengths by a factor two at each generation is not an intrinsic

property of the Free Group: It is done so that the picture will fit on the plane. A more
natural way to draw this graph would be on a hyperboloid of constant curvature:
The edges of the graph will all have the same hyperbolic (Lobachewsky) distance.
Indeed, F, is isomorphic to a subgroup of the isometry group SLa(R) of the
hyperboloid under the map

1
| ~ |
+ z‘\ b &
++ m E
N "
o > > e
N n
+H+ +H
i A ‘s
| A
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2.4.2. Covering Spaces

If a group G acts properly on a manifold X, the space of orbits X = G\ X is again
a manifold. (We will call the space of orbits the quotient, even when X is not a
group.) 2

We say that X is a covering space of X. The fundamental groups of X and X
are related in an interesting way: There is an exact sequence

{1} s 1 (X) » m(X) - G — {1}

In other words, the fundamental group of X is an extension of that of the
covering space by G.

If X is connected and 71(X) is the trivial group, we say that X is simply
connected. In this case the fundamental group of the quotient G\X is simply G.
We say then that X is the universal cover of X. Every manifold admits such a
description as the quotient of a simply connected space by a proper action. Let us
consider some examples.

e The group of integers G = Z acts properly on the space of real numbers X = R
by translation x — x + n. The quotient Z\R can be identified as the circle S!;
We just have to think of the equivalence class of x € X as mapped to ¢>7¥ € S!.
It is not hard to see that R is simply connected. So, 7 (S') = Z.

e We can extend this to an action of G = Z¢ on X = R by translation on each co-
ordinate component: x; — x; +n;,i = 1,---d . The quotient can be identified as
the product of d circles, which is the torus T4 of dimension d. Since Euclidean
space is simply connected, we get 711 (T9) = Z¢.

e The group SU(2) can be shown to be, as a manifold the three sphere S*. More
on this later.

e The universal covering space of the complex plane with two points removed can
be realized as the upper half plane. It will take us too far afield to describe the
proper action of the Free group F; on the half plane that gives this covering in
detail. The main idea is to represent the Free group by 2 X 2 real matrices and

to use the fractional linear transformation z — ?;:2 .

2The property of manifolds that we are using is that they are Hausdorff: every pair of unequal points
have neighborhoods that do not overlap. A mnemonic is: the points can be “housed oft” from each
other. Also, “properly” means that every ¥ € X has a neighborhood U which has no overlap with gU,
for every g € G which is not the identity.
In particular, proper group actions cannot have fixed points; also the orbit of a point cannot converge
to some point. In such situations, the quotient X may not have the Hausdorff property and so are not
manifolds: they are sometimes called “orbifolds”.



28 PHYSICS THROUGH SYMMETRIES

2.5. Appendix: Vector Spaces

It is useful to have an axiomatic point of view on vectors and matrices as well. In
particular it is useful to know about tensors.

2.6. Appendix: Lightning Review of Quantum Mechanics

Good references are [7, 8, 9]. The summary below is not a substitute for a proper
course in quantum mechanics: It usually takes a year to learn the material contained
in this section. But it might be useful as a review.

2.6.1. The Postulates

Quantum theory is still not completely developed. Questions about measure-
ment and interpretation are still being worked out (e.g.,““weak measurement”).
Nevertheless we can say, after almost a century of experimental tests, many things
for certain about how quantum theory works. It is not too early to summarize them
as a set of postulates.

2.6.1.1. The states of a physical system are represented by vectors in a
complex Hilbert space

This means that we can take linear combinations

aly)+B1¢)

of two states | ) and | ¢) to get another state. The quantities «, 8 are complex
numbers. There is a way to take the inner product (scalar product) of two states to
get a complex number, denoted by (i | ¢).

This inner product is linear in the second argument

W lag+Bx)=aW | o)+ | x)

and anti-linear in the first entry

(g +Bx |y =a’ W o)+ (x| ¢)

Remark 5. Be aware that mathematicians use the opposite convention: For them
it is the second entry in an inner product that is anti-linear. Mathematics and
physics are two neighboring cultures divided by a common language.
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Moreover, the inner product of any vector with itself is positive; it is only zero
for the zero vector. Thus

1> =< yly >

can be thought of as the square of the length of a vector.

Remark 6. Strictly speaking states are represented by rays (directions) in Hilbert
space. It is a fine point though.

A typical situation is that the state is a complex valued function of some real
variable (e.g., position), The inner product is then

W v = / o ()6 (x)dr.

Exercise 7. Verify that this integral has the properties of an inner product.

Or, the states may be represented by a column vector with complex components

Y= (Z;) etc.

Exercise 8. Prove that
w1 o)l _
! llel> ~

for all non-zero states |¢ >, [y >. This is called the Cauchy—Schwarz inequality.

2.6.1.2. Ifasystemis in state | ¢), the probability of finding it in another

Y
state | ) is 1, g7 -

This is one of the confusing things about quantum mechanics, until you get used
to it. A classical analogue is the polarization of light. About half of a beam of
circularly polarized light will pass through a filter that allows only linearly polarized
light.

2.6.1.3. The observables of a physical system are hermitian linear oper-
ators on the states.
A linear operator (or matrix) acting on a state produces another state, such that
L(a|y)+B|x))=aL|¢)+BL|x).
hermitian operators satisfy in addition

WILlx)=&ILIy).
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That is, the conjugate-transpose of a matrix elements is itself. If

Ly =2A1¢a)

for some complex number A and non-zero vector | ¥ ,), we say that | ¢ ,) is an
eigenvector of L with eigenvalue A. The most important property of a hermitian
operator is that it has real eigenvalues. Also, the eigenvectors | ;) (we ignore
degeneracies for simplicity) form a basis.

That comes in handy because of the following:

2.6.1.4. The possible outcomes of measuring an observable are its
eigenvalues

But here is a word of warning: The product of two observables is not always an
observable. The point is that (AB)" = BTAT. So, if two hermitian operators do
not commute, the product may not be hermitian.

Even if we know the state of a system, we may not be able to predict the
outcome of measuring an observable. The best we can do is to give probabilities.
With A, [, > defined as above,

2.6.1.5. If the system is in some state | ¢), the probability of getting the
outcome A upon measuring L is

[wa | o)
lwall?lel?

Recall that this is always less than one. Also, the fact that eigenvectors form a
basis implies that the probabilities add up to one.

2.6.1.6. There is a hermitian operator called the hamiltonian which
represents energy, the time dependence of a state is given by

RARZ0):
ot
Thus if you know the state at some time, you can in principle predict what it
will be at some later time; if you know the exact hamiltonian and if it is simple
enough to make the equation solvable. An eigenstate | ) of the hamiltonian
satisfies H | yg) = E | ¥E); it is a state of energy E. These have a simple time
dependence:

=H | y(1)).

| e () = e FE | yg(0).
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2.6.2. Example: Electron in a Magnetic Field

As an example, think of an electron in a magnetic field. It is bound to an atom (e.g.,
Sodium) and we ignore the change in its position: only the rotation of its spin. The
wave function has two components. The energy of an electron in a magnetic field
is proportional to the dot product of the spin and the magnetic field

H=upo B (2.6.1)

where

are the Pauli matrices.
Exercise. Find the eigenvalues and eigenfunctions of the hamiltonian (2.6.1). If
the initial state at time ¢t = 0 is ( 0) and the magnetic field is along the x—axis

B = (B, 0,0) what is the probability that a measurement of o3 at a time 7 will yield
the value —17? This illustrates the phenomenon of oscillation of quantum states,
also important for neutrinos.

2.6.3. Symmetries and Conservation Laws

2.6.3.1. Symmetries are represented by unitary operators that commute
with the hamiltonian

Recall that the probability of finding a particle in state | ) in another state ¢ is
[(¢ | ¥)|* (assuming that the state vectors are of length one.) If the symmetry is
represented by a linear transformation L satisfying

(Le | Ly) = (¢ | ¥)

these probabilities are preserved. Recalling the definition of the hermitian conju-
gate (adjoint)

< Loly >=<¢|L"y >
this conditions becomes
LTL=1

That is, L is a unitary transformation. Most symmetries are of this type. (See
below for an exception.)
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Recall that a state of energy E is an eigenstate of the hamiltonian.
Hy = Ey
A symmetry must take it to another state of the same energy:
H(Ly) = E(Ly).
This is satisfied if
HL=LH.

That is, if the hamiltonian commutes with the symmetry operator. Thus, a symme-
try is represented by a unitary operator that commutes with the hamiltonian:

L'L=1, HL-LH=0.

2.6.3.2. An exceptional case is time reversal, which is an anti-linear
operator

O(a|y)+b|¢)=a"®@[y)+b"O]¢).

We won’t have much more to say about this case for now; we will only consider
the case of linear operators for now.

2.6.3.3. An example is Parity

It reverses the sign of the co-ordinates of a particle

Py (x) = (-x).

Clearly P> = 1.
The Schrodinger equation for a free particle is invariant under this transforma-
tion
7’ o

—— VY = —ih—.
2m v lhat

Another way of seeing that this is a symmetry is that the operator P commutes
with the hamiltonian

h2
H=-—V? PH=HP.
2m

Thus, if ¢ is a state with energy E

Hy = Ey
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so will be Py. Even with a potential parity continues to be a symmetry if
V(-x) =V(x).
For example consider a particle in one dimension with a potential
hZ
H = —2—V2 +V, V@) =a(x*-d®»?% a1>0.
m

There are two minima at x = +a. The eigenstates of energy can also be simultane-
ously eigenstates of parity because [H, P| = 0. It turns out that the ground state is
of even parity

Y (=x) = ¢(x)
while the first excited state is of odd parity
¥ (=x) = =y (x).

2.6.3.4. Translation invariance leads to conservation of momentum
The translation by a is represented by the operator
T(a)y(x) =y (x+a).

A free particle on a line has hamiltonian

n* 0?
2m ax?
with a constant potential. Thus whether we apply the hamiltonian before or after a
translation we get the same effect on a wavefunction:

HT(a) =T(a)H.

For a particle moving in one dimension, an infinitesimal translation is represented
by the derivative operator:

¢(x+a)z¢(x)+aa—¢+---
Ox

Thus, if a system is invariant under translation, its hamiltonian must satisfy
0
H,—|=0.
[ Ox

I . . . .- . )
The operator z-is anti-Hermitian. The corresponding hermitian operator is —i 3.

If we multiply by 7 we get the momentum operator

0
= —ifi—.
p ! ox
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Thus, translation invariance implies the conservation of the momentum:
[H,p] =0.

Similar arguments apply to each component of momentum of a free particle moving
in R3.

2.6.3.5. Rotation invariance implies conservation of angular momentum

The infinitesimal generators of rotation are
0
L=rxp, p=-ih—.
or
They satisfy the relations

[Li,Lo] =ihL3, [Lo,L3] =ifhiLly, [L3,L1] =ihL,.

2.6.3.6. A particle can have angular momentum even when its momen-
tum is zero

Total angular momentum J is the sum of the orbital angular momentum L = r X p
and an intrinsic angular momentum S:

J=L+8S.

The components of § commute with those of L: They are three matrices
S = (81,52, S3) satistying

[S1,S2] =ihS3,  [S2,83] =ihSy, [S3,S1] = ihS,.

The simplest choice is S = 0. There are several such “spin zero” particles; e.g., the
alpha particle. The next simplest choice is

A0 1 h(0 i a(l 0
51‘5(1 0)’ 52‘5(1' 0)’ 53‘5(0 —1)'

These describe ‘spin half” particles, since the maximum eigenvalue of a component
of spin is half of 7. An electron, a proton, a neutron are all examples of such
particles.

There are many spin one particles, such as the p meson. In this case Sy, S2, S3
are 3 X 3 matrices. The photon has spin one, but is a special case because it moves
at the speed of light. (We need relativistic quantum mechanics for this.)

There are a set of particles called A that have spin % Their spin is represented
by 4x4 matrices. There are particles with even higher spin but they tend to be
unstable.

We will return to rotations and angular momentum repeatedly. It is the basic
example around which the whole theory is built.



Chapter 3

LIE THEORY

Sophus Lie was a Norwegian mathematician who worked at the end of the
nineteenth century. His audacious quest (still unfinished) was a “Galois the-
ory” for ordinary differential equations. The established physics of the day
(mechanics) was based on such equations. The essential insight of mechan-
ics is that complicated dynamics (e.g., the solar system) can be understood
as a succession of infinitesimal steps, each of which is given by a simple
formula (i.e., vector field on phase space).

Lie showed that a complicated group of transformations can be built
from a knowledge of infinitesimals. The group law reduces to something
much simpler, a set of commutation relations (Lie algebra). Lie theory
bloomed in the twentieth century, as a branch of mathematics with myr-
iad applications to physics. The most fundamental physics of our day (the
standard model of elementary particles) is based on the Lie groups SU(2)
and SU(3).

3.1. Lie Algebras

3.1.1. A Lie algebra is a vector space along with a map |[.,.] :
L X L — L such that
[aa + Bb, ¢] = ala,¢] + B[b,¢] linear
[a,b] = —[b,a] Anti — symmetry
[[a,b],c] + [[b, c],a] + [[¢c,a],b] =0 Jacobi identity

Here, «, 8 are real numbers. (We mostly think of real Lie algebras. But
there is a parallel theory where the scalars a, 8 are complex.) Note that

35
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the anti-symmetry implies that if [, .] is linear in the first entry, it will also
be linear in the second (i.e., it is bilinear). We call [.,.] the Lie bracket or
commutator.

3.1.1.1. A homomorphism is a linear map among Lie algebras f :
L — L' that preserves the commutator

f([aab]): [f(a)af(b)]a a,be L, f(a),f(b)G[:/

3.1.1.2. An isomorphism is a homomorphism that is invertible

Often, it is useful to think of this explicitly as a one-one correspondence of
basis vectors that preserves the commutation relations.

3.1.1.3.  An homomorphism to a Lie algebra of matrices is called
a representation. A representation is faithful if it is an
isomorphism

3.1.2. A subspace L' C L which is closed under the Lie
bracket is a sub-algebra

3.1.3. The maximum number of linearly independent ele-
ments, whose Lie brackets with each other vanish, is
called the rank

3.1.4. FExzamples

(1) A basic example is the cross product in three-dimensional Euclidean
space. Recall that

i j k
axb=|a; ay as
b1 by b3

The bilinearity and anti-symmetry are obvious; the Jacobi identity
can be verified through tedious calculations. Or you can use the fact
that any cross product is determined by the cross product of the basis
vectors through linearity, and verify the Jacobi identity on the basis
vectors using the cross products

ixj=k, jxk=1i, kxi=]j
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Under many different names, this Lie algebra appears everywhere in
physics. It is by far the most important example of a Lie algebra. It
has dimension three and rank one.

The commutator of matrices is the other basic example:

[A,B] = AB — BA

Again, bilinearity and anti-symmetry are obvious. The Jacobi identity
follows from a simple calculation using the associativity of matrix mul-
tiplication. We see that this is the infinitesimal version of the group
GL(n). The dimension is n?: there are n? independent matrix ele-
ments. The rank is n: the diagonal matrices commute with each other
and there are n linearly independent diagonal matrices.

Various sub-algebras of the algebra of matrices provide the other
important examples. The product of anti-symmetric matrices need
not be either symmetric or anti-symmetric:

(AB)T = BT AT = BA.

But the commutator of anti-symmetric matrices is always anti-
symmetric:

[A,B]" = (AB — BA)Y = BA— AB = —[A, B].

This Lie algebra is the infinitesimal version of the orthogonal group
O(n): Recall that an orthogonal matrix that is infinitesimally close
to the identity is of the form 1 + A with AT = —A. We call this Lie
algebra o(n). It has dimension w The rank of o(n) is k if n = 2k
orif n =2k + 1.

Similarly, the commutator of anti-Hermitian matrices is anti-
Hermitian. This Lie algebra u(n) is the infinitesimal version of the
group of unitary matrices U(n). The dimension of u(n) is n? and its
rank is n; as for su(n), the dimension is n? — 1 and the rank is n — 1.
The trace of a commutator is zero. (Prove this!) Thus, we have the
Lie algebra of traceless anti-Hermitian matrices su(n) which is the
infinitesimal version of the group SU(n) of unitary matrices of deter-
minant one. Recall that if a matrix is infinitesimally close to one,
det(1+ A) =~ 1+ trA.

The Lie algebra o(3) is in fact the same as (is isomorphic to) the cross
product on three-dimensional vectors. Any anti-symmetric matrix can
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be written as

0 —as as
A= as 0 —aq | = a1S1 + azSs + azSs
—a aq 0

for some vector a € R3. The matrices S; form a basis for o(3):

00 0 0 0 1 0 -1 0
Si=10 0 —-1|, Ss=|0 0 of, S5=[1 0 o0
01 0 -1 0 0 0 0 0

The commutation relations
[S1,82] = 83, [S2,83] =851 [S3,51] =52

are isomorphic to those above under the correspondence i — S1,j +—
S,k +— S3. (i.e., the cross product and the commutator relations
among the basis vectors are the same under this correspondence.)
Moreover, the Lie algebra su(2) is isomorphic to o(3). Any traceless
anti-Hermitian matrix can be written as a linear combination of Pauli
matrices

(01 [0 —i (1 0

=\ o) 2T\ o) 03_(0 1)
The correspondence S3 7%‘
an isomorphism. This is fundamental to understanding the spin of an
electron.
The Poisson bracket of classical mechanics was the first example of a
Lie algebra. Recall that observables of classical mechanics are func-
tions of positions and momenta. For a single degree of freedom (for

g3, Sl g 7%0’1, SQ — 7%0’2 giVGS

simplicity), the Poisson bracket is defined as

0AOB 0A 0B

A,B) = _aa9z
{4, B} dq Op  Op Oq

Verifying the Jacobi identity for this is a good way to start an honest
day of work. For more than one degree of freedom, we sum over each
pair of conjugate variables:

0A 0B 0AO0OB
A B} = _———
{ ’ } Z (a%' Op; Op; ath)

i
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In particular, we have the canonical commutation relations (also called
the Heisenberg algebra)

{e,p} =c=—{p,q¢}, {p.c}={q.c}=0.

Here, ¢ is the constant function, equal to 1 everywhere. This is an
example of a milpotent Lie algebra: Repeated commutators vanish
eventually. In this case, double commutators vanish.

The Poisson brackets of the components of angular momentum provide
yet another physically important realization of the Lie algebra o(3)

L=rxp
{Li,Ls} = L3, {Ls,Ls}=L1, {Ls,Li}= Lo

This isomorphism arises because the canonical transformations gener-
ated by angular momentum are rotations. We can regard the earlier
examples in terms of matrices as representations of this Lie algebra of
the angular momentum components.

A Lie algebra that is commutative is trivial: The bracket must vanish.
Thus, to be interesting, a Lie algebra must be non-abelian.

The only Lie algebra of dimension one is the trivial algebra.

The only non-abelian Lie algebra of dimension two can be written as

o, e4] = e

by a choice of basis. (By the way, e is called that because it is anal-
ogous to the “raising” or “creation operator” of quantum mechanics.)
Exercise: Find a representation for it in terms of 2 x 2 matrices.

1
= 0 0 1
Answer: ep — <(2) _%>, ey <O O>

Another three-dimensional Lie algebra, which is not isomorphic to o(3)
or su(2), is called si(2, R):

[61362] = —e€3, [62563] = —é€1, [63561] = €2

The sign of the first two commutators is different from o(3).
Exercise: Find an isomorphism of s/(2, R) with the space of traceless
real 2 X 2 matrices.

There are more non-trivial three-dimensional Lie algebras, such as
s0(3) =~ su(2), sl(2, R), and Heisenberg.

Also, find a set of three functions of position and momentum with
Poisson brackets isomorphic to si(2, R).

2 2 2 2
St Th p’=q* p°+4¢® pg
Hint: Think of &=, =4 &L
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(19) In addition to matrix algebras such as su(n), so(n), there is also a finite
sequence of exceptional Lie algebras. Many physicists have tried hard
to explain elementary particles in terms of exceptional Lie algebras,
seduced by their mathematical beauty. So far, no luck.

3.2. Lie Groups

3.2.1. A Lie group is a group on which there is a co-ordinate
system such that the multiplication and inverse are
differentiable functions

In other words, a Lie group is a manifold along with a multiplication and
inverse which are differentiable functions.

If you don’t know what a manifold is, don’t worry about this. Lie himself
thought of Lie group as transformations which depend on some parameters
in a smooth way. Any abstract mathematical theory is best understood by
working out physically realized examples. The axiomatization always comes
later. Its main purpose is to serve as a firm foundation for the next level of
abstraction. By the end of this book, you will know many examples of Lie
groups.

3.2.1.1. A countable group like the set of integers, or the set of of
rationals, or a finite group like the permutation groups, are
not Lie: There is no way to differentiate group elements

But the idea of a Lie algebra makes sense even when the scalars underlying
the vector space form a finite or countable ring (like integers). There is a way
to construct a Lie algebra from a discrete group, using its “central series”.
The power of a mathematical idea can be measured by its utility in areas
far from its origins. Lie’s ideas on groups and algebras have applications in
practically every branch of mathematics and physics. They are among the
most powerful of mathematical ideas.

3.2.1.2. GL(n,R) is a Lie group

The matrix elements themselves provide a co-ordinate system. Just stay
away from matrices of zero determinant. (The condition det g # 0 leaves
2

behind an open neighborhood of R™ .)
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3.2.1.3. U(n) is a Lie group

We have to solve the constraints defining the group

The matrix elements themselves are no longer a co-ordinate system: We
need to solve these rather complicated nonlinear equations. The substitu-
tion

allows us to solve them in a neighborhood of the identity.

Aside on Exponential Co-ordinates. The exponential of a matrix is defined
by an infinite series in the same way as the exponential of a number

2 3

a_1 a a
e =1 at o + gt
It satisfies the conditions
(e =ev, ()=

The tricky part in using these “exponential co-ordinates” is that
eaeb 7& ea+b

unless [a,b] = 0. There is a much more complicated formula that replaces
this. (We see it soon.)

If af = —a, then e® is a unitary matrix. The matrix elements of the anti-
Hermitian matrix provide a co-ordinate system on U(n) in the neighbor-
hood of the identity. More precisely, define the norm of an anti-Hermitian
matrix by [|a|| = VtraTa. As long as ||a|| < 7, the exponential function
is injective (i.e., e® completely defines a within the disc ||a|| < 7). This
establishes a co-ordinate system around the origin. Next, we establish a
co-ordinate system around the roots of unity by setting g = e%keb, for
k=0,1,---n — 1 again with ||b|| < 7. It is possible to show (we omit the
details of the construction and the proof) these n co-ordinate systems cover
all over U(n):

Every unitary matrix can be written in the form g = e’nkeb for some
k=0,1---n—1and bl = —b with |b| < m. This formula can be thought

of as providing a co-ordinate system in U(n) in a neighborhood of ek,
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Of course, most parts of U(n) are covered by more than one of these co-
ordinate systems: The change of variables from one system to the other is
differentiable. This is similar to the way that a polar co-ordinate system
cannot cover all of the plane: The origin and the line & = 0 have to be
excluded. But two polar systems with different centers and axes can cover
all of the plane; in regions covered by both systems, we can differentially
change variables among them.

Ifa’ = —a and tra = 0, then e € SU(n). The point is that det e = e"2.
This identity is obvious for matrices that can be diagonalized. (Prove it!)
More generally, it follows by continuity as the determinant, trace, and
exponential are all continuous functions; matrices that cannot be diagonal-
ized can be perturbed infinitesimally and made diagonalizable. This makes
SU(n) into a Lie group by similar arguments.

If ¥ = —a, and a has real elements, then e* € SO(n). Recall that
anti-symmetric matrices have zero trace. Hence, det e® = et = 1. It is not
possible to express parity as the exponential of an anti-symmetric matrix.

Lie groups don’t always have to be thought of in terms of matrices. As
long as the multiplication law can be written in terms of some co-ordinates,
we can verify associativity and look for an inverse.

Exercise 10. Let G = {(a,z) | a > 0,z € R} be the half-plane. Define the
product (a,x)(b,y) = (ab, ay + x). Show that this is a group. (What is the
identity? What is (a,2)~'?) Find a representation for this group in terms
of 2 x 2 matrices. Calculate the commutator ghg~'h~! for two arbitrary
elements of this group.

3.3. From Lie Groups to Lie Algebras

3.3.1. FEwery Lie group determines a Lie algebra.

More than one Lie group might lead to the same Lie algebra. For example,
we see later that SU(2) and SO(3) yield the same Lie algebra, although
they are not isomorphic as groups.

3.3.2. The set of elements infinitesimally close to the iden-
tity in a Lie group form a Lie algebra.
For matrix groups like GL(n, R), SU(n), SO(n) above, we put

g= 660’, h = eeb
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where € is thought as small. Then, we expand in powers of e:

2
e“~1l+4ea+ 62% + O(a®)

2

g l=e"~1—ea+ 62% +0(a®)

,a? + 2ab + b?
2

5a? + 2ab + b2
2

ghg 'h™' =1+ é*[a, b] + O(a®, b%)

gh~1+¢e(a+b)+e + O(a®,b?)

g tht=1—¢€la+b)+e +0(a®,b?)

(Calculate each line out and verify this.) Thus, the lack of commutativity
of group multiplication taken to second order determines the commutator.
This commutator defines a Lie algebra associated to the Lie group.

Even if the group is not built out of matrices, we can calculate the
“group commutator” ghg~'h~! in some co-ordinate system centered at the
identity. Then, expand it to the leading (i.e., second) order to extract the Lie
bracket.

Exercise 11. This continues Exercise (10) Find ghg~*h™! to second order
in €, where g = (1 + e, €€) and h = (1 + €3, en). Use this to find the Lie
algebra of the group. Find a representation in terms of 2 X 2 matrices.

Solution: The identity element is (1,0). The inverse is (a,2)"! =

(a=t, —a~'z) and the commutator gg'g~1¢g'~t = (1, ax —a?x — 2’ +a%a’z’).

A representation is given by
a x
—
@ (5 7)

GG

A calculation shows that
ghg *h™' = (1,0) + €% (0,an — BE) + O(€?)
This is the Lie algebra
[(, €), (B,m)] = (0,an — p¢)

since

Il
RS
SR
=)
<
— +
S
~_
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Defining?
€y = (1,0),€+ = (O, 1)

this corresponds to the Lie algebra (we saw it as an example in the section
on Lie algebras)

leo,eq] =eq.

A representation of the Lie algebra is the infinitesimal version of the
group representation:

o (10 (01
0 00/ "t \o o)

This Lie group and its Lie algebra do not seem to have a standard name
(may be it should).

3.3.3. The Lie algebra of U(n) is u(n), the set of anti-
Hermitian matrices; that of SU(n) is su(n), the
traceless anti-Hermitian matrices.

3.3.4. The Lie algebra of SO(n) is so(n) the set of anti-
symmetric matrices.

3.3.5. Structure constants

It is very useful to think of a Lie algebra in terms of a basis X;. An element is
expanded as a linear combination u = u’X;. (We sum over repeated indices
as often in geometry and algebra). If you know the commutator of every pair
of basis vectors, you can calculate the commutator of any element of the
Lie algebra. There must be a set of numbers called “structure constants”
such that

(X, X;] = cf; Xk

To be more precise, c,fj are the components of a tensor in this basis. The

axioms of a Lie algebra become some identities satisfied by the structure
constants:

° c,fj = fcf,i anti-symmetry
[ -m [ .m L -m _ 53 ;
o ¢iC + Cipcpy + ¢ = 0 Jacobi identity

1Beware that (1,0) as an element of the Lie algebra means something different from
(1,0) as an element of the group. Hopefully, the meaning is clear from the context.
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Most physicists think of Lie algebras in terms of their commutation relations
of basis elements and the structure constants. Beware that “basis elements”
are called “generators” in the physics literature. “Generators” have a dif-
ferent meaning in mathematics; remember that ¢ and 7 are generators of
the permutation group Ss.

Exercise 12. Find a basis and the structure constants for the Lie algebra
in Exercise (11).

Solution: We saw that [eg, e1] = e, so the non-zero structure constants
are

+ 1 +
Cor =1 =—cyy

3.4. From Lie Algebras to Lie Groups™

This section can be omitted in a first reading. It will make more sense
later.

The passage from Lie groups to Lie algebras is a kind of differentiation.
The converse is a kind of non-commutative integration: You should expect
this to be much harder. The following material is just a guide to those who
want to venture further. The book by Hausner and Schwartz [3] Lie Groups
and Lie Algebras is quite good for this topic. A purely algebraic proof of
the BCH lemma is in Free Lie Algebras by Reuttenauer [4]. We do not need
the fearsome details of the formulas for most purposes: Only the first one
or two orders are sufficient usually. The purpose of this section is to show
that it is possible to get the group law from the Lie algebra.

3.4.1. The Lie bracket completely determines the group
multiplication

In the exponential co-ordinate system, the multiplication of group elements
follows from taking repeated commutators (in the corresponding Lie alge-
bra) and adding them up in a particular way. The key is a formula that
allows us to multiply the exponentials of matrices that do not commute.

3.4.2. The Baker—Campbell-Hausdorff formula

e“eb _ ea+f01 dt (e‘iet’g)b (31)
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Here,

zrlogx

P(x) =

z—1
Also, a is the linear operator defined by the commutator:
ab = [a, b).
This is also called ada in mathematics books. So, a?b = |[a, [a,b]] ,a%b =

[a, [a, [a, b]]], etc. Indeed,

e&b =b+ [a, b] + %[aa [a, b]] + %[aa [aa [aa b]“ +oee

The function % is closely related to the generating function of Bernoulli
numbers:

w(er) = 2 —iﬁmn

1+z+a: x n x
2 12 720 30240

+0(2®).

By expanding ¢ and exp in power series, (3.1) becomes an explicit
formula for multiplication of exponentials.

The first few terms are
eaeb _ ea+b+%[a,b]+T12([a,[aﬁb]]+[b,[b,a])fi[b,[a,[a,b]]]+---

To prove this, we need a series of intermediate results. We start with
the following:

Lemma 13.
e%be™ = e
Proof. Let b(t) = e"®be " b(0) = b. Then,
b(t+e) = elttelape—(tte)a — geagtap,—ta,—ca
~ (1 + ea)b(t)(1 — ea) = b(t) + €[a, b(t)]

up to terms second order in €. Thus,

d N
—-b(t) = [a,b(t)] = ab(t).
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Regarding @ as a linear operator on b, the solution is

b(t) = et?b.
(t) .

We can now get a formula to differentiate the exponential of a function
valued in a Lie algebra. This is very useful in many quantum mechanic
calculations as well.

Lemma 14. Let a(t) be a function of a real variable, valued in the Lie
algebra. Then, with ¢(z) = % =1+ %z + %ZQ +oeey

d
—a(t) Z a(t) — 4(_g
e 2 e = g(—a1)

Proof. Define g(s,t) = e**® . Then

)
A(s,t) = g718—i = a(t)

by the definition of the exponential. Define

B ag e 8esa(t)
B(s,t) =g 15 =e (t)T

We can verify the identity

0B 0A
— — — +[A Bl =
0s ot +14,B]=0
which now becomes
OB dal(t)
g2 Bl =
=2 4 falt), B =0
or
oB  —

The dot denotes differentiation w.r.t. t.
We can think of ¢ as a constant and solve this as a power series in s:

B(s,t) = sa + %(—c@)aJr--% (—a/(t\))nild—i----

Putting s = 1 in this we get the result we want. 0
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Lemma 15. Let e%™ = (). Then,

d
—et) L e(t) _y,
(& dte

Proof. Just calculate

iec(t) — @ ietb _ eaetbb _ ec(t)b.

dt dt a
Now, we can prove the BCH formula (3.1):

Proof. Using the lemmas above,

—

P(—c(t))e=1b

Now, the function ¥ (z) = sziglz satisfies

$(2)¢(~log2) = 1

so that
de @
- b
% = ()
If we integrate this differential equation (recall the boundary condition
¢(0) = a) and evaluate it at t = 1, we get the result claimed. O

All this leads up to a fundamental idea of Lie theory: The product of expo-
nentials is determined by a series of repeated commutators. The exponen-
tial defines a co-ordinate system in the neighborhood of the identity of
the Lie group; the BCH formula gives the product in this co-ordinate sys-
tem. The co-ordinates may break down far away from the identity, but we
can establish additional co-ordinate charts based at a countable number
of other points on the group. (To fully understand this, you have to know
differential geometry beyond the scope of this book.) The most important
physical application is to spin which we discuss in detail later. We explain
the topology of SU(2) and SO(3) at that time. We merely state the result.

3.4.3. A Lie algebra determines a unique connected, simply
connected Lie group. Every connected Lie group with
this Lie algebra is a quotient of this simply connected
Lie group by a countable abelian normal sub-group.

Exercise 13. Starting with the Lie algebra commutation relations,
[eo,e4] = ey, reconstruct the group multiplication law for the two-
dimensional Lie group.



Chapter 4

ROTATIONS: SO(3) AND SU(2)

Our first lessons in geometry are on the plane. Euclid’s treatise on plane geometry
remains the model of all later works on geometry. Let us also begin by understand-
ing rotations in the plane. Then we will pass to “solid geometry”, the geometry of
three-dimensional Euclidean space.

4.1. SO(2)

Recall the relation between polar and cartesian co-ordinates on the plane
x=rcosf, y=rsinf

If we rotate this point through an angle ¢ around the origin, r remains
unchanged. But the angular co-ordinate changes to 6 + ¢, giving a new point

x'=rcos(0+¢), y =rsin(0+¢)
Using the addition formula for sin and cos

x"=rcosfcos¢ —rsinfsing, y =rcosfsing+rsinfcosed

x"\ [cos¢ —sing) (x
y'] \sing cos¢ ||y
In other words, the effect of a rotation can be represented as multiplication by
a 2 X 2 matrix. This matrix

‘We can write this as

cos¢ —sin ¢)

sing  cos¢

R(¢) =(

49
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has determinant one

ot (cos ¢ —sing

2 2
= + =1
i cos ) cos” ¢ +sin” ¢

and is orthogonal:

cos ¢ —sinqb)(cosqﬁ sin¢)

singg cos¢ | \—sing cos¢

ROR(S) = (

_ ( cos? ¢ +sin® ¢ cos¢sin¢—cos¢sin¢) _ (1 0)

COS ¢ sin ¢ — cos ¢ sin ¢ cos? ¢ + sin® ¢ 0 1
The trig identities imply that
R(¢")R(¢) = R(¢ +¢')

That is, the effect of a rotation through ¢ and then another rotation through
¢’ is a rotation through ¢ + ¢’. We must get used to this idea that rotations are
represented by orthogonal matrices of determinant one.

4.1.1. Meaning of orthogonality

Let us go in the other direction. Let M = (f z) be an orthogonal matrix. What
does it imply for its components?

a b\ (a C_(12+b2 ac+bdy (1 0O

c d)\b d] \ca+db c*+d*]\0 1
For this to be equal to one, the columns (Z) and (2) must be unit vectors
(using the diagonal entries). The off diagonal entries being zero implies that the dot

product of the column vectors is zero: They are orthogonal to each other. (Hence,
the name). Any unit vector is of the form

(3)=(se)

for some angle ¢. The other column will be given by some other angle

¢\ _[cosy
d|~ \siny
To be orthogonal we must have

(a b) (2) =0 = cos ¢ cosy + sin ¢ siny
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That is

cos(p—y) =0

there are two solutions to this
g
¢y ==%3
Thus, the most general orthogonal matrix is of the form

(cos¢ cos (£5 +¢)) _ (cos¢ —sin ¢) or (cos¢ sin ¢ )

sing  sin (£5 +¢) sing  cos¢ sing —cos¢

One of these is the rotation we found earlier. The other solution has determinant
minus one:

det (cos ¢ sing

2 2
1
G cos ) Ccos” ¢ —sin” ¢ =

It is the product of a rotation and a reflection:

cos¢g sing |\ [cosp —sing) (1 O
sing —cos¢) \sing cos¢ |\0 -1

The matrix ((1) P]) reverses the sign of the y—co-ordinate: It is a reflection
around the x—axis.
In conclusion,

e Orthogonal matrices of determinant one are rotations.
e Orthogonal matrices of determinant minus one are a product of a reflection and
a rotation.

Note also that rotations in the plane commute, since R(¢’)R(¢) depends only on

p+9.

4.2. SO@3)

Much of what we said above generalizes to three dimensions. The main difference

is that rotations do not always commute.
X
The square of the length of a vector r = (y
z

can be written as

r'r=x*+y*+7
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What linear transformations r — Mr will leave the length of a vector
unchanged?

MrYT(Mr)y=r"M"Mr=r"r
This is satisfied for all x, y, z iff
MM =1

That is, the matrix must be orthogonal. Again, this means that the columns of
M are orthogonal to each other; and that each of them have length one. In terms
of indices

Z M;iMj; =6k
J

Expanding it out with i = 1, k = 2 for example

MMy + My Moy + M3 M3, =0

My, M
This is the condition that (le ) is orthogonal to (Mzz ) Similarly for the other
M3, M3

choices of 7, k.
Lemma. The determinant of an orthogonal matrix is either 1 or —1.
Proof. Take the determinant of the condition above and use det M = det M7 :

(detM)* =1 = detM = +1 0
Under a continuous change of the matrix elements, the determinant of an orthog-
onal matrix (which is a continuous function of the matrix elements, indeed a
polynomial) cannot change: It can only jump from one value to the other. We say
that the group of orthogonal matrices splits into two “connected components”. One
with determinant one and the other with determinant —1.

The orthogonal matrices of determinant 1 form a subgroup: The product still
has determinant one. It also contains the identity. This is the group SO(3). It is
simply the set of all rotations. For, any rotation is determined by an angle and an
axis of rotation. If we choose the third axis to lie along the axis, the rotation will

only change the first two axes. With this choice of co-ordinate system, a rotation
will be

cos¢y —sings 0

R3(¢3) =|sings cos¢s 0
0 0 1
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This is an orthogonal matrix, as we saw last time; the extra row and column
does not change this fact. It also has determinant one. A rotation around the other
two axes will look like (by cyclically permuting co-ordinate axes)

1 0 0 cosgr 0 singr
Ry =|0 cos¢; -—sing;|, Ra(¢o)= 0 1 0o |,
0 sing; cos¢; —sings 0 cos¢o

They also have determinant one.

The most general rotation is determined by three independent angles: Two to
determine the axis of rotation (which is a unit vector) and another to determine
the angle of rotation. Alternatively, a general rotation is the product of the three
elementary rotations above. There are also other ways of parametrizing them. The
most popular are the Euler angles, which we will see later on.

The main point for now is that SO (3) is a three-dimensional Lie group; i.e., as
a manifold it is of dimension three. Which manifold is it? Turns out to be RP3. If
that means nothing to you yet, that is OK. We will return to this also in more detail
later.

4.2.1. Parity

Itis conventional in particle physics to define the operation of parity as the reflection
of all three co-ordinates:

As a matrix, P = —1, the negative of the identity matrix. Clearly, it is orthogo-
nal, PT P = 1 and has determinant minus one. Any orthogonal matrix of determi-
nant minus one is a product of parity and a rotation.

Exercise. Show that a left handed glove can be turned into a right handed one
by turning it inside out. (Best done with a latex glove; a good trick at a party of
geeks). Explain why.

It is possible to split the group of symmetries O(3) of euclidean space as a
product of rotations and the cyclic group Z, generated by parity.

Exercise. Let SO(3) X Z> = {(R,€)|R € SO(3),e = +1}. This is a group under
pairwise multiplication. Show that

h:003) > SO0B3)xXZy, h:Mw (MdetM,detM)
is an isomorphism of O (3) with SO(3) X Z,.
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There is ample evidence that rotations are a symmetry of nature even at the
fundamental level of elementary particles. A consequence of rotation invariance
is conservation of angular momentum, which is verified every day in particle
accelerators.

So, everyone thought that Parity is a symmetry as well. A big surprise was
when it was discovered (in 1957) that reflections are not always symmetries!.! The
culprit is an elusive particle known as a neutrino.

We will see that there is a natural, but subtle, way that particles of spin % (such
as neutrinos) can violate reflection symmetry. That nature takes advantage of this
subtle possibility is one of the remarkable things about the standard model of
elementary particles. To understand this we will have to dig deep into the structure
of the rotation group and its Lie algebra.

That said, parity violation remains a tiny effect. The vast majority of physical
systems preserve parity: Electromagnetic interactions (which govern chemistry),
strong interactions which govern nuclear reactions and gravity all preserve parity.
Only weak interactions (many of which involve the neutrinos) violate parity. So,
we will see how to implement parity in quantum systems.

4.2.2. The Lie Algebra o(3)

If the angles are infinitesimally small, the elementary rotations around the axes

become
Ri(p1) ~1+¢1S1+--+, Ra(¢2) x1+¢2So+--+ R3(¢3) ~ 1 +¢383+--
where
0 0 O 0 0 1 0O -1 0
S1=10 0 -1, S,=(0 0 0}, S3=(1 0 Of.
01 0 -1 0 O 0O 0 O

These are anti-symmetric matrices such that
Ri(41) =™, Ro(¢n) =e®%,  Ry(¢3) = e»™
This might be a good time to learn some basic facts about matrix exponentials.

Proposition. The exponential of an anti-symmetric matrix is orthogonal

!Even before this discovery, it was known that some chemical reactions in living things are not invariant
under reflections. There are some molecules which come in different shapes which are interchanged
by reflections: stereo-isomers. (Sucrose, common sugar, is an example). But this is not a violation
of reflection symmetry at a fundamental physical level. By accident, early life forms used one of the
possible orientations and we have inherited that preference; chemically, they have identical properties.
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T T . .
Just note that [e?]" = 4 = e7. Since A commutes with —A, we have
T
[A]7 et = oot = oA = |

Proposition. det e = ¢™

Proof. This is obvious if the matrix is diagonal:

A4 0 0 0 e 0 .0

A
A0 A2 0 0 4|0 et 0
0 0 . A 0 0 . e

deteA - e/lle/lg ---e/l" - e/ll+/12---/ln — etrA

The determinant and trace are invariant under equivalence transformations,

A 0 0 O
detq S 0 4 00 s =e’l‘e’12...e’l",
0 0 . A
A1 0 0 O
tris 0 4 00 S =+ + 4+,
0 0 . 4,

for any invertible matrix S. This extends the proof to any matrix that can be
diagonalized. That is, as long as there is an invertible (possibly complex) matrix
such that

44 0 0 O
A= 0 4 0 O g
0o 0 . A

the identity above is true. But then, the set of matrices that can be diagonalized is
dense in the vector space of square matrices: As long as the characteristic equation
det[A — z1] = 0 has distinct roots, the matrix is diagonalizable. (The exception
is when the discriminant of the characteristic equation vanishes. This is a subset
of co-dimension one, over complex numbers.) Since the determinant, trace and
exponential are continuous functions, once the identity holds on a dense subset it
will hold everywhere. 0
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Conversely, any rotation R € SO(3) can be written as
R=¢"

for some anti-symmetric matrix. (Beware that there may be more than one such
matrix. For example, e2mS1 = 1). It is not difficult to see that there is a dense subset
of SO(3) of this form. That in fact every rotation can be expressed this way takes
some additional work,which does not add much to physical insight. So, we skip
the proof.

Proposition. The matrices S1,S2,S3 above form a basis in the vector space of
3 X 3 anti-symmetric matrices

We can simply write any anti-symmetric as a linear combination of the §; in a
unique way:

0 A A 00 O 0 0 1 0 -1 0
-Ap 0 Ay |=—-A»n|0 0 —-1[+A;31 0 O Of-Apfl 0 O].
-Aiz —Axp 0 01 O -1 0 0 0 0 O

Proposition. The vector space of 3 X 3 anti-symmetric matrices is a Lie algebra.
The commutation relations of the basis elements are

[S1,82] =83, [S2,83]1 =81 [S53,51] =52 4.2.1)

You can verify the commutators by calculating the matrix products directly.
These relations can also be written as

[Sj, Skl = €jrSi 4.2.2)
The quantity €;1; (called the Levi—Civita tensor) is completely anti-symmetric
in its indices:
€jkl = —€kjl = —€kik

So, it vanishes if any pair of indices are equal. It is completely specified by the
case where the indices are all different and ordered in the standard way, in which
case it is defined to be unity.

€123 =1
You can check that (4.2.1) and (4.2.2) say the same thing. Thus, the structure
constants of the Lie algebra o(3) are the components of the Levi—Civita tensor.

Exercise. Show by direct calculation that (65| + 625, + 6353) r = 6 X r where

91 X
0 = (Hz) and r = [y ]. Also, @ X r is the change in r due to an infinitesimal
03 z

rotation around an axis parallel to 6.
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We can summarize the relation of the Lie group SO(3) and Lie algebra o(3):

Proposition. There is a neighborhood of the identity of SO(3) in which R =
e 51102534085 51 some vector @ = (61, 62, 03) of length |0| < n. The direction of
the vector @ determines the axis of rotation and its length is the angle of rotation.

As we approach the boundary of the ball, |#] — =, the uniqueness of this
representation breaks down. A rotation by 7 around any axis is the same as a
rotation through —7 around the same axis2. This means that SO (3) can be identified
with the solid disk of radius 7 in three-dimensional space, with antipodal points at
the boundary identified. As a manifold SO (3) is the real projective space RP>.

00 0
Exercise. Show that S% = —1+ P3 where P3 = (0 0 0); hence that P3S53 = 0, and
0 0 1

§3=-83, S7=S5 S;=-S3--

S3=1-P3, S5=-1+P3, Si=1-P;
This leads to

€™ = cosaz +sinazS3 + (1 — cosaz) P3.

More generally,

5 a]2 ajaz apas
Exercise. Sow that (a-S)> = —|aj? +a® awherea®a = |[aiaa @ @a:|and
2
ajaz azajz a§

hence,
sin |a
e*S = cos|a| + lal 5 — (I—coslal)a®a (4.2.3)
|a] |al
0 -a3 a
wherea=a-S=|[a3 0 -a| sothatab = axb. Also,a®ab=a-ba.In
—a) ai 0
particular, if |a|] = 7, we have S = ¢72S,

4.2.3. The Real Projective Space* RIP" for n > 2

The unit sphere S” can be thought of the set of directions in R”*!: We think of two
non-zero vectors as the same as long as they point in the same direction, dropping
the information in the length. Formally, we say that u ~ v if there is a positive

2]t is important that not all the points at the boundary of the disk of radius 7 are identified with each
other: each such point is identified only with its antipode. Rotations around an angle 7 around different
directions describe distinct elements of SO(3).
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number A such that u = Av. The set of equivalence classes of non-zero vectors
under this relation is the sphere.

We can go further and allow A to be negative; the resulting equivalence class
describes a ray passing through the origin. The set of such rays is the real projec-
tive space RP". Another point of view is that RP" is S with anti-podal points
(which only differ by an overall sign in the co-ordinates) identified. For any
n > 2, the sphere S" is the universal cover of RP"; the fundamental group of RP”"
is Zz.

It is easier to visualize this if n = 2. A ray passing through the origin cuts
the sphere S? at two points. If the ray cuts the sphere somewhere on the Northern
Hemisphere, it must also cut it at the anti-podal point in the Southern Hemisphere.
We can uniquely determine the ray knowing just the co-ordinate of the point in
the Northern Hemisphere. Points in the Northern Hemisphere are in 1-1 corre-
spondence with the interior of the unit Disk: Given (x, y) with x> + y*> < 1 we can
determine z = 4/1 — (x2 + y2) uniquely.

If the ray intersects the sphere at the Equator, its anti-podal point is also on
the Equator. So, we can think of RP? as the Disk with the antipodal points on its
boundary (the Equator) identified.

This idea goes over to n = 3 as well, even if harder to imagine.

The case of n = 1 is different from those with n > 2. Identifying anti-podal
points on a circle will give another circle., of half the circumference.

4.3. SU(2) and its Lie Algebra su(2)

This basic example occurs all over physics, especially in the quantum mechanics
of spin. We have alluded to it several times already. Still it is worth going over it
in some more detail. Let us begin with the Lie algeba.

4.3.1. Basis in su(2)
su(2) = {a | a' = —a,tra = 0}

is the vector space of traceless anti-Hermitian matrices. A typical element can be

. _ ai apn . . . . .
written as a = | _,-  _,, | where ay; is purely imaginary and a;» is complex; so
12

it depends on three independent real parameters. It is not hard to see that

(o1 (o i 1o
17750 o) T2l o) BT T2 0 -
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form a basis:

—I aj a) —iar
a=a1s1+a2sz+a3S3=7 +i =a-s
a) ayn —dasjs

It will be useful to define a = (ay, az,a3) and s = (51, 52, 53).
They satisfy the commutation relations

[s1,82] =53, [s2,83] =51, [s3,81] =52

Thus, the correspondence s; — S; is an isomorphism between the Lie algebras
su(2) and so(3). We can also say that s; provide a two dimensional faithful
representation of 0(3). We saw that o(3) describes the effect of infinitesimal
rotations on vectors in R

Some identities (easily verified) satisfied by the spin matrices will come in
useful soon:

1
2 2
SIS, =%=5
S1852 + 5251 =0 = 5253 + 5350 = §351 + 5153
The quadratic identities above then become (again, easy to verify)
1
2_ Lo
(a-9)? =—lal
The scalar on the r.h.s. is to be thought as a multiple of the identity matrix.
Exercise. Show the more general identity
1 1
a-sb-s=—--a-b+=(axb): s 4.3.1)
4 2
for any pair of vectors a, b. Therefore (using some vector identities)
a-sb-s—b-sa-s=(axb)-s (4.3.2)
1 o,
a-sb-sa-s:—ia-ba-s+z|a|b-s (4.3.3)
There is a sort of uniqueness to the choice of spin matrices.
Exercise. Show that any triple of 2 X 2 matrices si, sé, sg satisfying the relations

5181 = —— = 858, = 845} (4.3.4)

’ ’r o s A ’
5185 + 5587 = 0= 5555 + 53855 = 535] + 5753 4.3.5)
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are linear combinations of the above matrices:
si=Rjis;
i Jisj

Moreover, the 3 x 3 matrix R appearing here is an orthogonal matrix : R” R = 1.

Answer To see this, just note that
(a-s) =-1laP
4
for any vector a. On the other hand,
a-s'=a;s;=a;Rjjsj=a’s, a'=Ra
Thus
"2 ’ 2 1 72
(a-s)* = (@ -s)" = —[a’|
4
so that
|Ra|* = |a|?

for any vector a; this means that R is orthogonal.

4.3.2. SUQ2)is S3 as a manifold
SU(2) is the set of all unitary matrices of determinant one:
SU(2) = {g | g? =g71,detg = 1}
Let us unpack this. Suppose
1 812
8= (§21 gzz)
The conditions g can be expressed in terms of the matrix elements

(371 831) _ I ( 82 —812

; . ) 81182 —81gn =1
810 8» 811822 — 812821 \=821 811

We can solve for g1 and gy, in terms of g1 and gx»:
82 = gfl, 821 = —8T2
The condition on the determinant becomes

lguil* +1gi2l* =1
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Thus, elements of SU(2) are in 1 — 1 correspondence with pairs of complex
numbers (g1, g12) € CZ satisfying the condition above. In terms of real parameters,
C? = R*; and the condition that the sum of absolute values squared says that the
sum of the squares of the four real components is one. Thus, there is a 1 — 1
correspondence between SU(2) and the space of unit vectors in R*; that is, SU(2)
is S* as a manifold.

This is very useful as it gives a way of picturing SU(2). And makes its topology
easy to understand. (The Lie groups SU(n) for n > 3 are harder to describe as

manifolds: They are not spheres any more. But they are well understood anyway)
A co-ordinate system centered at the identity is given by the exponential map

g — ea1S1+a2S2+a3S3
The exponential is defined by an infinite series as usual
1 2 1 3
g= 1+a-s+2—!(a-s) +§(a-s) 4+

Combine all the even terms and the odd terms:

g_1+2—!(a-s) +4—!(a-s) +oe-

+a-s

1+%(a-s)2+%(a-s)4---]

We can simplify this using the identity (a - s)* = —}‘|a|2 noted earlier:

2 4
:1_im +i@ +
g 2\ 2] Tarl\2

+a.s[l_%(g)2;(gﬂ)“._.]

We recognize the series:

cosx—l—z—!x +4—!x +---
sinx 1, 4
T—l—ix +§x +

So, we have
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This gives us another way to understand the identification SU(2) ~ S°. The
elements close to the identity are indeed described by a vector a of small length.
But all the vectors with |a| = 27 describe the same element, g = —1: The sin term
(which is the only one that knows about the direction of a) vanishes. Thus, SU(2)
may be thought of as the disk of radius 27 in R?, but with all the points on the
boundary of the disk identified. This is another way of thinking of the sphere.

In particular, we can now see that SU(2) is connected and simply connected.
Any point ¢**® is connected to the identity by the curve e’®®: For ¢ = 0 it is the
identity and at # = 1 it is at ¢*S. For example, the curve ™% for 0 <t < 1
connects the identity to —1.

An example of a closed curve is a circle of radius » < 2x in the plane with
a3z = 0:

a=r(cos0,sind,0).

It is not hard to see that this can be continuously deformed to a point (the
identity) by shrinking r — 0.

4.4. The homomorphism R : SU(2) — SO (3)

The natural way to think of SU(2) (its defining representation) is by its action
on C2.

uj

uv gu, gesu), uz( e C2.
u

2
This leads to an action of SU(2) on the vector space of 2 X 2 matrices:
M — gM g+.
If a matrix transforms this way under SU(2), then Mu transforms the same
way as u:
Mu — gMg'gu = g(Mu)

Under this action, the trace of a matrix is unchanged:
tr (gMgT) =tr (ngM) =trM.
Moreover,

M gMTg

so that the property of being anti-Hermitian is preserved by the action of SU(2).
Thus, the space of traceless anti-Hermitian matrices carries a representation of
SU(2).
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This should not be surprising: This space is just the Lie algebra su(2); and
every Lie group has a representation on its Lie algebra (the adjoint representation).
But, we know that the Lie algebras of SU(2) and SO (3) are isomorphic. Explicitly,
there is a 1-1 correspondence between vectors b € R? and traceless anti-Hermitian
2 x 2 matrices:

. 1 .
—%bl +§b2 %b3

Now, recall that trMt M is the sum of the absolute squares of its matrix elements;
it is invariant under the SU(2) action:

aM'M v tr[gMTg" gMg'| = uM™M.

There is a simple relation between this “norm” of a traceless anti-Hermitian matrix
and the length of the corresponding vector in R3:

tr[(b-s)" (b-s)| = %|b|2.

Under the action of SU(2) this matrix transforms to gb - sg¥. There must be a
vector b’ such that

gb-sg"=b"-s

From the relationship of the matrix norm to the length of vectors, b’ must have
the same length as b.

Now, this vector b’ must depend linearly on b; so there must be a matrix R(g)
such that b’ = R(g)b. That is,

g(b-s)g" = (R(g)b) s (4.4.1)

Since R(g)b and b have the same length, R(g) must be an orthogonal matrix.
Recall that the determinant of an orthogonal matrix can only take values +1. Now,
det R(g) is a continuous function detR : SU(2) — R. Since the only allowed
values are #1 it has to be a constant. This constant has to be 1 because R(1) = 1.
Thus R(g) € SO(3).

By its definition we can see that it is a homomorphism

R(g182) = R(g1)R(g2).

But R is not an isomorphism! For example, both g and —g are mapped to the
same matrix R(g) in SO(3): The lhs of (4.4.1) is unchanged by replacing g by —g.
So, at best this is a 2 to 1 map.

We can understand this more explicitly working out the formula for R(g) in
exponential co-ordinates.
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4.4.1. R(g) in Exponential Co-ordinates

Let is calculate:

= o (2] (3] 25 )

= cos (| l) s—smz(lm)ZE(b-s)Z2
a a

oo i[5 o a2

Now, we use the identities (4.3.1-4.3.3)

t o a0y s a2 (B Ly pa. s+ Lapn.
g(-s)g cos(z) .S |alzsm(2 2a b a s+4|a|bs

+ cos('zl)sm (E) H( axb)-s

sin |a|

|al

By reading off the coefficient of s we get

g(b-s)g" =cosla|b-s+

(axb)- s+ﬁsm (|a|)a ba-s

R(g)b=cosl|a| b+

i 2
sm|a| X b + — sin® (H)a-ba
|al |al 2

By thinking of this as a linear operator acting on b,

sinja] , 2 (| a|
A+ — sin
|a] |a] 2

R(g) =cos|a| + )a®a

0 —as ax a) ajaz apaz
whered=(a 0 -alanda®a=|aiaa a3 aas| as defined earlier. That
—-az dai 0 ayjaz azaj a_%

is, they are matrices such that
ab=axb, a®ab=a-ba

Using the trigonometric identity for sin ( ‘az‘ ) we can rewrite this as

sin |a|

a+ L
al " a2

R(g) = cos|a|] + (I —coslal)a®a
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Using the identities (4.2.3) of the matrices Si, S2, 53 we recognize this as
R(g) = 5.

Now, recall that SO (3) corresponds to the region |a| < z; The points on the
boundary with |a] = 7 are identified with their antipodes: S = ¢S when
|a] = 7. This is why SO(3) = RP? as a manifold.

On the other hand, SU(2) corresponds to a region |a| < 2z which is twice as
big. All the points with |a| = 27 correspond to the same element g = —1 of SU(2).
That is, SU(2) = S? as a manifold.

For example, there is no identification of e* with ¢™

S when |a| = n. Instead

a-s a-s_

e — —a-s

22— ==, Ja|=nx

|a]

The map R : SU(2) — SO(3) is insensitive to a change of sign of g :R(g) =
R(—g). From the explicit formulas, we can see that this is the only ambiguity: The
kernel of R is precisely Z, = {1,-1} c SU(2) .

Exercise. Construct a curve which starts at some point g € SU(2) and ends at the
point —g; its projection to SO(3) via R should however, be a closed curve.

Solution: Pick a vector a of length wand define
y() =e®s, -1<t<1.
Its image under R is

sin[|ta t
M a+ u (I —cos[|tal]]) a® a
E] E]

Since |a| = &, the middle term vanishes at ¢t = +1. The remaining terms are
insensitive to the sign of 7. So R(y(—1)) = R(y(1)).

R(y(1)) = cos[|ral] +sign(7)

4.5. SU(2) as a Group Extension of SO (3)

This can be viewed as part of a larger theory of extensions of groups. We need a
bit of terminology from group theory.

Definition. The kernel of a group homomorphism f : H — G is the set of
elements of H that are mapped to the identity in G. The image of f is the set of
elements of G that are of the form f(g) for some g € H.

Thus, the kernel of the map R : SU(2) — SO(3) of the last section is the
subset {1, —1}. The image of R is the whole of SO(3).

Definition. A sequence of group homomorphisms G A G, LY Gs A is

exact if the image of each map is equal to the kernel of the next.
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For example, this means not only that f> (f1 (g)) = 1,V¥g € G| but also that
fr(x) =1 = 3g € Gy such thatx = f1(g).

Definition. G is the extension of a group G by another group H if there is an exact
sequence of group homomorphisms

m-ovs56t65

Here, {1} denotes the trivial group containing just the identity. So, the image
of the first map is just the identity. Exactness means that the only element of H
mapped to the identity of G by i is the identity. This means that i (H) is a subgroup
of G which is isomorphic to H.

The last map just takes everything in G to the identity; its kernel is all of G.
Exactness means that the image of IT must be the whole group: Every element of
G arises as 7(g) for some g € G. But some information may be “lost”: TI(g) might
not determine g itself.

Now we come to the essential part: i(H) must be the kernel of I1. That is, the
elements of G that are “killed off” by IT are precisely those that come from H. This
means that G is a kind of “quotient” of G by H. Certainly, if they are finite groups,
the number of elements in G is the number of elements of G times that of H.

In fact we can define two elements of G to be equivalent if they project to the
same element of G:

g1~ 8 = (&) =11()

That is, these two elements of G are equivalent if they only differ by multipli-
cation by some i(h) for h € H

81~ 8 <= 3he Hsuchthatg; =i(h)g

Then IT defines a 1-1 correspondence between such equivalence classes and
G: We can think of G as G modulo this relation.

A rather obvious example of an extension is the product G x H: The set of
pairs (g, h) with g € G and h € H with the pairwise product

(g.h)(g" ') = (gg', hh").

This is the trivial extension. The interesting possibility is an extension that is
not a product.

The content of the last section is that SU(2) is a non-trivial extension of SO (3)
by Z»

15255002 & so3) -1
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The map i simply takes —1 to the negative of the identity matrix. These are
precisely the elements that are mapped to the identity by R. This is a non-trivial
extension: We cannot think of SU(2) as the product SO (3) X Z,. (The latter would
instead be O(3), the group of reflections and rotations.)

An even more basic example of a group extension is

1-z5rBu0) 51

U(1) is the set of complex numbers of unit magnitude (the same as 1x 1 unitary
matrices); it is an abelian group under multiplication. Geometrically it is the unit
circle.

R and Z are the additive groups of real numbers and integers respectively. i just
embeds integers into real numbers in the usual way. I1 is the exponential

H(X) — 627rix

When x is an integer this is equal to one. It is parametrized by an angle, which
is a real number modulo 27:

U(1) ~ R/2nZ.

4.5.1. The Universal Cover of SO (3)

Another point of view is topological. U(1) is not simply connected: A closed curve
can wind around the circle many times and so cannot always be deformed to a
point. The universal covering space of the circle is R; the covering map is IT as
defined above.

In the same spirit, SU(2) ~ S is simply connected. That is, any closed curve in
it can be deformed to a point. But SO(3) ~ RP? is not: The curve ¢S for 6 varying
from —7 to 7 is closed. It starts and ends at the origin. But it is not deformable
to the identity continuously. The corresponding curve in SU(2) is e~2993. It is
not closed as it connects the antipodal points on the sphere. Topologically, S is a
covering space of SO(3). The map R above is the covering map. The fundamental
group of RP? (the set of closed curves up to homotopy equivalence) is the group Z».

Thus, the relation of SU(2) is a kind of “twisted” product of Z, and SO(3)
both as a group and as a manifold. More precisely, SO(3) = SU(2)/Z, where two
elements of SU(2)which only differ by a sign are considered equivalent. (For any
group extension the equivalence classes G /i(H) form a group.)

This is typical of other Lie groups. Given a Lie algebra, there is a unique simply
connected Lie group corresponding to it. The other Lie groups that share the same
Lie algebra differ from the simply connected one by “division” by some discrete
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subgroup. (The fundamental group of a Lie group is always abelian, so it is always
a discrete abelian subgroup.)

4.5.2. The gauge group of the standard model*

Physicists tend to be sloppy about this fact that there are several Lie groups with
the same Lie algebra. For example, you will hear often that the gauge group of the
standard model is SU(3) x SU(2) x U(1). This is true at the level of a Lie algebra.
As a group it is, to be precise[10], S (U(3) x U(2)). It has the same Lie algebra.
But differs from SU(3) x SU(2) x U(1) by a discrete group Zg. You may think this
is a hair-splitting difference that doesn’t matter physically. But it has an important
physical consequence: It explains why the electric charge of the electron and the
proton are equal in magnitude.

For a while there was hope for a Grand Unified Theory: S(U(3) x U(2)) is
a natural subgroup of SU(5). Perhaps SU(5) is the true gauge group, which is
spontaneously broken to its subgroup S(U(3) x U(2)) . This would mean there are
rare decays of the proton into leptons (an electron and some neutrino). Experiments
have ruled this out. Hope remains that the true gauge group is some even large
symmetry such as O(10) or Eg. But in the absence of experimental hints, such
endeavors remain speculative.

Exercise. Let G

SWE) xU@) = {(§ 7)) 16 eUG). g2 eUQ), det

(g3¢2) =1} and G = SUB) x SUR) x U(1) = {(g2.82 &) | & € SUQ),
82 € SU(2),81 € U(1)}. Show that these two groups have the same Lie algebra.
Find a group extension

157z 5656-1.



Chapter 5

ANGULAR MOMENTUM

5.1. Angular Momentum in Classical Mechanics

We make a digression into classical mechanics. Let us start with the classical
theory. Recall that position and momentum satisfy the Poisson bracket relations
{riorj} =0=Api,p;}, {pi.rj}=0ij
Here 6;; = {(]) i;j is the Kronecker symbol. These relations are invariant
under rotations. For example, if we change p; — Ripk, rj = Rjr; by an
orthogonal matrix R,

{pisrj} = RiuRj{pr,ri} = RixRji0ki = Rix Rji = 6i;

The last step follows from the definition of orthogonality. A basic principle
of classical mechanics is that an infinitesimal transformation which leaves the
canonical relations unchanged is generated by Poisson brackets with some function
(called the generator). For example, under an infinitesimal rotation through an agle
¢3 around the third axis the changes in r and p are given by ¢3S3r and ¢3S3p
respectively. There must be a quantity L3 such that

{Ls,r} =83r, {L3,p}=3S3p
That is,
{L3,X} =) {L3’y} =X, {L37 Z} =0

{L3.px} =-py. {Ls.py} =px. {L3.p:}=0

You can check that

L3 =xpy —ypx

69
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does the job. Similarly we will have
Ly =yp;—-zpy = {Li,r}=Sir, {Li,p}=S1p
Ly =zpx —xp; = {La,r}=Sr, {Ly,p}=5p

That is, they realize the 0(3) Lie algebra in terms of Poisson brackets. The
change of any physical quantity f under a rotation by an infinitesimally small
angle ¢ is the Poisson bracket {¢ - L, f}. We can conclude that tmonengthe three
functions are the components of the cross product vector

L=rxp
This is angular momentum. The components of angular momentum satisfy
{Lj, Ly} = —€jxLy

Proposition. Rotations are the canonical transformations generated by angular
momentum

Exercise. Show that L* = L? + L% + L% has zero Poisson Brackets with the
components of angular momentum {L%, Lz} =0

If rotations are the symmetry of a mechanical system, they will leave the
hamiltonian unchanged. For example, the hamiltonian of the Kepler problem

p’ k

“2m

is clearly rotation invariant. Since angular momentum generates rotations, it follows
that

(L,H} =0

But the hamiltonian generates time translations: For any observable quantity,

daf
L - {(H,
=)
Proposition. If the hamiltonian is rotation invariant, angular momentum is con-

. _ dL _
served: {L,H} =0 = <=0

If L # 0, this has two important consequences for celestial mechanics:

e The orbit lies in the plane orthogonal to L. In this plane, choose a polar co-
0

ordinate system centered at the star and L = ( 0 )

Ls

e Then L3 = r? % must be a constant. This is Kepler’s second law.
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5.2. Angular Momentum in Quantum Mechanics

This is part of any standard course on quantum mechanics. My favorites references
are [7, 9].

A real function on the phase space (representing a classical observable) goes
over to a hermitian operator in quantum mechanics. Poisson brackets of observables
become commutators of operators (apart from a factor of —i7). Thus, the position
and momentum operators satisfy Heisenberg relations

[ri.ri] =0=pi.p;].  [pi.r;] =-inéi;

The usual (i.e., Schrodinger ) representation is to think of 7; as the multiplication
operator and

pi = —iho;

as the derivative. In vector notation p = —iiV.
Angular momentum is also then an operator

L =—ihir xV
These operators satisfy the commutation relations
[Lj, Lk] =ihej Ly

Apart from the usual factor of —i7 these are just the commutation relations of
the matrices S; we found earlier. If we had defined

K=rxV
we would have obtained a representation of the Lie algebra o(3):
[Kj, Kk] =€ K.

While more natural mathematically, this is a bit awkward for physicists: K; are
now anti-Hermitian (unlike L; which are hermitian). Their eigenvalues are then
purely imaginary.

The 7 is merely the factor that converts from the intrinsic units of quantum
mechanics (in which angular momentum is dimensionless) to those we got used to
in classical mechanics (in which angular momentum has units of M LT, same
as 7). In many quantum calculations, it will be convenient to use “natural units”
with 7 = 1 and convert to classical units at the end. This is easily done using
dimensional analysis. A little care is always needed to translate from physics to
mathematical jargon: A factor of —ii is part of this translation.
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Recall that a representation of a Lie algebra is said to be unitary if the matrices
are anti-Hermitian.

K'=-K
The name is justified because the corresponding representation of the group (by
matrices such as %K) is by unitary matrices. Equivalently, the angular momentum
operators are hermitian.
In summary, Angular momentum operators form a unitary representation of
the 0(3) Lie algebra.
It would be useful to have a classification of all such representations. More pre-

cisely, we need to find all the irreducible unitary representations up to equivalence.
But, before classifying anything we must work out a few examples.

5.2.1. Examples of representations

Every Lie algebra has a representation on itself, the adjoint
representation.

The commutator is itself a linear operator, so we can define
[a,u] = du
The Jacobi identity can be written as
la, [b,ul] = [a,[b,u]] = [a,b],u]
That is

(ab - ba)u = [a,blu
which means that ¢ +— d is a representation. Another way to think of this is in
terms of a basis and structure constants. Recall that

_ k I m I m I m _
[Xi, X;] = Cink = €l T CxCli + ChiCl; =0

Again, the Jacobi identity can be written as
CiCx - CkCi = ¢

where the C; are matrices whose components are given by the structure constants
themselves
1 _ 1
[Ci ] j = Cij-
If we work out the matrix elements in terms of the Levi—Civita tensor we
simply get back the matrices S used to define o(3) earlier!
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So, the adjoint representation of 0(3) this representation is three-dimensional.
We will find its place in the larger scheme once we classify representations; it turns
to have spin one.

There is a representation of 0(3) in terms of Pauli Matrices. This is the next most
important representation

i

By direct calculation you can can verify that

i i i
[‘50‘1"5"2] =3
(and cyclic permutations of this relation.)
Although this is a representation of the Lie algebra o(3), it does not give a
representation of the group O(3). Recall that a rotation through an angle 27 is the
identity. For example,

8271'53 - 1

But there is a crucial sign difference in the representation:

627T(—%0'3) — e—ino'3 -1

We will see that a quirk of quantum mechanics still allows this as a repre-
sentation of the rotations. Quantum mechanics allows a “representation up to a
phase” or “projective representation”. The electron (the most common elementary
particle, responsible for chemical reactions and hence life) exists only because of
this apparently arcane technicality!

In the larger scheme below, we will see that this is the spin half representation
of the Lie algebra. This is the representation with the smallest dimension, two.
(If you exclude the trivial representation where S; are all mapped to 0). All the
other representations can be built out of this one by taking tensor products. So, it
is also called the fundamental representation. Not coincidentally, the fundamental
building blocks of matter (quarks and leptons) carry this representation.

5.3. Representations of 5o (3)

We now take up the task of classifying all the irreducible unitary representations
of the Lie algebra o(3) of rotations.
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5.3.1. Egquivalent representations

Any time you classify things, you need a notion of equivalence. Is a set containing
two apples different from a set containing two oranges? It is, if you are making
apple sauce. Not if you are merely learning to count.

Suppose K; and K are matrices satisfying the commutation relations of o(3).

[Kj,Kk] = €K, [K;,K;c] = Ejlel’.
We say they are equivalent representations if there is a matrix 7 such that
’ -1
K. =TK;T

This is fair, because T is just a change of basis.

5.3.2. Reducible representations

The direct sum of two matrices (they could have different dimensions) is

A 0
nos=(t 0]

That is, write the matrices as blocks along the diagonal and fill in the rest with
zeros. The rule for matrix multiplication gives

A 0)(C 0) [AC O
0 BJ\0 D/ \0 BD
It is now clear that if K;and K /’ are two representations (may be of different

. . . K; 0). .
dimension) the direct sum M; = ( 0 K ) is also a representation. For,
J

K; 0 [K;, K] 0

OKj

K, O )
0 K

o K.k

Such representations should be considered reducible: They can be split into
smaller pieces. Conversely, once we know the irreducible representations, we
can build all representations by taking direct sums. The irreducible represen-
tations are the basic building blocks, the elementary objects, of representation
theory.
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A more general situation (which does not arise for so(3) but does for some
other Lie algebras) is that the representation matrices might of the triangular form

A C
0 B
where C is a rectangular matrix. Then

A C\ (A7 C\]_([A,A"] AC’+CB' -A'C-C'B
0 B)’\0 BJ| 0 BB’

These are also to considered as reducible representations, since there are
smaller pieces A, B that provide sub-representations. But in this case (6‘ ([;) is
not the direct sum A @ B. If we need to distinguish between the two situations, we
will say that the representations which are direct sums are completely reducible.

If a representation is unitary (i.e., the representation matrices are anti-
Hermitian) it is not hard to see any reducible representation is completely reducible:
The hermitian conjugate of (3 g) 18 (él lgﬁ.); so if it is anti-Hermitian, C = 0.
For physical reasons we are mostly interested in unitary representations. In any
case, all the representations of so(3) are unitary; so any reducible representation
is completely reducible. So, the reducible representations we will encounter are
mostly completely reducible.

But here is a tricky point: A change of basis can obscure the fact that a rep-
resentation is reducible. The matrices may not look triangular (or block diagonal)
in all bases. So, we could say a representation is reducible, if there exists a basis
in which the representation matrices are of the upper triangular form (or even the
block diagonal form).

There is a basis-independent way of saying this. If a representation is reducible
(if such a basis exists), vectors of the form '6 (with zero components on the part

acted upon by K J’.) are mapped to (Kg"): This subspace is invariant. (Each vector

changes, but the space of all such vectors is unchanged.) So, here is the official

Definition. A representation is reducible if there is a proper (i.e., containing more
than the 0 vector but not as big as the whole space) invariant subspace. And if
there is no proper invariant subspace, the representation is irreducible.

So, our aim is to classify irreducible representations up to equivalence. A useful
tool in identifying a reducible representation is?

ILater we will study Schur’s Lemma as part of a deeper theory. We develop only what we need for
now.
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Lemma. (Schur) A representation S; — M; is irreducible iff the only matrices
that commute with all the M; are multiples of the identity

The point is that the projection to an invariant subspace ('6) is a matrix that

. (K; 0,
commutes Wlth(o K})'

ot
1 0\(K; 0} (K; 0\ (K; 0)(1 0
0 o/\0o K7/ \o of \0 K;J\0 0
If there is a matrix C that commutes with M;, its eigenspaces are invariant
subspaces. (Unless C is a multiple of the identity, the only eigenspace is the whole

space; so there are no proper invariant subspaces.)
In particular this means for so(3) that

2 2 2
M; + M5 + M;
must be a multiple of the identity in an irreducible representation: The Lie algebra

commutation relations imply that

[M}+ M3+ M5, M| =0.

5.3.3. Unitary equivalence

We can put a finer point on this. Recall that angular momentum must be a hermi-
tian matrix: It must be an observable of quantum mechanics. The representation
matrices K are related to angular momentum by

J =—ihK

So the representation matrices must be anti-Hermitian, giving a unitary repre-
sentation.
When we say two unitary representations are equivalent,

’ _ -1
K: =TK,;T
the matrix 7 must be required to be unitary.
T7'=T".
That way, observables (hermitian matrices) are mapped to observables by
unitary transformations:
J =TJT".
Thus we want to classify irreducible unitary representations of so(3) up to
unitary equivalence.
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5.3.4. Roots and Weights

It will be convenient to choose units such that 7z = 1. The commutation relations
of angular momentum

[J3, /1] =ila, [J3,02] ==idy, [J1,J2] =iz

are more conveniently written as

7 J1+iJ, J1+i), [ J1—i]2] J1—iJp
3, = 5 3, = - .
V2 V2 V2 V2

Ji+1iJy Jl—ifz}
, =J;
V2 V2

The factor of % etc. are chosen so that we have the neat relations
[J39J+] =J+, [J3,J7] =—J_.
[J+9 J*] = J3

for
_J1+iJ2 J _Jl_iJZ
V2 V2

Complex linear combinations as J.. satisfying such “ladder” relations are called
roots : Cartan’s terminology in his classic work on Lie theory. The eigenvectors of
J3 (see below) are called weights.

For a unitary representation of 0(3),

J+

I =13
and
J=J_
Now, suppose we have a eigenvector of J3
J3lm >=m|m >

The eigenvalue will be a real number m. The eigenvectors [m > and |m’ >
will be orthogonal when m # m’. We will also choose them to be have length one.
That is

<m|m’ >= 8w

This still leaves an ambiguity of a phase: We can multiply each |m > by a
complex number of modulus one.
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Lemma.
J3Jilm >= (m+ 1)Jym >,  JzJ_|m >=(m = 1)J:|m >
Proof. For,
J3Ji|lm > = [J3, 0] \m > +J J3|m >
=Jim > +mJi|m >= (m + 1)|J:|m >
and similarly for J_. U

The point is that J, is a “raising operator” is a “positive root”: As long J.|m ># 0,
it is an eigen-vector of J3 with eigenvalue m + 1. (Similarly J_ is a “lowering
operator”.) We just showed that eigenvalues of J3 are equally separated by one. We
will see next that this is a finite sequence: There is a largest and a smallest value
for m.

The key is the quantity (“‘Casimir operator”)

P =T+ 0+ T2

Being the sum of squares of hermitian matrices, this is a positive matrix. That
is, its expectation value in any state is positive:

<ullPlu>=>0.
Lemma. In an irreducible representation, J* is a multiple of the identity.

Proof. The commutation relations of o(3) require that [JZ, Jk] = 0. By Schur’s
Lemma this must be a multiple of the identity in an irreducible representation. [

It is useful to write this in terms of raising and lowering operators:
Lemma. J3(J3+ 1) +2J_J, =J>=J3(J3 - 1) +2J,J_

Proof. Let us calculate
=il Ji+idy  JPH I3 il Bl TP+ T~

J_J, = = =
* NG NG 2 2

so that
J+ 3+ 20 =3+ T3+ JE+ 05— T3 = J?

The other identity follows in a similar way by considering J,J_ instead. O
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Now, J_J, is by itself a positive operator:
<ulJ_Jiu >=| Jju >|>> 0.
So, we have2
3+ 1) < J?

or

2
FAES RPN
Y 4

So, J3 cannot have eigenvalues that are too large in magnitude; there must
be a smallest and a largest eigenvalue for J3. Let the largest eigenvalue (“highest
weight” ) be j:

Blj >=jlj >
It should be impossible to raise this by J; since it is already the largest:
Jilj >=0
It follows that
Plj>=j(+Dlj >

By Schur’s lemma, J? must be a multiple of the identity and so we now know
its value on all the states:

Jm >=j(j +1)|m >
There is a state with the lowest weight:
J_|Mmin >=0
Now,
Plmin >= [J3(J3 = 1) +2J0d -] [muin >= Minin (Manin = 1) ntin >
gives

](] + 1) = Mumin (Mmin — 1)

>The meaning of an inequality A < B relating hermitian operators is that the expectation value in
any state ¢ satisfies (¥, Ay) < (Y, By) .
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The solutions of this quadratic are mpi, = —j, and mmyin = j + 1 . The
second solution can’t be the right one, because mp;, is supposed to be the smallest
eigenvalue and j + 1 is even bigger than the maximum j.

So, m ranges between j and —j, in steps of one:

m=j,j=1,...,—J

There are 2 + 1 such distinct values. Since 2 + 1 must a positive integer, we
conclude that the allowed values of j are

|
=021,
7=%5

For each choice j there is one irreducible representation.
To complete the story, we need the matrix elements of J.. We already know
that J3 is the diagonal matrix

<m'|zlm >= mém.
And that
<m'|Jylm >=0, unlessm’ =m+1
<m'|J_lm>=0, unlessm =m~—1
So, we just need the numbers
<m+1|Jim >= ap,
Since J_ = JI,
<m|lJ_lm+1>=a,, = <m-1|J_|m>=qa, _,
Now,
<m|P|m>=j(j+1)
JjG+ 1) =<m|Js(Js+1)+2J_Ji|m >
=m(m+1)+2 <m|J_Jy|m >
=mm+1)+2<m|J_-lm+1><m+1|Jy|jm >
=m(m+1)+2|am|?
We have determined the magnitudes of the complex numbers
1
V2

Vi +1) —m(m+1)

|| =
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The phases can be chosen to be anything: These phases only affect the choice
of basis. We choose

= %«/j(j D) —mm+ D)

(The representation you get by another choice of phase is unitarily equivalent).
To conclude,

Theorem. Up to unitary equivalence there is exactly one irreducible representa-
tion of 0(3) for each dimension2j +1 =1,2,3, ... An orthonormal basis is |m >
form=j,j+1,...,—J.

The representation matrices are

< m|J3|lm >= mé,ym,

<m'|Jylm >= %\/j(j +1)=m(m+1)s(m" =m+1)

<m'|J_|m >= %\/j(j +1) —m(m—-1)s(m" =m-1)

Exercise. Verify by direct calculation that these matrices satisfy the commutation
relations of 0(3)

We will denote this representation by D/,

5.3.5. Examples
The Scalar

The smallest representation DV is one dimensional with 2j+1 = 1. This is the trivial
representation where all the representation matrices are zero. This is the scalar
representation: Rotations are all represented by the identity. There are elementary
particles (such as the Higgs boson) which belong to this representation.

. . 1. . . .
The spinor. The next smallest representation D2 is two dimensional. 2j + 1 =
V2
or,using J; = £ ) = Lk

2 = j= % The representation matrices are
o L
A
V2 V2

10 0 0
J3 = , Jo=
o - L0
0 -1i 10
Ji= b=, 2 =2
1 2 0 3 0_%

)

=
S =
]~
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We recognize this as the representation in terms of Pauli matrices we found
earlier. The 2 dimensional complex vectors on which such matrices are called
spinors. Remember that this is a representation of the Lie algebra o(3) but not of
the group SO(3).

The vector. When 2j + 1 = 3 and j = 1 we get for the representation D',

10 0 000 010
J={0 0 0f Jo=|1 0 0], J=|0 0 1
00 -1 010 000
or
1 —L
0 % 0 0 -5 © 10 o
h=|l5 0 5| 2=l 0 -%| #={00 0
L i 00 -1
0 % 0 0o £ 0

Up to a unitary transformation these are proportional to the matrices represent-
ing infinitesimal rotations:

irTS;T™" = Ji

where
T=| O 0 1
5 %0

Thus the j = 1 representation is unitarily equivalent to the adjoint representa-
tion.

3 . . . .
The D2 representation. Just for fun, we list the four dimensional representation of
0(3) with j = E

\/—

w

0o ¥ o0 o o - o o0
@010J§0—10
> J2 = =l
o 1 o ¥ o i o0 -if
0o 0o B o o o & o
3
30 0 0
0 7 0 0
s = ]
00 -1 o
o0 o0 -3
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Again, this is a representation of the Lie algebra o(3) but not of the group
SO(3). This is true of any representation with half-integer ;.

5.4. Irreducible Representations of SU(2)

To summarize, for every j = 0, %

of the group SU(2). It has dimension

1,... there is an irreducible representation D/

dimD’/ =2j +1.

If j is an integer, D/ has kernel Z», so is really a representation of the smaller
group SO (3) = SU(2)/Z,. For half-integer j it is a faithful (i.e., with trivial kernel)
representation of SU(2). The Casimir J? takes value j(j + 1) in D/.

5.5. Spherical Harmonics

Armed with a knowledge of the irreducible representations of 0(3) let us take a
second look at the angular momentum operator

L=-irxV

You can see that this is unchanged under the scale transformationsr — Ar.
This suggests that L only depends on the direction of r and not on its magnitude.
Indeed, transforming to spherical polar co-ordinates

x=rsinfcos¢, y=rsinfsing, z=rcosf, 0<6<m,

0<¢p<2r, O<r

we can calculate that [7, 9]
0
L3y = —i—
3y la¢
Ly =i sin¢2—l’g +cos¢cot03—l’;), Loy =i (—cosqﬁ(;—l’g +sin¢cot92—z

Here i is a complex-valued function on the sphere S2. Let C(S?) be the vector
space of such functions. This representation of 0(3) on C(S?) is reducible. After
all,

2 _ 72,772,712
L™ =Li+L;+Lj
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will commute with Lg. In fact, L?, L3 provide a complete set of commuting
operators on C(S?): Any function can be expressed as a linear combination of
their eigenstates.

The simultaneous eigenvalue problem becomes

LY = [(L+ )Y

L3Y;n = mYj,

These partial differential equations appear in other disciplines (e.g., accoustics,
electromagnetism) as well. The solutions are the spherical harmonics. Explicit
solutions can be found by using recursion relations [7, 9]:

Yim = cimP}" (cos 0)e'™?

c1m are constants usually chosen so that the integral of |Ylm|2 over S? is one. P;"
are certain polynomials (“Associated Legendre polynomials™).

Even without the explicit formulas, we can see that C(S?) contains one copy
each of the representations with integer angular momentum (i.e., odd dimension)

[=0,1,...

These representations are unitarily equivalent to the odd dimensional repre-
sentations found above.

It cannot contain the half-integral representations because a function of the
sphere must take the same value at ¢ = 0 and ¢ = 27; so m must be an integer.

Exercise. Obtain the formula for L2, L. in terms of polar co-ordinates [7, 9]. Use
it to get a recursion relation for ¥;,, allowing you to determine it from Yj; (6, ¢).
Determine Y;; by solving the equation for a highest weight vector, L,Y;; = 0.

5.6. The Hydrogen Atom

Just as mechanics began with the solution of the Kepler problem, quantum mechan-
ics began with the solution of the hydrogen atom. Spherical symmetry plays a
crucial role in both problems. The hamiltonian is the sum of the kinetic energy of
a particle of mass m and a potential energy which varies inversely with distance:

u is the mass of the electron, k is (up to a constant that has to do with the
system of units you use) the product of the charges of the nucleus and the electron.
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Representing the canonical commutation relations by
p +— —ihV

the hamiltonian becomes a differential operator

The problem is to find the eigenvalues and eigenstates of this operator. It
also has scattering states, corresponding to the continuous spectrum, which we
ignore for now. We are also ignoring several other small effects: The finite mass
of the nucleus, relativistic corrections, the spin of the electron, the hyperfine
splitting due to the magnetic moments of the electron and the nucleus, Quantum
Electrodynamics effects (such as Lamb Shift). Indeed, a history of quantum theory
can be based on the improving understanding of the hydrogen atom. The story is
more or less complete by now. We will stick to the simplest case in this section.

The first step towards the solution is to note that the angular momentum

L=rXxp

commutes with H. More precisely, {H, L?, L3} form a set of commuting observ-
ables. From our earlier discussion, the simultaneous eigenstates of L? and L3 are
the spherical harmonics, which determine how the states depend on the angles.
So, the eigenvalue problem for A must reduce to solving some differential equation
in the radial variable r. This reduction is typical of the use of symmetry in physics.

We must express H in terms of a radial operator and L2. Since the potential
energy is already known to be —%, we just need a formula for the LaplacianV? in
spherical polar co-ordinates [7, 9]

10,0 1 o\ o>
Vi=sS—rP—+———1(sinb—| +—
2 6r or + 25in% 0 {(sm 39) " (9¢2}

leading to (in units with 7z = 1)

1 1 0 (,0¢ 2 k
_ 1198 )] -
Ry = 2/1[ r26r(r 8r) ( l/’] r
The angular derivatives occur only in the combination L?. We can assume that
the wave function is of the form

Y(r,0,¢) = R(r)Yim(0,$)
where Y, are the simultaneous eigenstates of L? and L; we saw earlier. Then we
get the radial eigenvalue equation
1 1d dR I(I+1 k

o))

— ~ = ER
2u dr 2 r

r2dr

r
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The angular factors pull out of the radial derivatives and cancel out. This
ordinary differential equation is solved in every book on quantum mechanics
[7, 91. Square integrable solutions occur when

2
__&, n=1,2,3--
2n?
The label n is called the “principal quantum number” in the jargon of atomic

physics.
The solutions are

_r r
Ru(r) = Cur'e 7 1241 (2
na

where L2 (r) are the “associated Laguerre polynomials” [7, 9].
Here C,;; is a constant, which is usually chosen so that eigenvectors have length
one. Also,

h2
a=—7=
pk?
is a quantity with the dimensions of length (“Bohr radius”). L2 | (x) are some
polynomials of order n — [/ — 1 associated with LaGuerre. So, we have

n—-[1-1>0
which leads to the range of allowed values of angular momentum:
[=0,1,....,n—-1.
Of course, we already know that

m=11-1,...,-1

5.6.1. Numerical estimates

For completeness, let us recall the numerical values of the parameters involved[7,
9]. A convenient unit of energy in atomic physics is an electron volt eV. If we
choose ¢ = 1 in addition to /i = 1, the mass of an electron is, in energy units

u~0511x%x10°eV.
k = e? is best thought of in terms of the fine structure constant, because it is
dimensionless:
e? 1

ne 137

0%
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So, in energy units

In particular, the smallest value of energy (ground state energy) is E; =~
—13.6eV. This is in excellent agreement with experiment. Agreement can be made
perfect by adding in various small effects we ignored.

5.7. Spin and SU(2)

Originally, angular momentum arose as L = r X p i.e., orbital angular momentum.
It is zero when momentum is zero. Now we know that a system can have angular
momentum even when its momentum is zero. This is intrinsic angular momentum
or spin.

If we take the non-relativistic theory of the hydrogen atom above literally, the
ground state is unique and has zero angular momentum: n = 1 =— [ = 0.
But this was proven to be wrong experimentally by the Stern—Gerlach experiment.
(Originally done with Silver atoms; later, the effects were reproduced in hydrogen
as well.) The electron in the ground state of hydrogen has two possible states,
which respond differently to a magnetic field. Roughly half the atoms are found to
be in the state with angular momentum pointed along the magnetic field and the
other half have it pointed opposite.

This can be explained if the electron has an intrinsic angular momentum %h
The wave function is then a function ¢ : R? — C2. The two components of the
wave function allow the Pauli matrices to act on it. The total angular momentum
is the sum of the orbital and intrinsic angular momenta:

1
=rxp+-=o.
J=rXxp 20'

These provide a representation of the group SU(2) rather than SO (3).

A complete explanation of this needs the relativistic theory (the Dirac equation).
To the first approximation the effect of the spin is a doubling of the number of
allowed states of the electron. If there is a magnetic field there is an additional
contribution to the energy

Hyae = g0 - B

This shifts the ground energy by +g|B|, removing the degeneracy. By passing
a beam of atoms through a magnetic field, we can separate them into two groups
depending on the eigenvalue of o - B.
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Even in the absence of an external magnetic field, there is a magnetic field cre-
ated by the orbital motion of the electron around the atom (“spin-orbit coupling”).
This adds a term

HSOZEL'O'

with a small coefficient € that can be calculated in terms of the electron mass and
charge. This means that the orbital and spin angular momenta are not separately
conserved: Only their sum J commutes with the Hamiltonian.

We saw that L3 has to be an integer multiple of 7 because the wave function
has to return to its value after a rotation through 2s. That is not necessary for spin;
it can be integer or half integer. The electron takes advantage of this: %hoi; takes
half integer values. For these particles, we get a faithful representation of SU(2)
instead of SO(3).

There are other elementary particles (the photon, W boson) for which the spin
is an integer multiple of 7; for these we get a representation of SO (3).

The total angular momentum is the sum of various contributions: The spin of
the electrons, the orbital angular momentum of the electrons and the spin of the
nucleus. We will need to develop a theory of how to combine different sources of
angular momentum.



Chapter 6

ADDITION OF ANGULAR MOMENTUM

6.1. Direct Products

The direct product (also called the Tensor Product or Kronecker product) of two
matrices is defined as the matrix obtained by taking every possible product of their
components. Best to understand this by examples. The direct product of a vector
with two components with a vector of 3 components can be written as a 2 X 3 array
with six components:

Vi
up uyvy ujvz upvs
R|vo|=
Uy UVl UV UIV3

The direct product A ® B of a2 X 2 matrix A with a 3 X 3 matrix B, acting on
u ® v is defined to be
(A®B)(u®v) = (Au) ® (Bu)

You can verify that this is a left multiplication of the array u ® v above by A
and a right multiplication by B” .

uivy upvz upvs

(A®@B)(u®v)=A BT (6.1.1)

uzvy uzvz2 Uzvs

The transpose on the right is needed for this to work out right. You can check
that with this definition,

(A® B)(C® D) = AC ® BD
holds.

89
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For symbolic calculations (using Mathematica for example) it is more conve-
nient to rearrange (“flatten”) the array u ® v into a vector with six components:

uivy

upva
Vi

ui uivs

Rlva|=

un uzvi
V3

uzva

uzvs3

Then A ® B turns into a 6 X 6 matrix:
By Bip Bij

®|(B21 Bp Bas

A®B = (
B3y B3y B33

Al A1,2)
Ay Axp

A11Br1 A11Bip AniBis A1pBin A1pBip A1pBis
A11Bay A11Bap A11Bas A1pBai A1pBay A1pBaj
A11B31 A11Bsp A11Bssz A1pBig A1pBip A1oB3;
Ax1B11 A1Bip A21Bi13 AxpBin AxpBip AxpBij
Ax1Ba1 A1Bap A21Ba3 AxpBri AxpBry AxpBoj
Ax1B31 A1Bszp A21Bss AxpBii AxpBip AxpBi;
6.1.2)

Exercise. Verify that two ways (6.1.1,6.1.2)of thinking about A ® B above are
equivalent.

We will mostly use the “flattened” description of the Direct Product.

Exercise. Show that tr(A ® B) = trAtrB. Contrast with the formula tr(A @ B) =
trA + trB which you should also prove.

It follows that the direct product of two representations R, R, of a group is another
representation:

R(g) = Ri(g) ® R2(g)
R(gg") = Ri(gg") ® Ra(gg") = Ri(8)R1(g") ® Ra(g)Ra(g") = R(g) ® R(g')
Infinitesimally, we can also get a representation of a Lie algebra:
g=1+€g+0(e)
R(g) = 1 +€R(g)+0O(€)

B(g) =R, (5) ®1+1 ®Bz(§)
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This is still called the direct product of Lie algebra representations. The physical
application is when each factor represents an independent degree of freedom of
the system, transforming under the group separately from each other. So physicists
would call it the additional of angular momenta.

Usually such direct products are reducible. Decomposing the direct product
as a sum of irreducible representations is a useful way of solving many physics
problems.

6.1.1. Hpyperfine splitting of hydrogen

Let us consider a physical example [11, 12]. In the ground state of the hydrogen
atom, the orbital angular momentum of the electron is zero. Both the electron and
the proton carry spin half. So, the total angular momentum of the atom is the sum
of these spins. Let us ignore all other degrees of freedom for simplicity. The proton
and the electron each have two independent states; so the combined space of states
is four dimensional. We can describe them by four complex numbers

Yap a=1,2, b=1,2

where the first index labels the electron spin state and the second the proton state.
Thus the electron and proton spin matrices are o ® 1 and 1 ® o respectively. The
total angular momentum is the sum

1 1
J=§0'®1+1®§0'

Y
Y12
23}
[6%)

. Operators

It is possible “flatten” the array v, and think of it as a vector (

acting on it are then 4 X 4 matrices.
For example,

Ui Y21 VSR Y2
Y| _|Yn Yz | _|¥n
el vor | e | 1®ay v | v
Un Y12 U Y1

so that

o ®1= S 1®o; =

S = O O
- o O O
S OO =
S O = O
S O = O
S O O =
- o O O
S = O O
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etc. leading to

)

)

)
|

I~

1 1
72 100 0
7 00 3 £ 0 0 - 000 0
Ji=1, 2= i’J3‘0000
2 00 3 3 00 =3
1 1 i1 0 0 0 -1
o4 1o 0o L i

Using this you can check that J above is a representation of angular momentum,
in terms of 4 X 4 matrices. But it is a reducible representation.

As with any representation, J*> = J ]2 + J22 + .132 will commute with all the
components Ji. By direct calculation we will get

2000
0110

J? =
0110
00 0 2

Since this is not a multiple of the identity, Schur’s lemma tells us that the
representation is reducible. The eigenvalues of J? are 2 (repeated three times)
and 0. So there is a matrix 7" such that

2000

o o200

TIT =
0020
0000

By solving the eigenvalaue problem we can find

I 0 0 0
1

0% B0

0 0 0 1
L

0 - & 0

We now see that the representation provided by the matrices J1, J», J3 is equiv-
alent to the direct sum of a representation with spin one and another with spin
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Z€10:
1 i

0 & 0 0 0 -& 0 o
L L L _i

THT ' =| V2 ? w0 LT =| V2 A
0 & 0 0 0o & 0 0
0 0 0 0 0 0 0 0
10 0 0
00 0 0

-1 _

TET=10 0 -1 0

00 0 0

What does this imply for the hydrogen energy levels? All four of these states
have the same energy in the leading approximation. But both the electron and the
proton have magnetic moments, which are proportional to their spins. Classically,
the energy of a pair of magnets is the dot product of their moments. Quantum
mechanically, the components of the magnetic moments are matrices. Still the
energy is giving by taking the product of each of the three components and summing
over them:

H| = Ao, @ o1

The quantity A is proportional to the product of the magnetic moments [12].
The matrix T above will diagonalize this hamiltonian:

1 00 0
01 0 0

-1 _
THT =415 o 1 o
00 0 -3

The four originally degenerate states are now split into two groups: Three spin
one states with energy A and a spin zero state with energy —3A. It turns out that the
sign of A is positive (taking into account the subtle effect of the overlap of atomic
wavefunction with the position of the proton [12]). Thus the spin zero state has
lower energy.

Transitions between these states will occur with emission or absorption of a
photon. Angular momentum would be conserved because the photon also has spin
one. The energy of the photon will be 41, which works out [12] to 5.87 x 10%¢V’;
i.e., a frequency of 1420MHz or a wavelength of 21.1cm. Experiments with
microwaves (masers) can measure this with great accuracy, providing precision
tests of quantum theory [11].

This is also a very important signal of atomic hydrogen in radio astronomy.
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6.1.2. Symmetric and anti-symmetric states

What is the meaning of the unitary transformation 7 that diagonalizes J>? Let us
see its effect on a general vector

U Y
Yoty

T ¢12 _ \2

Y1 55}
U wl2\7§¢/21

The first three components on the r.h.s. are symmetric under the interchange
of indices; the last component is anti-symmetric. So, the symmetric combinations
have total spin 1 and the anti-symmetric state has total spin zero. The point is that
the subspace of symmetric (or anti-symmetric) states is invariant under rotations;
and that they cannot be reduced further.

6.1.3. Highest weight states

Since an irreducible representation of 0(3) is uniquely determined by its dimension
(not all Lie algebras have this property) we can write our result as

22=3a1

More often physicists like to label an irreducible representation in terms of the
maximal value of J3. Then we say that the product of two spin % representations
is the direct sum of a spin one and a spin zero representation. If we denote the
irreducible representation with highest weight j by D/, we would write this as

D@D =D"@ D'

Thus, the maximum magnitude for angular momentum is the sum and the
minimum is the difference.

This is the simplest case of a more general result on the addition of angular
momentum.

6.2. General Case of Addition of Angular Momentum

Let us begin with the classical limit. Suppose we have a vector of magnitude j;
added to another vector of magnitude j,. What is the possible range of the lengths
of the sum of two such vectors?
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If they are parallel, the length will be j; + j»; if anti-parallel, it will be |j; —
Jj1l. All values in between can also occur, depending on the angle between the
two vectors. For angular momentum operators, not all lengths are allowed; in an
irreducible representation, J> can only take values j(j + 1) for positive integer
or half-integer j. So, a first guess might be that the direct product of a spin
J1 representation with a spin j, representation will be a direct sum of spin j
representations with j = j; + jo, j1 + jo — 1,...,|j2 — ji| . There is a way to
check if that can be true: is the sum of the dimensions of all such irreducible
representations equal to (271 + 1)(2/2+ 1)?

We can calculate (choose j, > ji to be definite)

J2ti 2/
D Qi+ =) Clhp-ji+kl+1)
J=li=hl k=0
2j
= Q-1+ DA+ +2 )k
k=0

= QL2 -Al+ D Q2ji+1) +2w

=Qa+D 20 -nl+1+21}=C2H+D(2j2+1)

Thus, it is quite possible that D/t ® D72 and @f\ﬁw D/ are equivalent
representations. This does not prove that these are equivalent: The dimension does
not uniquely specify a representation of su(2), unless it is irreducible.

To really prove tequivalence, we need a more powerful tool, the character

function.

6.2.1. The character of an irreducible representation

Given a representation (reducible or not) R of SU(2) we can define its character
to be the function

Xr(g) = trR(g)

Note that, being a trace, the character is invariant under equivalence transfor-
mations; therefore equivalent representations have the same character.

A particular case is when g = ¢273%; indeed any gcan be brought to this form
by a conjugation in the group, which leave the character invariant. The matrix
representing * in the representation R is J3. Therefore,

Xr($) = we? = 3 d(m)e™?
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where d(m) are the number of eigenstates of J3 with eigenvalue m. We can think
of this as a generating function that keeps count of the degeneracies d(m). Clearly
the dimension of the representation is the particular case when ¢ = 0.

lim yx(¢) = dimR

For example, in the spin half representation, J3 is just 5* and

¢

e _i
T 4+e72% =2cos =

xi(¢9)=e

1
2

Let us find the character of the irreducible representation D/. The eigenvalues
of Jyarem=j,j—1,...,—j,each occurring with degeneracy one:
. i ] .
xj(¢) = wD’ (ef"“f’) = Z eme

m=—j

Remark 17. A word on notation for clarity: D/(g) is the matrix representing
g € SU(2) in the representation of spin j . So, g is a 2 x 2 matrix while D/ (g) is
a(2j+1)x(2j+1) matrix. When g is diagonal, it is of the form €239 for some
angle ¢. The matrix D/ e1739) = oifs9 representing it can be found by replacing

% by J3, which is also diagonal, with eigenvalues —j,—j + 1,...,j — 1,j. Its
trace is the rhs above.

It is a little exercise in algebra and trigonometry to evaluate this geometric
series:

Xj(¢) = —Sin([zj:,l] %)

S 5

This can be written in terms of the Chebyshev polynomial of the second kind.
sin([2j+l]%) p
Xj(§) = ————F5—— =01 (cos 5])

sSin 3

As a check, L'Hospital rule gives
li (@) =27+1
Jim, (¢) =2j

which is the dimension of the representation (the trace of the identity).
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We can also recover the special case

sin ¢
G = 2 cos

2

_ ¢
x1(¢) = >

sin

sin([2j+1]§)

Exercise. Show that )/ jeme = — for j half integer.
7

sin
Solution Set z = ¢/ L. H. S. is the geometric series
P it Ry [1 +Z+...Z21]

1 _Z21+1 B Zij _Zj+1

-z  1-z

U3 ity o (+D)i¢ _ o (+3)ie

1 1. 1.
772 —7z2 e 21¢ _ o319

which is the claimed answer.

6.2.2. Character of a reducible representation

The trace of a direct sum of matrices is the sum of traces. So, the character of a
reducible representation is the sum of the characters of its irreducible components,
weighted by the multiplicity. A reducible representation can be decomposed as a
direct sum over irreducible representations:

N; is zero if D/ does not occur at all in the decomposition. It can be greater
than one if the same representation appears multiple times in the decomposition.
We will mostly consider finite dimensional representations, so only a finite number
of N; will be non-zero and they are all finite.!

'Occasionally we will consider an infinite dimensional representation such as the space of functions
on S2. Its decomposition is
0
c(=)= P o
1=0,1,2,...
That is, each integer value of [ occurs exactly once; half integer values do not occur at all. (This is a
“multiplicity free” representation.)
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For example, if Ny = 2, N% = 3 the matrix R(g) would be 2 blocks of D! (g) ,

followed by three copies of D3 (g) along the diagonal, with zeroes filling out the
rest. Altogether it will have dimension 2 X (2 x 1+ 1) +3 x (2 X % +1) =24:

D'(g) 0 0 0 0
0 D'(g 0 0
R(g)=| 0 0 Dig 0 0
0 0 0 D3 0
0 0 0 0 D3(g)

The character of such a representation is the sum of the traces of the matrices
along the block diagonals:

Xr($) = Z Njx;(¢)

0113
Jj=0,3.1,5,

Since y;(¢) is a ratio of sines, this is very much like a Fourier series. Indeed
the functions y; satisfy orthogonality relations

4n
A X (@) sin? Lo = 2

Since the sin® ¢ cancel with the sin 5 2 factors in the denominator of XjXk »this

follows from the famlhar orthogonality of the Fourier sine series. The meaning is
that inequivalent irreducible representations have orthogonal characters.

Remark 18. The factor sin’ % in the measure has a simple geometrical meaning:
Itis proportional to the area of the set of all elements in SU(2) that can be brought
to the form e373¢ by a rotation of the axis itself. This is a 2-sphere, embedded
inside SU(2) ~ S3. Its area can be calculated using the non-Euclidean metric of S3.
Our proof of orthogonality does not use this fact,however.

The main point is that the character function uniquely determines the multi-
plicities, through its “Fourier” series:

M—/mwmwm#¢¢

So, to show that two finite dimensional representations are isomorphic, it is
enough to show that they have the same character. This also justifies the name
“character” for yg: It does characterize the representation.
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6.2.3. Decomposition of the direct product

Now, consider the character of the direct product representation
Xji1®j2 (¢) = trD/! (E%O—’“ﬁ) ® D’ (e%a—’”p)
The trace of a direct product is the product of its traces. So

sin ([2]’1 +1] %) sin ([ij +1] %)
Xj]®j2(¢): . ¢ )
Sll’li 5

sin

On the other hand, the trace of a direct sum of matrices is the sum of the traces.
So, the character of @7'*> = D/ is
J=li=jil
- . . ﬂ
Jitnsin ([27 +1] 5
in®
J=ln=il Sin 3
Some trigonometry (or a line of Mathematica code) will allow you to prove
the identity

sin([2j1 +1] g) sin([2j2+ 1] g) jitp s ([2j+ 1] %)
9 9 - 9
sm7 Sll’li j:|j2—jl| Sll’li

showing the equality of characters of D/! ® D72 and @jf‘ﬁ_h | D/ . We restate
this result:

Theorem. D’' @ D> ~ (/"2 piJ
J=li=gl
It is possible to go further and explicitly construct the unitary transformation
that relates the basis of D/! ® D/

|mimy >, my=ji,...,—ji, m2=ja,...,—)2
to the basis of D7:
|Jm>3 J=]]+129jl+]2_19"'3|]2_11|9 mzjvj_13"'9_j

The matrix elements of this unitary transformation are called Clebsch—Gordon
coefficients [9]. They are useful in many detailed calculations involving atomic
and nuclear transitions. We worked this out for j; = % = j». The general case is (as
always) in the book by Landau and Lifshitz [9]. We won’t go down this particular
rabbit hole.
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6.3. The Power of Spinors*
6.3.1. The symmetric powers of the D:? representation gives all other
representations

. 1 . . . .
In this sense the D2 or spin half representation is the “fundamental” representation.
This can be understood by repeatedly using the above reduction procedure:

D%®(D%®D%)=D%®D°@D%®D1=2D%@D°®D%

etc. But this cumbersome. There is a more direct approach, using polynomials.

6.3.2. A spinor is a pair of complex numbers carrying a representation
of SU(2)

This is supposed to rhyme with vector.

7= 2
2
Under SU(2) a spinor transforms linearly:

7z gz, g€SU2)

6.3.3. The space of polynomials in a spinor carry a representation of
SU((2)

A polynomial of degree two in z is
W(z) = v11(2")? + 20122 22 + Yaa ()2
It can also be written as

Y(z) = Yapz'z’

Since z, are complex numbers, 72%7P = 727% and so Yab = Wpq 1S @ symmetric

matrix. Under an SU(2) transformation
Za — ggZC
c d
Yab 7 Yed&aq8p

Itis clear that the degree of a polynomial is unchanged under the SU(2) action:
The space of homogenous polynomials of degree two in z,, carries a representation
of SU(2). (Homogenous means that all the terms in the polynomial have the same
degree.)
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More generally, the space of homogenous polynomials of order n carries a
representation as well. It is useful to get an inner product on this space. The idea
is to multiply polynomials and integrate over z , with a measure (weight) chosen
to make the integral converge:

Wox) = / W (Dx(p)e s L

Clearly 7'z is invariant under g since g'g = 1. The factor of r is stuck in so
that the constant function equal to one has norm one. The constant function gives,
of course, the trivial representation.

Theorem. The inner product above is invariant under the action

M)y (2) =y (g '2)

of SU(2). That is, we have a unitary representation.

Proof. To verify that it is a representation, we calculate

M(g)[M(g2¢](2) = [M(g2)¢](g7'2) = w(g5'e"2)
=y ([g182]7"2) = [M(g1)M(g2)]¥(2)

Now, you see why we needed to put g~! in the definition of M (g). To prove
that the integral is invariant

(M (), M(g))(>—/¢// (e ')y (g 2)e? i, dzdz

we make a change of variables? z — gz (and using the Jacobian for the transfor-
mation of the volume element dz)

dzdz
/l// (D) x(2)e = ¢'8% detg dethﬁ

and use g'g = 1 and detg = 1. O

Exercise 4. Show that an orthonormal basis is given by the functions

Hint The integral factorizes into separate gaussian integrals in z; and z. Each
integral then is of the kind found in the theory of coherent states of the harmonic
oscillator [18].

2Remember that we are thinking of g € SU (2) as a 2 X 2 matrix.
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“We can identify the representation by calculating its character. When g =
e 30390
a1\ [e 2%z
8 = i¢
22 €29z,

M(g)|ny,ny >= e_%("‘_”2)¢|n1,n2 >

and

The character is the sum

n

n
D, <mn= M@l —m >= ) 1

ni =0 ni =0
Summing this geometric series,

| — e~i(n+D¢ e%(n+1)¢ _ e—%(n+1)¢

= ¢1® . = . :
1—ci? 09 _ o 1o
: ¢
sin [(n+ 1)7]
9
sin 5

which we recognize as the character of the spin 5 representation.
Thus we conclude:

6.3.4. The homogenous polynomials of spinors degree n form the irre-
ducible representation D7 with spin j = 3.



Chapter 7

ISOSPIN AND STRANGENESS

7.1. The Atomic Nucleus

7.1.1. The positive charge of an atom is concentrated in a much smaller
region than its negative charge

The typical size of an atom (the range of its negative charge cloud) is about a Bohr
radius, ~107'% ;. The positive charge (as well as most of the mass) is contained in
a much smaller region (the nucleus) with a typical size of ~107!3 m. The latter size
is a femtometer or a Fermi, abbreviated to fm. This observation is the result of the
classical experiment of Rutherford, who scattered « particles (nuclei of the Helium
atom) off Gold. Occasionally an alpha particle would get scattered through a wide
angle. This can only happen if some charge (as well as mass) is concentrated in a
very small region.

The Rutherford experiment disproved the popular atomic model of the time,
the “plum pudding model”: electrons embedded in a diffuse positive cloud. Scat-
tering experiments have been central to nuclear/particle physics ever since: Throw
particles against each other and see what comes out.

7.1.2. The atomic nucleus contains a positively charged particle (the pro-
ton) as well as an electrically neutral particle (the neutron)

The number of electrons in an atom is equal to the number of protons in its nucleus.
Since the electron is negatively charged, with the same magnitude of charge as the
proton, the atom is electrically neutral.

103
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7.1.3. The chemical properties of an atom depend only on the number of
electrons (the atomic number Z)

Chemical reactions involve exchange of electrons: They have energies of about
an eV, which is roughly the binding energy of an electron in an atom. Nuclear
reactions need an energy of about an MeV: About a million times more. This is
why chemical reactions cannot turn lead into gold, the original aim of alchemists.
Nuclear reactions can do this. But any dreams of getting rich this way are doomed
to failure: The cost of such a transmutation is prohibitive.

The atomic number is equal to the number of protons in the nucleus (since
the number of electrons and protons are equal). So, two nuclei with the same
number of protons but different numbers of neutrons will have identical chemical
properties. They are called isofopes . Neutrons and protons are particular cases of
a class of particles known as Baryons.

7.1.4. The sum of the number of protons plus the number of neutrons is
called the Baryon number (or atomic mass number)

So B = N + Z where N is the number of neutrons in the nucleus. The mass of an
atomic nucleus is approximately B in units of GeV = 10°MeV . This is because
to first approximation the masses of the proton and neutron are equal to about a
GeV. (We will be more precise soon).

Examples

e Hydrogen has atomic number one. The most abundant isotope has a nucleus
consisting of just one proton. The next most abundant (0.01%) is deuterium,
which has baryon number 2. There is also an isotope of baryon number 3
(tritium) which is unstable, with a half-life of 12.5 years.

e The abundant isotope of Helium has Z = 2, B = 4. Its nucleus is the alpha
particle. Another stable isotope is >He which is a product of tritium decay.

e Oxygen which has several (about 15) isotopes. But only three are stable. Almost
all the Oxygen in nature has B = 16 .

N Z  Lifetime  Natural Abundance

11 00 1

D=H 1 1 ) 1074

T=H 2 1 12.5years 10-13
160 g8 8 ) 0.998
70 9 8 ) 1074
80 10 8 ~ 1073
90 11 8 26s 0
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7.1.4.1. The proton has a mass of m, = 938 MeV and the neutron has
mass my = 939.5MeV

Thus, the neutron is just a little bit heavier than the proton. Their masses are too
close to be mere coincidence.

7.1.5. The particles inside a nucleus are held together by the strong inter-
action

Without this force, the nucleus would disintegrate due to electric repulsion among
the protons. Neutrons are essential for this strong binding to happen. If there are
too few neutrons, the nucleus will fission or split up into smaller nuclei. The strong
interaction has a binding energy of a few MeV (large compared to atomic energies).
It has a range of 1 fm or 10~ m (small compared to an atom). That is, the force
decreases exponentially, with a decay constant of about 1 fm. This is why all the
neutrons and protons don’t clump together and form one gigantic nucleus. The size
of a nucleus is roughly the same as the range of the strong interaction.

But if there are too many neutrons, some of then will decay by the beta
decay (See below). This fine balance between the neutron and proton is behind
many coincidences, which make our natural world (including life) possible. Some
people even try to explain the values of elementary particle masses based on this
(the anthropic principle.)

7.1.5.1. During beta decay, a neutron converts itself to a proton and an
electron

n—p+e+v

These decays were among the first nuclear reactions to be discovered. It was a
big step forward when J. J. Thompson discovered that “S radiation” consists of
negatively charged particles. We call these particles electrons now. Also produced
is an anti-neutrino ¥ which is often hard to detect because it is electrically neutral.
More on the neutrino later.

The condition for stability of a nucleus against beta decay is that M(N — 1, Z +
1) = M(N,Z) < my, + m, =~ 938.58 Mev ~ 1.01 u. Beta decay increases atomic
number by one unit and decreases the number of neutrons by one. But it leaves the
baryon number unchanged.

7.1.5.2. The binding energy of the deuteron is 2.2 MeV

The binding energy is the energy needed to break up a nucleus into its constituents.
In other words, it is the sum of the masses of the constituents minus its mass. So,
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the deuteron has mass 2.2 MeV smaller than the sum of the masses of a proton and
a neutron.

7.2. Isospin

Heisenberg introduced a new idea in the 1930s:

7.2.1. The neutron and proton are different states of the same particle,
the nucleon, with different values of a new quantum number called
isospin

Electromagnetism (charge and magnetic moment) and weak interactions respon-
sible for beta decay are small effects in comparison to the nuclear force. The n — p
mass difference, is only about .2%. If we ignore these, the neutron and proton
really do look like different states of the same particle.

7.2.1.1. Since there are only two possible values for this new quantum
number labeling the neutron and the proton, it is analogous to
the spin of an electron.

Isospin means ‘like spin’ in pidgin greek.

7.2.2. Isospin is an approximate SU(2) symmetry of nature

This is an “internal” symmetry. Although analogous to rotations, it does not
describe transformations in space-time. Some “internal space” carries this
symmetry.

7.2.3. The nucleon has spin half and isospin half

Thatis under the SU(2) xSU(2) group of isospin and spin it transforms as DI®D?.
The state of a nucleon at rest is a four component complex vector.

7.2.4. The nucleon is a fermion: A wavefunction of a collection of them
must be antisymmetric under pairwise exchange

So, for a pair of nucleons, the state is described by a 4 x 4 matrix. This matrix must
be anti-symmetric because of the exclusion principle, having thus 6 independent
states (if other degrees of freedom, like position, can be ignored). These can be
grouped into sets of three states each that are of spin 1 and isospin zero or isospin
one and spin zero.
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7.2.5. When a neutron and a proton combines into a deuteron, they form
an isospin 0 state

It turns out that the isospin O (hence spin one) state has lower energy. The details
of the nuclear force is a complicated subject, even harder than molecular physics
or chemistry. If it were not for important applications (nuclear energy, nuclear
explosions) physicists would not spend so much time studying them. The larger
the nucleus the more complicated its internal dynamics.

7.2.6. The a particleis a spin zero and isospin zero state; it can be thought
of as a bound state of four nucleons.

The « particle is the nucleus of the abundant isotope of helium.

7.2.6.1. It has a large binding energy: 28.3 MeV, so is very stable

Whenever there are the right number of neutrons and protons to form an isospin
zero state, the binding energy is unusually large: these are called the ‘magic nuclei’
and they are usually the stable end products of fission and fusion reactions.

7.2.7. The electromagnetic interactions do not respect isospin symmetry

In fact, for nucleons, Q = I3 + % where /3 is isopin.

7.2.8. The weak interactions also do not respect isospin symmetry.
Nuclear beta decay treats the neutron and the proton differently

7.2.9. Thus isospin is a symmetry only of strong interactions, which are
responsible for the binding of nucleons into nuclei

A phenemenological formula of Weizsidcker for binding energy is found to be
surprisingly accurate:

Z(Z-1) (N -2)?

2
E(N, Z) =dayolB - asztrfaceB3 - aCuulW — dsym B

for some constants a. Here, B = N + Z is the baryon number; i.e., the total
number of nucleons.

The first term is proportional to the number of nucleons; the second to the
surface area, as the density of nuclear matter is roughly constant. The third is
the Coulomb repulsion and depends on the number of pairs of protons as well as
the inverse of the average distance between them.
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The last term is zero if you have equal numbers of neutrons and protons so that
we can form an isospin zero combination. It can be explained by the postulate that
the nuclear force is independent of isospin and spin states of the nucleons. This is
related to the SU(4) model of Wigner.

7.2.9.1. Ironwith Z =26, N = 30 is one of the most tightly bound nuclei.
7.3. The Pi Meson

7.3.1. Yukawa suggested that the attractive force among nucleons is due
to exchange of a massive particle, of mass u ~ (% ~ 100 MeV

7.3.1.1. It is useful for conversions to note that h ~ 197MeV fin

For simplicity we will for now ignore the fact that there are two kinds of particles
(n and p) inside the nucleus. In the next section we will restore this doubling, using
isospin symmetry.

7.3.1.2. The Klein—Gordon equation with a point source has an
e Hr
dnr *

exponential decreasing static solution ¢ = g

Here g is a constant (Yukawa coupling constant) that measures the strength of
the field, analogous to electric charge for the Coulomb field. The Klein—Gordon
equation is a modification of the wave equation

2 2
[ﬁ—v p+u =0

We are using units with 7 = ¢ = 1. So ¢ has dimensions of mass, which is the
same as length™!.
The plane wave solutions e/l“~k*] describe particles of frequency w =

A+ k2. By de Broglie formula, 7k is the momentum and 7w is the energy.
Then we recognize this as the energy of a particle of mass u in relativity. (The
wave equation is the special case u = 0 which describes massless particles.)

There are also a static (time independent) spherically symmetric solution. In
polar co-ordinates, for a spherically symmetric function

25 107
V= -5 (r9)
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so the KG equation becomes, with

1

¢=-R
P

R"+u’R=0

The solution that vanishes at infinity is the ‘““Yukawa potential”
—ur k _,,
R(r)y=ke™ = ¢=—e*
r

Thus, a massive particle yields a potential that decays exponentially. Its range
is related inversely to the mass. Using the value 7z ~ 197MeV fm and the size of
the nucleus of about 1fm Yukawa predicted that there must be a particle of spin
zero and mass ~100 MeV.

7.3.1.3. Similar to the photon which mediates the electromagnetic
interactions, except the photon is massless and the Coulomb
force has infinite range

The special case u = 0 of the Yukawa potential is the Coulomb potential.

7.3.1.4. Yukawa suggested that the particle mediating the strong
interactions between nucleons is of spin zero

At that time no massive spin zero particle was known. Because its mass should be
in between that of the electron and the nucleon, it was called a meson (from the
Greek for “particle in between’). The modern scientific definition of the meson is
not related to its mass, but other properties. (See below).

7.3.2. This particle has since been discovered and is called the m meson

It has a mass of about 140 MeV. There was some confusion about its discovery.
In fact another particle with a very close mass (105 MeV) was discovered first in
cosmic rays, called the muon. But the muon did not get absorbed by nuclei. It was
Robert Marshak who resolved the confusion: The muon is a lepton, a copy of the
electron only with a higher mass. It has no strong interactions with the nuclei. But
pions (which are created by cosmic ray collisions in the upper atmosphere) decay
quickly into the muons, which are detected at lower altitudes.

There is no fundamental reason why the 7 and the y have masses that are so
close. Coincidences happen sometimes. Occam’s razor is not always sharp.



110 PHYSICS THROUGH SYMMETRIES

7.3.3. The pi meson has isospin one

Thus, there are three possible isospin states: There are actually three pi mesons,
with almost equal masses and electric charges +1, 0.

For them the formula for electric charge is
0 =1.

There is no shift, unlike for the nucleons.

7.3.3.1. To be precise, the mass of the charged pions are a few percent
different from that of the neutral pion

But we ignore that for now. The strong interactions are caused by exchanges of
pions:

n—p+n, p-on+nt.

Because there may not be enough energy to create a free pion in a nucleus, the
pions are often virtual: They exist only for a time of order ﬁ

7.3.4. We do understand the origin of isospin symmetry: quarks

It turns out that the nucleons and pi mesons are both bound states of a more
fundamental unit of matter (quarks and anti-quarks). There happen to be two
quarks (called up and down ) which have almost equal mass. The neutron is uud
and the proton is udd . This explains why they are so similar, yet slightly different.
The pi mesons are combinations of quarks and antiquarks; for example 7t is du.
More on the quark model later.

Why the u, d quarks have masses that are so close is still unknown: The next
layer of the onion needs to be peeled to understand that.

7.4. Hadrons

In the 1930s it looked as though we were on the verge of a simple description of the
fundamental constituents of matter: The proton, the neutron, the pion, the electron
(and possibly the neutrino) along with the photon would make up all matter. In the
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1940s the muon was identified. (I. I. Rabi famously asked “Who ordered that?”)
Throughout 1940s, 1950s and 1960s experimentalists discovered a whole zoo of
strongly interacting particles.

7.4.1. Strongly interacting particles are collectively known as hadrons

Electrons, neutrinos etc. are leptons, not hadrons. Neutrons, protons and pions are
hadrons.

7.4.2. Hadrons of half integer spin are called baryons; those of integer
spin are called mesons

7.4.2.1. The baryon number B is defined to be equal to 1 for the half
integer spin hadrons (baryons) and equal to zero for mesons

Anti-baryons have baryon number minus one. The baryon number used to be called
the “atomic mass number “ in nuclear physics: The Deuteron has B = 2, the «
particle has B = 4 and so on:

7.4.3. The nucleon N = (5’,) is the lightest baryon with a mass of about
940MeV

a*

7.4.4. The pion t = (nf) is the lightest meson at about 140MeV

v

Now, we enter the zoo of hadrons.

A
7.4.5. There is a set of four baryons A = (i} ) of spin and isospin both
A
equal to %
The mass of the A is about 1230 MeV. (Again, the mass depends on the charge
by a few percent which we ignore for now.)These decay into a nucleon and a pion.
The nucleon has I = % J = % and the pion I = 1,J = 0. The strong decay respects
both spin and isospin conservation. This restricts the possible decay probabilities.

+

7.4.6. There is a set of three spin one mesons p = (p") of isospin 1
-

Their mass is ~ 770 MeV: About two thirds of the mass of a nucleon. They decay
by strong interactions into pions.
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7.4.7. The charge of any hadrons is related to isospin by the relation
B
O=5Ih+ E

The shift of charge by a constant for the case of baryons (but not mesons) is
explained by the quark model (see below).

7.4.8. There are hadrons of spins J = 0, %, 1, %, 2,...
7.4.8.1. If the spin is a half integer, so is the isospin

Again explained by the quark model.

7.4.8.2. As the spin grows the masses grow approximately
proportionately

The high mass hadrons are more and more unstable to decay to lower mass ones.
Such very unstable particles are called resonances. As the numbers of hadrons
grew into the hundreds, physicists accepted that there must be in principle an
infinite number of them.

7.4.9. String theory arose as an explanation for the infinitely rising
spectrum of hadrons

7.49.1. A string is a curved surface in space time whose action is
proportional to its area

A constant time cross-section of a string is an curve in space (which is the origin
of the name). The action being proportional to the area translates to an energy of
this cross-section proportional to the length: A kind of “rubber band”” model.

7.4.9.2. Nambu and Goto showed that this implies that the masses of its
excited states are proportional to the angular momentum

The Nambu—Goto model only allowed integer spins. Theirs was a “bosonic string
theory”. But it turned out to be consistent only in 26 dimensions.

7.4.9.3. Supersymmetry was invented by Ramond to include fermions

The idea did not quite work: Superstring theory is consistent only in ten dimensions.
No one has yet found a string theory that works in four space time dimensions.
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Finding the correct string theory of hadrons remains an important theoretical
challenge.

7.4.9.4. The 10 dimensional version of superstring theory is a candidate
for a quantum theory of gravity

Sometimes a recipe that didn’t work for one dish is perfect for a completely different
one. Physics is a supremely rational subject. But the creative processes of discovery
in physics remains intuitive, irrational and circuitous.

7.5. Quarks
7.5.1. All of the hadrons are bound states of more elementary particles
known as quarks

This gives a very simple explanation for the proliferation of hadrons.

7.5.1.1. Quarks have spin %

This is reasonable for an elementary particle: It is the smallest non-zero value of
spin allowed by quantum mechanics.

7.5.2. Each quark has an anti-quark of the same mass, spin and isospin,
but opposite charge

7.5.2.1. Mesons are bound states of quarks and anti-quarks

Which explains why they are bosons. Any bound state of an even number of
fermions is a boson.

7.5.2.2. Baryons contain three quarks

It must be an odd number since baryons are fermions. Since there are baryons of
spin % and even parity (so that the orbital angular momentum is even) we need
there to be three quarks in a baryon. It follows that

7.5.2.3. The baryon number of a quark is %

Anti-quarks have B = —%.



114 PHYSICS THROUGH SYMMETRIES

u

7.5.3. There are a pair of quarks ( d

) forming an isospin % system.
This explains why spin and isospin are equal for the lowest lying baryons.

. . _ B
7.5.3.1. Their charges are givenby Q = I3 + 5

This then explains why this formula holds for all hadrons. Note that the piece
proportional to B cancels out in mesons since anti-quarks have B = —%.
7.5.3.2. Some group theory will allow us to get the spins and isospins of

the hadrons out of those of the quarks.
7.5.4. But there is a surprise: color

We will explain what color is soon.

We always push ideas to their limit. But always be prepared to test everything
experimentally, because great ideas are often wrong. And there are digressions
that were never anticipated (e.g., muon).

7.6. The Static Quark Model
7.6.1. A first approximation is to treat the hadrons as non-relativistic
bound states of quarks

So the different spin states have the same energy (spin-orbit coupling is a relativistic
correction). This gives an SU(4) symmetry: The four states of the quarks (spin up
and down, isospin up and down) all have the same energy in this approximation.

7.6.2. Quarks are fermions

Spin half particles should satisfy the exclusion principle.

7.6.3. But then how do we explain the A**?

The A** must be made of three u quarks, to explain its electric charge. But it also
has spin %: The three u# quarks must be in a state symmetric under interchanges.
For example, in the state where A** has J3 = %, all the uquarks in it must has spin
pointing in the same direction.
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But this violates the exclusion principle: Quarks are fermions. One idea to
resolve this contradiction was that quarks obeyed some exotic statistics that violates
the Pauli exclusion principle. That turned out to be the wrong direction. Another
possibility is that quarks have an extra degree of freedom, in addition to spin and
isospin.

7.6.4. Each quark comes in three colors

Thus there are three states for the up quark (not counting the spin states) and
three for the down quark.The word color is used in a figurative way here: This
quantum number has nothing at all to do with visible light: Nothing to do with
electromagnetism.

7.6.5. There is an SU(3) symmetry corresponding to rotations among the
color states

Quarks of different colors (but identical in every other way) have the same masses,
isospin, charges etc.

7.6.6. Baryons and Mesons are color neutral

Nucleons and mesons do not have this extra degree of freedom: We would have seen
this in nuclear physics. These states are invariant under the color SU(3) symmetry.
This means that color cannot be directly measured: It can be inferred indirectly
from properties of mesons and baryons.

7.6.7. The ground state of a three quark system must be a symmetric
combination of three fundamental representations of SU (4)

The wave function of quarks in a baryon is completely antisymmetric in color:
That is the way to make it invariant under SU(3) symmetry of color (more on
SU(3) later). The wave function of fermions is anti-symmetric overall. Thus, in
spin and isospin it must be symmetric. (We are assuming that the orbital angular
momentum is zero for the lowest lying states). Recall the in quantum mechanics,
symmetric combination usually arise when we combine bosons.

7.6.8. It is useful to consider the states of a meson and a baryon in the
static quark model with N colors and Ny flavors

Quark model that originated in Nuclear Physics had just two kinds of quarks (u, d to
explain isospin). Later it had to be enlarged to allow for other kinds of quarks. The
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final number appears to be six u, d, s, ¢, t, b . The first three u, d, s have relatively
small masses so are treated together (see below). The jargon of particle physics is
to call this flavor (to contrast with color?).

The wavefunction of a gg system would depend on the color and flavor quantum
numbers of the quark and the antiquark. We can denote it by Lpf’; lj\. Here «, 8 are
the color indices and A, B all the remaining quantum numbers (spin, isospin etc.).
Soa=1,2,---N. while A =1,2,...,2Ny, because each flavor of quark has two
possible spin states.

In nature the color ranges over three possible values; @ = 1,2, 3. Under a color
SU(3) transformation the wave function of a quark transforms as ¢%% — g g qPB
and that of an anti-quark as go4 — g’;/q'y 4. Then the gq state transforms as

B *
Wl o gilehurh

But g/'g = 6}, because g is unitary. So, ¢ ?% is color invariant:
aB — 611 vB _ l,b'uB
l//uA Vl//uA T T uA

This works even if the number of colors were some other number N, and the
color symmetry SU(N,). It is a useful exercise to consider what the world would
have been like with N, colors (According to G. 't Hooft, even the limit N, — oo
gives us much insight into strong interactions.) Baryons are symmetric under the
interchange of spin and flavor indices, even in a model with SU(N,.) symmetry.

Exercise. Show that the condition detg = 1 becomes, when written in terms of
indices,

a) @ ANe _
€arar-an.8p,8p, " 8py, T BB Bn
where €4, a;---ay, 15 the completely anti-symmetric tensor with €15...n, = 1.

Solution It is enough to consider the case where 1 = 1,8, = 2.... We can
regard « as a permutation of the set 1,2,..., N.and €4, a,--ay,. = %1 according
to whether « is an even or and off permutation. The LHS is the sum over all such
permutations. This is one of the ways of calculating the determinant; so the above
condition is equivalent to detg = 1.

The wavefunction of a system of N, quarks will depend on spin and fla-
vor :@a1A1@Aranc AN Quarks being fermions this has to be completely anti-
symmetric and the interchange of color, spin and flavor:

lPalAl (12A2~~~(YNCAN(. — _le(tzAzuf]Al “‘U’N(-ANC
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etc. To make a color invariant combination we can contract the color indices with
the anti-symmetric tensor

Ea] @an, le(Y]A] (Y2A2“'(YNCANC — SA1A2"'AN(-
Thus the wavefunction of a baryon will be completely symmetric in the spin
and flavor indices.

7.6.8.1. Ifwe ignore color, the baryon wavefunction behaves as though
the quarks are bosons

This is a cheap trick; by no means a fundamental theory of strong interactions.
Such a theory has been found: Quantum Chromo Dynamics (QCD); we are just
not ready to talk about it yet. The calculation of baryon properties from QCD is
a major undertaking that uses the most advanced computers available. What we
study here is an approximate picture of quark bound states, called the static quark
model. Tt ignores all the effects of interactions between quarks. It is still able to
explain some static properties of baryons.
Let us digress to recall some facts about symmetric states.

7.6.8.2. The number of independent states of a system of N bosons, each
MM+ (M+N-1) _ (N +M -1 )

with M states, is 1 M

There are many ways to establish this combinatorial formula.

To begin with, it holds for M = 1. There is exactly one independent way of
occupying a single state with N bosons : We put them all into that one available
state. More generally, suppose we put N1 bosons in state 1, NV, in state 2, and so on.
The number of independent states b (M) we seek is just the number of solutions
to the equation

N=N+Na+---+Ny

where each N; =0, 1, . ... Thus the generating function is

00 o0
Z bN (M).XN — Z xN1+N2+w+N,,
N=0 N;=0

But

(9]

[ee] 0 1
N;=0 Ni=0 No=0 — (I-x)
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since each factor is a geometric series. Expanding the r.h.s. as a binomial series
o M(M+1)---(M+N -1 o (N+M -1
(I—X)7M=Z ( ) )xN=Z( N )xN

! -
o) N! = M-1

we see the result.

7.6.9. The special case of two flavors and three colors is most useful

Since each flavor of quark has two spin states, M = 4; and the number of quarks
in a baryon N = 3, the number of colors.

So there are w = 20 states for a baryon. These can be split into
I = % J = % and [ = % J = % states. The first are the A and the second set are the
nucleons. There are 4 X 4 = 16 states for the A and 2 X 2 = 4 states for the nucleon
which do add up to twenty.

7.6.9.1. * With two flavors and an odd number N of colors there would

have been baryons with I = J for I = %, %, cee %

Exercise. Show that

(Ne + 1)(Ne +2)(Ne +3) No+3
> @r+1)?= 5 =( ; )

7.6.10. The states of a bosonic system can be represented as polynomials
in complex variables

Given a symmetric tenor S4142 AN we can construct a polynomial of degree N
in complex variables z4, A = 1,..., M:

SAlAz‘“ANZAI e ZAp
Conversely, the coefficients of a homogenous degree N polynomial can be
arranged into a symmetric tensor. The symmetry follows from the fact that the
components of the z4 commute.
The degree N of the polynomial is the number of bosons; the number of
independent variables M is the number of states available to each boson. Thus 1
is the empty state (vacuum) z4 A = 1,..., M are the one particles, and so on.

%’Ll) independent components in a symmetric tensor of rand two.
M (M+1)
2

There are

Another way of understanding this is that there are independent quadratic
homogenous polynomials in M variables. More generally suppose the first variable
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z1 appears n; times, the second one appears nptimes and so on. Then a basis for
polynomials of order N is

ni np nmp
i L i

\/l’l]! \/I’lz! \/nM!’

The factorials in the denominator are put in to make sure that this is a state of
length one.

This is the coherent state description of a harmonic oscillator; the connection
to bosonic states is important also in quantum optics (Klauder and Sudarshan). It
is part of a general technique known as second quantization.See the next chapter
for a more detailed discussion.

A more convenient description often is:

ni+ny---npy =N (7.6.1)

7.6.11. The inner product on the space of polynomials can be expressed
as a gaussian integral

dMzaMz

i = [ wpe a5

For the basis above, the integral will split into separate integrals over each
variable 71, 22, . . .. Each of them can then be calculated by transforming to polar
co-ordinates.

Exercise 19. Show that the states (7.6.1) is orthonormal in this inner product

7.6.12. For a fundamental spin half particle the magnetic moment is the

eh
Bohr magneton 3,-

This is a consequence of the Dirac equation (which we will study in more detail
later) minimally coupled to the electromagnetic field.

Here e is the electric charge of the particle and m is its mass. For example the
magnetic moment of the electron is measured to be

Ue = —9.2847646917(29) x 10724J1!.

For comparison, its Bohr magneton is determined by knowing the mass:

eh

me

=9.2740100657(29) x 10724J7~!
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The negative sign of (. is because the electron is negatively charged. Similarly
for the muon

Uy = —4.49044830(10) x 10726J7~!

and its magneton is (recalling that the mass ratio is ,'Z—‘ = m)
" .

h h
O _ e O _ 448523 % 107267
2m,, my 2me

The tiny discrepancy can be explained as due to radiative corrections in Quan-
tum Electrodynamics.
But this does not work for the proton or neutron.

7.6.13. The proton and the neutron have anomalous magnetic moments

The neutron is electrically neutral, so if it were an elementary particle, it would
not have any magnetic moment at all! Instead it has a magnetic moment oriented
opposite to its spin (i.e., negative).

For example, u, = 1.41060679545(60) x 10°%J77! and pu, =
—-9.6623653(23) x 10727JT~!. The nucleon’s Bohr magneton anhp =

5.0507837393(16) x 10727JT~!. (These values are from the NIST data base.)
SO pty ~ 2.852- and p, ~ —1.954"

2my, 2myp *

7.6.13.1. The magnetic moments of the proton and neutron are roughly
3 and -2 times the nuclear magneton

The magnetic moments were among the first indications that the neutron and proton
were not elementary particles.

7.6.14. The static quark model explains the anomalous magnetic
moments of the nucleons

In this model the quarks are elementary particles and the neutron and proton are
bound states of them. The accuracy is about 10%. This is remarkable, because the
static model ignores the binding mechanism or any relativistic effect.

We now present a calculation of the nucleon magnetic moment in the static
quark moment.It is easiest conceptually to do this calculation for an arbitrary odd
number of colors N.; we can put N, = 3 towards the end. So the baryon number

1

of a quark is 3~. Neglecting the binding energy and kinetic energy as well as

spin/isospin dependence,
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7.6.14.1. In the static quark model, the mass of the quark is
approximately N% of the nucleon mass

If we denote by 73 the Pauli matrix of isospin,

7.6.14.2. The charge of a quark is Q = e [% +I3] =e [ﬁ + %

This formula will give the right answer when N, = 3: for the up quark, QO = % and
for the down quark Q = —% .

For each quark (a runs over 1,2 - - - N, since there are N. quarks in the baryon)
the component of magnetic moment along some direction (say third) is

eh [ 1 . T3a eh ( N )
= — — | 03¢ = — 103 cT3q073 .
Ha ?\]_}’:’l 2NC 2 a 4m a avsa

Here %oga is the spin of the ath quark. We are treating the quarks as funda-
mental particles and using the Dirac prediction for its magnetic moment.
We must sum over all the quarks in a baryon to get its magnetic moment

N¢

eh
M= Z {030 + NeT30034 )

4m g

The first term is independent of isospin and the second depends on isospin.
eh N
p= g (po+Nepr) s o = Z T3a=J3, 1= Z T3a03a
a a=1
We need the matrix elements for the neutron and the proton. The static quark
model ignores all degrees of freedom (such as position) except spin, isospin and
color of the quarks. The baryon state must be invariant under color, so must be
completely anti-symmetric in color. Quarks being fermions, this means in spin and
isospin the state must be symmetric. It is as if the static quarks (devoid of color)
are bosons with four independent states (two for spin and two for isospin). We can
conveniently think of the four variables as the elements of a 2 X 2 matrix. Under
isospin and spin this matrix transforms as

z r—>gth g, heSU2)

The left action is isospin and the right action is spin (say). Now, we can express
the spin and isospin operators as differential operators acting on these polynomials.
Since spin acts on the right

zgzl 0)_ (znn -z12
0 -1 21 —i2
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Also under the action of isospin and spin (acting on the left and right

respectively)
oz (10 1 0 211 —212
z > z =
0 -1 0 -1 —221 2

7.6.14.3. The states of the baryon are in one-one correspondence
with N.th degree polynomials in four complex variables
211, 212, 221, 222

The norm of a polynomial is given by a gaussian integral of the last section:

oot dz
Ik =/|w<z>|2e L
bis

In our current notation, an orthonormal basis is

nii ni2 na nn
in L1 % % (7.6.2)
VHII! Vl/llz! Vnzl! Vnzz!

with
niy +np+ny +nyp = Ne.

The matrices 3, 03, and ZaNzl T3403,4 can be written as differential operators
acting on the polynomials:

0 N 0 0 0
Mo = 211 221 =212 — 222
0z11 0221 0712 0722
. 0 d 0
M1 =211 22 - 212 — 221
0z11 0z 0z12 0221

7.6.14.4. The polynomials that describe the nucleon states are z(det 7)*
where N. =2k + 1

Under isospin and spin, the four nucleon states transform with I = J = % That is,
they transform just like the four matrix elements of z. But, the nucleon contains N,
quarks, so the states must be polynomials of order N.. We need to multiply z by
some polynomial of degree N, — 1 that is invariant under spin and isospin to get
the nucleon states. When N, = 2k + 1 is odd, that polynomial is (det 2)¥ : Recall
that det z is a quadratic polynomial in its matrix elements.

The magnetic moment operator y commutes with J3 (spin) and /3 (isospin).
So, we look at the effect of i on eigenstates of these operators.
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The spin up states of the proton and the neutron are!
Ip) = 211 (det 2)*
n) = z21(det 2)"

It is important to note that neither the proton nor the neutron is an eigenstate of
1; what we call the magnetic moment of the proton or neutron is the expectation
value of u in these states. For example, u can take a nucleon to some other baryon
state; for example, it can mix | p) with | A*) or | n) with | A®). These lead to
electromagnetic decays such as A* — py or A° — ny. We could use the static
quark model to also predict these “transition magnetic moments”. But it will take
us too far afield.

To get just the magnetic moments of the nucleons we need the matrix elements
(plulp), {(n|pu|n)ysince(p|u|n)=0;Recall that u commutes with 73).
Also the norms {p | p) and {(n | n), which are the same.

7.6.14.5. Calculation of the expectation values of u when N, =3

To proceed further it is convenient to specialize to the physically relevant value?
N.=3.Sincek =1

2
|p) = zindetz = z11 (211222 — 212221) = 27222 — 211212221

2
[n) = zo1detz = 221 (211222 — 212221) = 221211222 — 21225,

Since we know the orthonormal basis (7.6.2) we can find the norms of these

states:
(p|lp)y=2+1=3, (n|n)y=1+2=3
Also
Kol p)=lp), woln)=ln)
and

1| py =zi1(ziozo1 +3z11222), w1 | n) = 221 (3z12221 + 211222)
Thus,

plmlpy=(-1+43%x2)=5
(nlpiln)y=(3x2+1)=-5

INote that these states are nor normalized to have length one.

2]t is of some interest to calculate the magnetic moments in the static quark model for arbitrary N,.for
comparison with other models for nucleons such as the Skyrme model. But it is a bit harder. Could be
an interesting research project for an enterprising student.
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Since (p | p) =3 = (n | n) we get the expectation values

<P|H0|P>:1:<”|H0|”>
(rlp) (n|n)
pluwlp)y 5 lmlnm 5
rlp 3’ (n | n) 3

Using u = % (uo +3u1) when N. = 3 we get

(plplp)y en (1+5):3ﬁ
2m

(plp) — 4m
(wlpln) _eh o _eh
(n| n) _E(l_s)_ 22m

This agrees with experiment to about 10%.

7.6.14.6. The agreement with observation is remarkable, considering
we have completely ignored all interactions among quarks

You can also check directly that (p | u | n) = 0.

7.7. K mesons

7.7.1. K% are pseudo-scalar; isospin % particles of mass 494 Mev that only
decay by weak interactions

They were called “strange particles” when they were discovered. What was strange
about them is that they were unusually long lived (10~8s): Suggesting that they
carry a new quantum number that is approximately conserved. This number was
called “strangeness” (Gell-Mann). They are each other’s anti-particles. K* was
assigned strangeness S = +1 and therefore K~ would have S = —1. Unlike 7* the
K* form an isospin % doublet.

7.7.2. K, K9 is another pair of pseudo-scalar, isospin % particles of mass
498 MeV that are also stable under strong interactions

K%has I = —%, S = 1 and Khas I; = %, S = —1 .The charges of all the K-mesons
can be fit by changing the formula for electric charge (Gell-Mann—Nishijima)

Q=05+ >
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7.7.3. The new quantum number is accounted for by a new kind quark,
the strange quark

By a twist of fate, the strange quark has § = —1 and the strange anti-quark has
S = +1. It has baryon number % like the u and d quarks. From the above formula
we see that its electric charge is —%. That is the same charge as the d quark. Thus
we have the constituents of the Kaons:

KY =5u, K~ =is, K° = 5d K° = ds

7.7.4. There is also a neutral pseudoscalar meson that has strangeness
zero and isospin zero
770 =3s
with a mass ~548 MeV. It decays mostly into 2y which can be thought of as the

strange quark and anti-quark annihilating each other. A more accurate description
of the 1° includes mixing with iu and dd.

7.1.5. The s quark is heavier than the u and d quarks

This explains why particles that contain it are a few hundred MeV heavier than
corresponding particles made from u and d quarks alone. For example, mg+ —
m .+ ~ 350 MeV. Recall that the d quark is slightly heavier (by a few MeV) than
the u quark to explain the neutron-proton mass difference. For strong interactions,
the three quarks behave the same way. If we also ignore their mass differences, the
isospin symmetry is enlarged to a symmetry that rotates three quarks into each
other. Since these transformations can involve complex matrices, the symmetry
must involve 3 x 3 complex matrices. One natural choice is to generalize the SU(2)
of isospin to SU(3). This is not the only possibility: there several Lie groups with
two commuting quantum numbers that could be /3 and S. But SU(3) is areasonable
guess and it worked.

7.7.6. The 8 pseudo-scalar mesons n*,n%, K*, K", K_O,I]0 forma
representation of SU (3)

Analogous to the way the pions form a three-dimensional representation of SU(2).

7.8. SU(3)

Recall the definition of the Lie algebra su(n):



126 PHYSICS THROUGH SYMMETRIES

7.8.1. The space of traceless hermitian n X n matrices is called su(n)

We use lower case letters the Lie algebra and upper case letters for the group.

7.8.2. The number of linearly independent elements of su(n) is n* — 1

A hermitian matrix has n” independent components: There are n real entries along
the diagonal and "("—271) complex numbers above the diagonal. The entries below
the diagonal are not independent because they are just complex conjugates of the
ones above, so the total is n + 2# = n2. Since an anti-Hermitian matrix is
simply i times a hermitian one, its number of independent components is also n?.
This is called the dimension of u(n).

The condition of being traceless imposes one condition among the diagonal

entries, so the number of independent components of su(n) is n> — 1. In particular,

7.8.2.1. The dimension of su(3) is 8

7.8.3. The Gell-Mann matrices provide a basis for su(3)

A= /ll+ /12+ /13+ /14+ /15+ /16+ /17+ As
TAIy Tdy mdsTy ey dsTy m ey Tdr T, masT,y

01 0 0 —i 0 1 0 O
Ar=]1 0 0f, A=|i 0 0], A3=|0 -1 O
0 0 0 0O 0 O 0O 0 O
0 0 1 0O 0 —i
Ag = 0 0], A5=10 0 O
1 0 0 i 0 O
0 0 O 0 0 O
=10 0 1|, A3=]0 0 =i
01 0 0 i O
| 1 0 O
Ag=—10 1 O
\/50 0 -2

These are normalized such that
tr dgdg = 2048

in imitation of the Pauli matrices.
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7.8.3.1. A3 and Ag are diagonal. They are related to isospin and
strangeness of quarks

Exercise 20. Derive the commutation relations of su(3) in the Gell-Mann basis.
. . 1 . Pl . .
That is, write the commutators [’1—2" TB] =i f(,/g),% as linear combinations of the

Gell-Mann matrices. Decompose the 8 dimensional space su(3) into irreducible
representations of SU(2).

Partial Solution
Using the normalization of the trace above, we get

- ([ A8
i e

Obviously this is anti-symmetric in a, §. It is also anti-symmetric in S and y
since:

o ([Aas 4] Ay) + tr ([Aas Ay ] A) =

(usingtrAB = trBA)
tr ([Aa. 5] Ay) +1r (2g [Aas 25])
(using [A, BC] = [A,B]C + B[A, C])
([ gy ]) =0

since tr[A, B] = 0.

Thus fug, is completely anti-symmetric. So it is enough to calculate it when
a < 3 < y: All other components are either zero or are given by a signed
permutation.

7.9. Gell-Mann—-Okubo Formula

7.9.1. The most obvious consequence of the strange quark is that there is
a spin % baryon sss

This is analogous to ddd = A~~ and so should be negatively charged. It is called

the Q7. The spin is % because the quark is a fermion and its wavefunction is

anti-symmetric in color. Same argument as for uuu or ddd. Obviously, Q~ should
not carry isospin and has strangeness —3.
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7.9.2. Next there should be an isospin % pair ssu and ssd of charges zero
and —1 respectively

#0 mx—

These are called 2%, E*~. They have strangeness S = —2. The star is to distinguish
it from another similar particle of spin % ; which coincidentally is called E.

7.9.3. There is an isospin 1 triplet suu, sud, sdd of charges 1,0,—1 .
These are called X+, 20, 3%~

AT uuu
. .. A*
7.9.4. Along with the original quartet | , | = Z;Z we get a set of ten
A= ddd

spin % baryons.

To a good approximation we can think of the u and d quarks as having the same
mass, but the s quark is heavier so that SU(3) is broken down to its isospin
subgroup.If we ignore the breakdown of isospin (a smaller effect), A are all of the
same mass. The three £*, would have somewhat larger mass, then Z*and Q™. larger
still. The static quarks model would say that each time we add replace a u or d
quark by an s quark we are increasing the mass of a particle by some fixed amount:
The s — u mass difference. Thus we get a particular case of the Gell-Mann—Okubo
mass relations

Myx —MA = Mz — My = Mo~ — Mg+

At the time that this relation was discovered (by deeper group theoretic argu-
ments rather than the static quark model) it was known that (all masses are in
MeV)

mpa = 1230, myg- = 1385, mz- = 1530

but the Q™ had not been seen yet. Thus, the first equality is a post-diction that
could be verified

My= — MA = 155 =~ 145 = me+ — Myx
And there is a prediction of the mass of the Q~:
mo- ~ 1675

The discovery of the Q™ with a mass of 1672MeV at Brookhaven was spectac-
ular confirmation of the Gell-Mann—Okubo relations.



ISOSPIN AND STRANGENESS 129

7.9.5. Together they form the 10 dimensional representation of SU (3)

The quarks belong to the fundamental representation of dimension three of SU(3).

There are three quarks in each baryon. The anti-symmetry in color implies
that the wavefunction must be symmetric in spin and “flavor” SU(3). The spin %
baryons are completely symmetric in spin, so are also completely symmetric in
flavor. The completely symmetric third rank tensor representation of SU(3) is of
dimension 10.

7.9.6. Another way of thinking of this is in terms of an even more
approximate SU (6) symmetry

The static quark model with three quarks will have SU(6) symmetry: Not only
do the u,d, s quarks all have the same mass, we treat there spin up or down
states as having the same energy: Altogether there are six states for the quarks
with the same energy. After removing color, the wavefunction of a baryon is in
the completely symmetric third rank tensor representation of SU(6). This is of
dimension &6+ _ 56
30 :
When we reduce with respect to spin and flavor SU(2) x SU(3) c SU(6) we
can first identify a spin % representation which is completely symmetric in flavor
(as seen above). The number of independent states of the third rank symmetric

3G+NGH) 10. So, altogether these account for

tensor in dimension three is 3

4 x 10 = 40 of the states.

7.9.7. The spin % Baryons form the eight-dimensional
representation of SU (3)

There remains 16 states of spin % Spin alone accounts for a factor of 2% +1=2.
Therefore these states must belong to an 8 dimensional representation of SU(3).
Of these 8 , we can identify n = udd and p = uud as the states without any strange
quark. There are three particles of strangeness —1 containing one strange quark:

> =dds, >0 = uds, X =uus

Here the ud quarks are combined so as to produce I = 1,13 = 0. There is
another combination uds that has I = 0, I3 = 0 called the A baryon. Finally, there
are the doubly strange baryons
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7.9.8. The spin zero fields form also the eight dimensional (adjoint)
representation of SU (3)

It is a coincidence of SU(3) that the mesons and the spin % baryons transform the

same way.



Chapter 8

BOSONS AND FERMIONS

Many physical systems are made of a large number of copies of identical
particles. The electrons inside a metal or a white dwarf star, particles of
light (photons) inside a resonant cavity or the cosmos, the atoms in liquid
Helium are all examples. This idea is surprisingly versatile: Vibrations of a
solid can be thought of as a collection of particles of sound (phonons); the
electrostatic field of a charged particle can be resolved as a superposition
of photons.

Let us begin by considering free particles, so that the total energy is the
sum of the energies of each of them. The simplest situation is that there
is just one state available with energy' hw. If there are n free particles
occupying this state, the total energy is nhw. The empty state with n =0
has the lowest possible energy (is the “ground state”) and is sometimes
called the “vacuum”. The number n of particles in the state is called the
“occupation number”.

If there are many energy levels, hwy for some range of values of k, each
of them will have some occupation number n; and the total energy will be

E:hw1n1+hw2n2+~~~:2hwknk.
k

The single particle energies hwy are often determined by solving an
eigenvalue problem for a differential operator with appropriate boundary
conditions. For now we don’t need to know these details.

At first, it was thought that n can be any number n = 0,1,2,3,.... This
is true for photons, the quantum many body system originally studied by

1Recall that % has units of Joule*secs. So w has units of frequency. The physical meaning
of this frequency will become clear later.

131
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Bose. Many other particles (phonons, Hey atoms, pi mesons, W, Z particles,
the Higgs particle etc.) are also of this type. Such particles are now called
bosons. It turns out that any particle whose angular momentum is an inte-
ger multiple of £ is a boson. This relation with angular momentum is not at
all obvious and is one of the deepest theorems (“spin-statistics theorem”)
of Field Theory. But we do not go into that here.

Electrons are not bosons. The Exclusion Principle, which Pauli deduced
by looking at atomic energy levels, says that each atomic energy level can
be occupied by at most one electron. That is, either n = 0 or n = 1.
Now, we know that this is related to the fact that electrons have half-
integer angular momentum: The minimum is % In fact all particles with half
integer angular momentum satisfy the exclusion principle: The other half of
the Spin-Statistics theorem. Such particles are called fermions. Electrons,
protons, neutrons, muons, quarks, neutrinos etc. are examples.

To summarize, there are two kinds of particles. Those with integer angu-
lar momentum are bosons and those with half -integer angular momentum
are fermions. For Fermions, the occupation numbers can be n; = 0,1 and
for bosons, n =0,1,2,....

If the particles interact with each other (are not free) the energies do not
just add. Determining the energies of such interacting many body systems
are among the hardest problems in physics. Many of the most interesting
phenomena (scattering, superconductivity, symmetry breaking) arise this
way. We will return to some of this later.

8.1. Partition Function

Counting is hard. It is harder than calculus or linear algebra. So we can
often use ideas from these disciplines to help with counting. This is the
mathematical field of combinatorics.

Suppose we want to know the degeneracy d(E) of a state of a free
bosonic system with energy E. That is, how many ways can we choose ny,
such that E = )", hwgny. (Suppose that wy are already known.) A function
helps with this counting, called the “Partition Function”.

Z(B) =7 d(E)e "

We can think of % as the probability that energy is equal to E.

The quantity § actually has a physical meaning: [ = kz%T where T is the
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absolute temperature and kp is Bolzmann’s constant. When T > 0, the
states of high energy are less likely. (There are some situations where the
temperature is negative and the opposite is true.) Usually d(F) grows with
E like a power of E and the most important contributions to Z(8) come
from the value of E where the summand has a maximum: The two factors
pull in opposite directions.

Exercise 21. Show that the mean value of energy is (F) = —% log Z(B).
What is its variance?

Once we know this function, we can can extract d(F) by various tricks
(e.g., Fourier analysis). It is a very efficient way of packing the information
in d(E). In the simplest case with just one frequency w

d(E)=1, FE=nhw
Zo(g) =S et = L
By . T 1—ehwB
Just the geometric series. For fermions,

ZF(B) =1 + €_ﬁw6.

When there are many frequencies, we can still write

ZB(B) - i i .. .e_ﬂ[nlﬁw1+n2nLU2+~u]

ni =0 n2:O
This summand factorizes:
oo oo
ZB (6) = E E e e_ﬂnlnwle_ﬂHZerZ ..
n1=0n2=0

Each factor depends only one of the occupation numbers

ZB(B) _ i e*ﬁnlﬁwl i e*ﬁnzflwz

ni =0 no =0
and so each one can be evaluated a geometric series

1 1
ZoB) = T e T e




134 PHYSICS THROUGH SYMMETRIES

In more compact notation

1
Zo(8) = T—=r
k

Similarly for fermions

Zr(B) = [T [L+e ]

k

Exercise 22. A more subtle partition function also keeps track of the
total number of particles N = )", ny, not just the total energy Z (53, 1) =
S gy d(E,N)e PE=rN_Show that

1
ZpBom) = [ == Zr(Bw) =] [+ "]
k

k

Any sensible person seeing such a product will convert into a sum by
taking logarithms.

log Zp(B) = — Y _log [1 — e 7]
k

log Zp(B8) = Y _log [1+ e~ FMr]
k

Often the sum over k can be converted to an integral, when there are
many frequencies closely packed together. We will see examples later.

Exercise 23. This has little physical meaning, but makes a connection to
the most famous function in Number Theory. Suppose wy = log py where
pr = 2,3,5,7--- are the prime numbers. What is the Bosonic partition
function?

Solution

Z(B) _ Z e~ B2y i logp

nk:()

o0
=12, < Z e Bk 10gm~>

Nk =0

1
_ TT00
B Hk:() 1 — e—Blogps

1
Z2(B) =12 y——3
1—pk6
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On the other hand, any number can be written as a product of prime
powers in a unique way:

N:Hp;”“ — logsz:nklogpk
k k

So

Z(8) = i e~ B inklogpr i e~ Blog N _ ]\;i #
=1

nE=0 N=1

This is the Riemann zeta function;the variable 5 is usually called s in
number theory.
We just derived a famous identity of Euler for the Riemann zeta function

oo

1
heo——3 = ((B) = ~3
k=0 pﬁ N:1N’B

8.1.1. The Planck spectrum

Quantum mechanics began with Planck’s resolution of a paradox in com-
bining statistical physics with the new theory of electromagnetic radiation.
If you imagine a large metal box of side L, the electric and magnetic fields
inside can have wave numbers QT”n where n € Z3 is a triple of integers.
(Solve the wave equation with the boundary conditions at the sides of the

box).

8.2. The Harmonic Oscillator

This review is too brief if you have not seen this previously. See the book
[7] for an excellent, detailed presentation.

8.2.1. The classical simple harmonic oscillator

The simple harmonic oscillator is a system with one degree of freedom with
hamiltonian

1 1
H = 2924 202
gP” T gwia

w is the natural frequency. In classical mechanics, the momentum p and
position ¢ satisfy the Poisson Brackets

{p.qt=1
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The equations of motion are

dp _
dat

It is useful to introduce complex linear combinations

d
d_Z:{qu}:p’ {Hap}:7w2q

A
so that
H=wa"a, {a,a"}=1
satisfying
da” _ {H,a"} =iwa™, d—?: ={H, a} = —iwa

dt d

The solutions are periodic (oscillating) functions
o= Aefiwt at = A*eiwt
= ; =
or, after some change of variables,

q(t) = Qsin(wt + )

for some constants A, @, 6. Thus, the period of the oscillation is %’r

8.2.1.1. Partition function

In classical statistical mechanics, the probability density of states in phase
space is proportional to e ## where 5 = kBLT is the inverse temperature.
(Boltzmann’s constant kp converts 7' from units of temperature to units
of energy.) The thermodynamic properties of a system are given by the
partition function

2(9) =2 [ ¢ apdg

The overall constant Zj is undetermined in the classical theory.
For the harmonic oscillator this is a gaussian integral
27

Z(B) = Zo/efﬁ[%pn%w?q?]dpdq = Zy
wp

We will see that Zy = ﬁ from comparison with the quantum theory.
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8.2.2. The quantum simple harmonic oscillator

In quantum mechanics p and ¢ are operators satisfying the Heisenberg
commutation relations

[p,q] = —ih

In the Schrodinger picture, p = —iha%. The hamiltonian is now a dif-
ferential operator

1 02
H=-|_noe 2 2
2[haq2+wq]

Its eigenvalues E,, are the allowed values of energy. They are the values
for which the ODE

has non-zero solutions of finite norm:

/ () dg < .

To find them, it is useful to introduce two related operators
PN O Oy LN B SN I Y C )
V2 nd woq|’ V2 nd w Oq

[a,a'] =1

so that

and
1 i t i, 1
H:§hw(a a+aa):hwa a+§hw

Exercise. Verify the above relations. Pay special attention to the term
%ﬁw in the hamiltonian.

So, how does this help to find eigenvalues of H? The key idea are the
relations

[H,a'] = hwa!, [H,a] = —hwa
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Thus, if we have one solution to the eigenvalue equation Hi,, = E,,
we can find another:
Ha', = [H,a'Jgy + o' Hyy
= hwahpn + E’naT’lpn

That is, the application of af to 1, gives us another eigenstate with
energy E, + hw:

Ha', = (B, + hw) alyy,

as long as af,, # 0 and has finite norm. This is why a' is called a “raising
operator”: It raises the energy. Similarly, a is a lowering operator.

Ha,, = (B, — hw) a,

That is, we can lower energy by application of a unless aw,, = 0. The
lowest value of energy corresponds to a solution of the equation

a’lbo =0
We can see that

1
Hipo = 571401/)0

so that the “ground state” has energy %hw
It is easy enough to solve this ODE

\ﬁ +\/Eﬁ
hq w 0q

o = Ce 2nd

Yo(q) =0 =

for some constant C.This function is normalizable; i.e., [ |1g|*dg is finite.
We could choose C' so that [ |19|?dg = 1. But this is not important.

Example. What would have happened if we had solved afyo = 0 instead?
Why is there no “highest value” for energy?

Now, we can find the next highest value of energy by applying the raising
operator:

Y1 = alyy

lezm[uﬂwl
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and so on:
Yy aano

1

In many situations, a constant added to all the energy levels does not
matter: Only differences of energy levels matter. In that case we can redefine
the hamiltonian so that the ground state has energy zero:

7= H— Lo
2
Uy = aano
Hipp, = nhwtpy, n=0,1,2---

Thus the energy levels of a harmonic oscillator and equally spaced, mul-
tiples of hw.

8.2.2.1. Partition function

In quantum statistical physics, the probability of a state is proportional to
its energy. The partition function is then Z(8) = Y, d(E)e "F where d(E)
is the degeneracy of energy E (i.e., the number of states with energy F).
For the SHO, this is a sum we already evaluated: Z(8) = > . e "hhf =
—2L—. We can see that in the limit & — 0

l1—e
1

Z(B)%hw—ﬂ

which agrees with the classical result if the normalization constant Z, =
1
27h "

8.2.3. More degrees of freedom

Any oscillating system with small displacements can be reduced to a sum
of independent simple harmonic oscillators by a change of variables [13].

H=5 Y nk+ 5 Y uidd
k k

1 k=1

@mm}Z{O oy

{pr,oi} =0 ={ar, ai}
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Complex combinations again are useful

1 1 . . 1 1 .
ap = % (\/Wka + \/—w_klpk) y o = NG <\/kak \/w_klpk>

i k=1
{on, a7} =

0 k+#1
{akvo‘l} =0= {O‘Zaal*}

so that

H= g WE O, Ol -
k

The quantum theory also decomposes into a sum of independent
systems:

H:thzLaH%ka
k k

=1
[ov-al] = {(1) z¢z
[ak,a;) =0= [a%,a”

Again, if 1, is an eigenstate of energy F,, , alwn is one of energy F,, +
hwi. As long as ag, # 0 , it is an eigenstate of energy FE, — hwy.The
ground state is the simultaneous solution of

aro =0
which is a set of PDEs

W h 8
\/;Qk + \/wika_%] Yo(q) =0

The solution is separable as a product of functions of single variables:

. 2
’[po — CHe_%waqu
k

We can verify

Huy = [Z %m] o
k
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This is the state of lowest energy. The other states obtained by acting
on vy with some raising operators

Y = ai’”aénz SRR

lz (nk 4 %) m] ¥

k

Hipp

Again, we can add a constant to H so that the ground state energy is
Zero:

2
k
H = Z ﬁwkalak
k
Hwn = lz hﬁuknk‘| wn
k

8.3. Free Bosons are Harmonic Oscillators

You must have caught on by now to the point I am trying to make. The
energies of a system of harmonic oscillators are exactly the same as those
of a system of bosons.

Enzznkhwk; nk:071a2"'
k

So, the mathematical description of bosons are as oscillators. The nat-
ural frequencies of the oscillators are (up to a factor of h) the energies of
single bosons. The operator aL can now be thought as creating a boson in
the state of energy hwy. Similarly, ay, is the annihilation operator of such a
boson.

An immediate application is to vibrations in a solid. At equilibrium, the
atoms of a crystalline solid are arranged in a regular periodic pattern: A
lattice. Small oscillations of the atoms around these equilibrium positions
propagate as sound waves. They have a characteristic frequencies which
are determined by the spring constants (second derivative at equilibrium of
the potential between nearby atoms). Quantum mechanically, these sound
waves behave like bosonic particles. They are called phonons.
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Similarly, the electromagnetic field inside a cavity with conducting walls
has oscillations. Quantum mechanically, these oscillations correspond to
particles of light: Photons.

We are onto a fundamental physical fact: Particles are quantum excita-
tions of fields. Particles and fields arose as different ideas in classical physics:
Electrons where thought of as particles and electromagnetism as a field. In
quantum theory, these ideas come together.

8.3.1. Occupation number basis

To describe particles, it is better to think of oscillator states directly in
terms of occupation numbers rather than in terms of wave functions.

Again start with a single degree of freedom. We want operators
satisfying

[a,a] =1
Denote the empty state by the symbol |0) (pronounced “ket 07 )
al0) =0
More generally, introduce states satisfying
ataln) = n|n)

for some real numbers n. (Since aa is hermitian, its eigenvalues are real.)
For different values of n these states must be orthogonal.

(njm) =0, n#m

(n| is the conjugate vector to |n) and is pronounced “bra n”. So, (n|m) is
the bra-ket? of n and m. We can normalize the eigenstates to have length
one.

(n|n) =1
These are simply the eigenstates of the hamiltonian. Now,

a'a (a'|n)) = a' (1 +a'a)|n) = (n+1)a'|n)

2This terrible pun is due to Dirac. His only excuse is that he was quite young when he
invented this.
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Thus, af|n) is proportional to |n + 1). What is the proportionality fac-
tor?Let
afln) = &uln + 1)

As an infinite dimensional matrix,

0 &% 0 0
0 0 & 0
d=10 0 0 &
0 0 0 0

We can derive recursion relation relation for &, using the commutation
relations and the requirement that a,a’ are conjugate to each other.

0 0 0
& 000
a=|0 & 0

0 0 &

This can also be written as

al0) =0, aln)=&_,ln—1), n>0

Then
%2 0 0 0 0 0
0 &l o 0 [&* 0
ala=1| 0 0 &2 -], af=]0 0 &
0 0 0 0 0 0
Thus

[a,aT] =1 = |£0|2 =1, |§n|2 - |£n71|2 =1, n>0

The solution to this recursion relation is |£,|*> = n+1. So, we can choose

& =vn+ 1.

afln)y =vn+1n+1), aln)= {S/ﬁm 1) n>0

n=>0
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Or, as infinite dimensional matrices

0 0 0 0 1 0 0

1 0 0 0 0 v2 0

a=10 V2 0 ,d=10 0 0o V3

0 0 V3 0 0 0 0
Exercise 24. Find normalizable states satisfying afx(z) = zalx(2),
X(2) = >,_0 Xn(2)|n) These “coherent states” are especially useful in

quantum optics.

Exercise 25. Recall that [0) is Ce~2%%". Find polynomials P,(q) such
that |n) is P,(¢)Ce"2%7 . (Hint Derive recursion relations for P, (q)).

8.4. Are Free Fermions some kind of Oscillators too?

Is there some kind of oscillator whose excitation number takes just two
values n = 0,17

Let us start with a system with just one natural frequency w. It is either
empty or is filled by a fermion. If empty, the energy is zero. If filled the
energy is hw.

HI0) =0, H|1) = hw|l)

There are no other states. By analogy to the creation annihilation oper-
ators for bosons we can introduce operators

bl1) =10), 0'|0) = 1)
bj0) =0, bf|1)=0
The above relations imply
[bb" + bb] [0) = |0)
(00T +bTb] [1) = [1)
so that
b +bTh = 1.

Notice that the sign is + : We have an anti-commutator rather than a
commutator as for bosons. We get

Hp = hwb'b.
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Since we cannot put more than one particle in the state (the exclusion
principle) we must have

b2 =0
Since there is never more than one particle to annihilate,
b2 =0

as well. It is not difficult to find matrices and vectors that represent these
relations:

0 0 0 1
= T:
R )]

You might remember the Pauli spin matrices:

(o (0 i (v o0
Yo 2\ oo TP o -1

and then recognize

ijO’1+iO’2 b:0'177:0'2
2 ’ 2

The hamiltonian of the fermionic oscillator can be thought of as
. 1 1
Hp = Sw (b0 — bb') = wb'b — 3¢

The extra f%w is the analogue of the zero point energy. We can remove
it by adding a constant to the hamiltonian as before (to get Hp) but it is

more symmetric to leave it in. Then you can see that

. 1
Hp = -
F 2(«003

in terms of the Pauli matrices.This connection between spin matrices and
fermionic creation operators is not a coincidence; but we won’t delve deeper
into this matter here.

Exercise 26. Find the partition function of the fermionic oscillator above.

Solution 2 cosh[4F].
Is there an analogue of the representation of a,a! as differential opera-
tors? We can invent one, but it needs a new kind of number.
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8.4.1. Grassmann numbers

At some point you had to extend your idea of a number to include ¢ , which
2 = —1. In the same spirit, suppose there is a number that satisfies

02 =0

solves 7

but 6 # 0. A function of such a number can be thought of as a linear
combination

P(0) = 1o + O

for real numbers g, 1)1. Thus

0 = B1ho
We can define
ot =11
Clearly
05 =0
Moreover
009tp = 61
9o (00) = o
so that

(009 + 000) ) =1

Thus, these differential operators satisfy exactly the relations of b, b'.
We can now extend this trick to fermions with many degrees of freedom.
Introduce variables that satisfy:

0%6' +6'6" =0
In particular (#¥)2 = 0 etc. A function of such variables will be a series
1
$(6) = o + Vpb* + 51/)1@19@1 +--
the coeflicients are anti-symmetric

Vi = =i

etc. Define the differentiation

O (0) = g, + Y6 + - -
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Then we can verify that
OO + 0,0, =0
00" + 00 = 5,

Exercise. How would you define the integral [ dfy(6) in order that it
is linear and “translation invariant”: [d@y (0 + o) = [dfy(6) for some
constant Grassmann number «?

Solution [ df [1)g + 611] = t1is the only quantity that is linear and satis-
fies translation invariance. Incidentally, this means integration and differ-
entiation are the same thing for functions of a Grassmann variable!

8.5. Beyond Free Particles: The Jaynes—Cummings Model*

To get a first taste of an interacting system, let us consider a boson with
just one energy level hwp and a fermion with a single level as well hwp. If
they do not interact with each other the hamiltonian is

Hy = hwpa'a + hwpb'd
The operators satisfy, as before,
[a,a’] =1, blb+0bt =1, p2=0=">07

In addition, the fermion and boson creation annihilation operators do
not affect each other’s action; i.e., they commute:

[aab] =0= [aTab] = [aabT] = [aTvb]'
The energy levels are now
hwpnp + hwpnp

with ng = 0,1,2,... and np = 0,1. There can be any number of bosons,
but at most one fermion.

This model was originally invented to represent an atom inside an elec-
tromagnetic resonant cavity of frequency wgp.

We ignore all except one pair of energy levels of the atom. This pair has
energies differing from each other by fwp which is approximately equal to
hwp. Since there are just two possible states for the atom, mathematically
it is identical to the states of a single fermion: The empty fermion state is
the ground state of the atom and the occupied fermion state is the excited
state of the atom. This is the interpretation we will give it here.
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8.5.1. Interactions

The atom can emit a photon and make a transition from its excited state
to the ground state. In the other interpretation, a fermion is annihilated
and a photon created. To have detailed balance (time reversal symmetry)
we must allow for the opposite process as well: The atom absorbs a photon
and climbs to the excited state, or the photon is annihilated and a fermion
created.

This can represented by an additional “interaction term” in the hamil-
tonian

Hy = hg (a'b + ab)
H = Hy+ H,

Here g is a constant that measures the strength of the interaction (“cou-
pling constant”). This model is simple enough that it can be exactly solved.
The true eigenstates are some combinations of fermionic and bosonic states.
Much can be learned by working out such simple examples in detail.

Exercise 27. Find a conserved quantity for the Jaynes-Cummings model.
Use it to find the eigenvalues and eigenvectors of the hamiltonian.

Solution Let
ataln,v) =nln,v), b'bn,v) =vin,v), n=0,1,2,..., v=0,1

Each term in the hamiltonian leaves n+ v unchanged so it is a conserved
quantity. For a given value m of this quantity, there are two independent
states in the above basis if m > 0

|m,0), |m—1,1),

and just one, |0,0) if m = 0.
Conserved quantities are the key to solving any quantum system. If
m = 0 we get an eigenstate with eigenvalue zero:

H|0,0) =0
Now, if m >0

H|m,0) = hwpm|m,0) + hgy/m|m — 1,1)
H|m7 ]-a1> = [MB(mf ]-) +hWF]|m7 ]-a1> +hg\/Ehnv(»
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Thus in this two dimennsional subpsace H reduces to the matrix

hwp(m — 1) + hwp  hgy/m
hgv/m hwpm

It is convenient to define

and write this as

10 hA  hgy/m
[ﬁwmﬂ—&-A](O 1)—5—(@(]\/ﬁ hA)

The eigenvalues are
h{me + A+ A2+ ng}

corresponding to eigenvectors

(cos@i> tanfy — VA2 +g?2m— A

sin 64 g\/ﬁ

8.6. Heisenberg Lie Algebra

8.6.1. The Heisenberg algebra is a three-dimensional Lie
algebra with basis p, q, c satisfying

[ 7q]:6:7[%p]ﬂ [Q7C]:0:[pac]

Since all double commutators vanish, Jacobi identity is easily verified.
These are also called Canonical Commutation Relations.

8.6.1.1. This algebra has no faithful finite dimensional irreducible
representations

Faithful means the basis elements are represented by linearly independent
matrices; no information is lost in the representation. In an irreducible
reresentation, ¢ would have to be a multiple of the identity (Schur’s lemma)
since it commutes with everything. But we would have a contradiction:

tr[p, ] = 0 # trc
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In infinite dimensions, this argument doesn’t work because each side
can have infinite trace (i.e., the trace doesn’t exist).

8.6.1.2. The Heisenberg algebra has a unitary irreducible
representation

Unitary means that p and ¢ are represented by hermitian operators and ¢
by an anti-Hermitian operator. Being irreducible, it must be a multiple of
the identity. To be unitary and irreducible, ¢ = ihl, where h is some real
number. It has the dimensions of angular momentum (momentum times
position). In quantum mechanics it is Planck’s constant.

The Schrodinger representation

0
— _ih—
p g g

and ¢ is represented by position. With respect to the inner product

(W) = / & (@)x(a)dg

p, ¢ are hermitian (ignoring some technical issues about domains etc.) There
is another approach more suited for our purposes:

8.6.2. An equivalent formulation is in terms of the creation-
annthilation operators

1
[a,aT] =1, a=—=[q+ip

V2
8.6.3. In the Schrodinger representation the states are
described as functions of position

The annihilation operator a = \/Lg {q + d—dq] in units with = w = 1 (which

we use from now on). The equation a|0) = 0 becomes a differential equation

[q + diq] Yo(q) =0

which has solution

2

Yo(q) = Ce™ %4
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The constant is chosen such that

/|wo<q>|2dq= | — o= %

Then |1 >= af|0 > corresponds to the function
1 d
(o) = 5 o~ 5| wio

= V2qv0(q)
The rest of the states are given by the recursion relation

_ L
Z/}n(Q)*\/ﬁ Z/}nfl(Q)

leading to

Yn(q) = Hn(q)vo(q)

where H,,(q) is a polynomial (Hermite) of order n.

Exercise. Derive a recursion relation giving H,, in terms of H,_; and its
derivative.

Solution

We have |n) = ﬁa”n — 1) which translates to

Hy(q)to(g) = \/%—n (q - d%) [Hn—l(q)e’%ﬂ

This simplifies to

Hal) = <= (20 1() ~ Hi (0]

8.6.4. Another equivalent point of view is in terms
of complex functions

See the book by Klauder and Sudarshan [18] for more.
The creation operator is just multiplication by z; destruction is differ-
entiation
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We can calculate

[a,aT]w(z) = % (z0)) — zg—f =

so that the commutation relation is satisfied. Comparing

0

n n—1
—Z
0z

=nz
with
aln) = vnln — 1)

we get the correspondence

The inner product is given by integration with some weight function
(measure)

() = / 5 ()P

Here [ d?z denotes integration over the whole complex plane. p(z) needs
to vanish sufficiently rapidly at infinity so that z™ has a finite length. We
need

(m|n) = 6mn

so that

71 n

zZ z
Neivid

This determines p(z) uniquely:

(2)d*z = Opmn

Exercise 28. Prove that

AL CF

N B

o2l
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Solution
First of all, we make the changes of variable

z=x+iy, r=+a2+y2, u=r’

to get

—| |2 2 —x?—y? > —r? * —u
dz= [ e Ydxdy = e " 2mrdr =m e Ydu=m
0 0

More generally

gives

oo
/e 21" pxm g2, :/ e e MmO drd

0

[e%s} 5 2m )
:/ e " rm“lrdr/ e'n=m)0 g
0 0

The last factor is only non-zero if m = n:

27
/ etn=m0q0 — ons,
0

(oo}
_ 2 . 2
/e 21" rmong?, = 27T(5mn/ e " rmtnedy
0

oo
zwémn/ e “u"du

0

/e_‘z‘Qz*mz”dQZ = 7m!mn
from which the results follows.

Exercise. With this inner product show that z and % are hermitian con-
jugates of each other

-l
o
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= [ 2 o= T [ o 2 1

¥z dQZ

™

- / ()" (%) ze
(6, 2)

as needed.

8.6.5. All irreducible unitary representations of the
Heisenberg algebra are equivalent to each other

The Schrodinger representation, the Heisenberg representation, the com-
plex function representation are all equivalent to each other:

where H,, are the Hermite polynomials [7].

8.7. Bosonic States as Polynomials

8.7.1. If the space of states of a single boson is V, that of
a pair of bosons is S2(V), the space of symmetric
matrices

In some orthonormal basis, single particle states are given by vectors ¢ =
(1, ...,%) while two boson states are

Yij = ;.

For fermions we would have anti-symmetric matrices. Suppose i =
1,..., M : the single boson has some finite number M of states available to
it. Then there are % independent two-boson states. More generally

8.7.2. The space of states of n bosons is S™(V') the space

of symmetric tensors

invariant under any interchange. For fermions we would get anti-symmetric
tensors that change sign under odd permutations.
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8.7.3. The total state space of bosons is S(V) =
@’;.lozo Sn(V)
S9(V) = C is the vacuum or empty state, represented by a tensor of rank

zero: A scalar. This space of symmetric tensors you can build out of a vector
space is called its “Bosonic Fock space”.

8.7.4. We can also think of S(V') as the space
of polynomials

o0
Y(2) =D Wirin iy 2
n=0
The degree of the polynomial is the total number of bosons. In any
given state this is a finite number, but we allow it to be as large as needed.
Because the components of the complex numbers commute the coefficients
are symmetric tensors.

8.7.4.1. In the special case dimV = 1 there is a correspondence
between free bosonic states and the states of a simple
harmonic oscillator

There is just one polynomial of degree n, namely z™. It corresponds to the
state with occupation number n:

The factor \/—177' ensures that it has norm one with respect to

1212 % dQZ
IR = [ e o e S
8.7.5. The space of polynomials S(V) carries a
representation of the canonical commutation
relations

[aia a‘j] = 5ij7 [aia aj] =0= [a;'rv aj]

We are to think of a,j as the multiplication of the polynomial represent-
ing the state by z;; and a; is the differentiation of this polynomial w.r.t.
Zi.

T_ _
a; =%, Q=
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We can

ny no
21 A

|n1’n2. ..> =
n1! RQ!

w(’z) = Z ¢n1n2~~~|n1; ng-- >

() = / e Tl (2 2)

d221d222 cee

™

8.8. The Symplectic Lie Group and its Lie Algebra

Recall that momentum and position play symmetric roles in classical
mechanics. We can even mix them in performing canonical transforma-
tions, as long as the Poisson brackets (canonical commutation relations)
are preserved. Let us study them a little more in depth.

Since we want to treat momentum and position at the same footing let
us introduce a common notation

P1

The canonical Poisson brackets become
{é-a, gb} _ Qab
the matrix € is anti-symmetric (because the Poisson bracket is anti-
symmetric).
Qab _ 7Qba
It is non-degenerate; i.e., its determinant is non-zero. Its inverse is often
called the “symplectic form”.
In the co-ordinate system above it has the explicit form 2 = (_Oln én)

where 1,, is the n x n identity matrix. But we can use other systems as well.
A linear canonical transformation will be a 2n x 2n matrix A such that
the matrix © unchanged. That is

{£%,€°} — AZAG{ec, ¢}
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so that
AGAZQCd _ Qab
C
or in matrix notation
AQAT = Q.

The set of matrices that satisfy this condition form a group called the
Symplectic Group Sp(n). It is analogous to the Orthogonal group, except
that it preserves an anti-symmetric tensor rather than a symmetric one.

Exercise 29. Show that an anti-symmetric matrix with non-zero deter-
minant must have even dimension.

Solution detQ = detQ” and Q7 = —Q imply that detQ =
(—1)3m e det Q.

Exercise 30. Show that there is a real linear transformation which can
brings an anti-symmetric non-degenerate matrix to the standard above ) =
(_01 é) (Hint 7 times an anti-symetric matrix is hermitian. Diagonalize
it using a complex transformation and then rewrite in terms of real and
imaginary parts.)

8.8.1. The Symplectic Lie algebra

As always the Lie algebra is easier to understand. A symplectic matrix
infinitesimally close to the identity

A=1+e
will satisfy
A+ QAT =0
If we define
5= A
this is the condition that
s=s"

(The point is that € is anti-symmetric, so that s7 = QTAT = —QAT).
Thus, the symplectic Lie algebra sp(n) consists of symmetric matrices.
Compare with so(n) which is made of anti-symmetric matrices.
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In particular

2n(2n+1)
2

The simplest case is sp(1) which is three-dimensional.

dim sp(n) = =n(2n+1).

There is another way to understand the Symplectic Lie algebra. Given
a quadratic function

ME) = Shuct’e”

the infinitesimal canonical transformation generated by it is a linear trans-
formation

1 1 @
[, €7} = ShuQE" + hyo 0% = (A6)
where
A = Qb9

Such infinitesimal transformations preserve the Poisson brackets. (The
proof is straightforward: It uses the Jacobi identity. Since the above formula
is a one-one correspondence between quadratic functions and symmetric
tensors, we see that all elements of sp(n) arises this way from some function
(called the generator).

Moreover, the Poisson bracket of two quadratic functions is another
quadratic function:

{f.h} = Q%0, fO.h = Q¥ fraheetce
Since the Poisson bracket is anti-symmetric and satisfies the Jacobi

identity, the set of quadratic functions is a Lie algebra. This Lie algebra is
sp(n).

8.8.2. A Representation of sp(1)

The functions p?, ¢2, pg form a basis for sp(1). The operators

Y [0 A
(s o olq), —i [a_q (qv) + qa—q}

provide a representation (the Schrodinger representation) for these basis
elements of sp(1). This representation is unitary w.r.t. the inner product

(W, 6) = / 4" ()d(a)dg

Of course, this is an infinite dimensional representation. One of the
elements of sp(1) is the hamiltonian of the
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harmonic oscillator
1
H = §(p2 +4°)
The partition function

2

Z = tre PH =
() sinh g

can now be seen to be the character of this representation. The trace does

not converge for all quadratic operators; only the positive ones. (In general

the character makes sense as a formal power series or a distribution.)
More generally, the Bosonic Fock space carries a representation of sp(n).

Exercise 31. Show that the above representation of sp(1) is reducible as
the direct sum of two invariant subspaces; one corresponding to even func-
tions of ¢ and other to odd functions. Each of these subspaces is irreducible,
although this is harder to prove.

8.8.3. *Exponentiating to a Representation of the Group

Recall that the odd spin representations of the orthogonal Lie algebra do
not provide a representation of SO(3) but of its extension SU(2). Some-
thing similar happens for SP(1). The above representation of the Lie alge-
bra does not lead to representation of SP(1), but of its extension by Z
called the “Metaplectic” group. To understand this, consider the element

(COSG *Sine) € SP(1). This is a rotation in the (p,q) plane. As 6 varies

sinf  cos@
from 0 to 27 it describes a closed curve in SP(1) starting and ending at the
identity. In the above representation, the infinitesimal generator of a rota-
tion in the p, ¢ plane is the hamiltonian of the harmonic oscillator. (Recall
that the orbits of the harmonic oscillator are circles). So, the corresponding
curve is the e’ At § = 0 it is the identity operator. If the eigenvalues of
iOH

H had been integers, e'”** would have become identity at § = 27. But we

know that the eigenvalues of H are half-integers; the ground state energy
3

is %, the excited energy is 5 and so on. Thus, e — 1 at § = 2m. As we

increase 0 to 47, e’ does become the identity again.

Remark 32. Often we add a multiple of the identity to the hamiltonian
so that the ground state has zero energy. This does not affect many physi-
cal results. But it will change the commutation relations: The commutation
relations would be spoilt by the addition of a term proportional to the iden-
tity. There are some situations (e.g. when there are an infinite number of
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degrees of freedom) where we have to add a constant to the hamiltonian
to make the vacuum expectation value finite (“normal order” the hamilto-
nian). The resulting Lie algebra (with an extra generator which commutes
with everything) is a “central extension” of the Symplectic Lie algebra.
So, instead of an extensionof the group SP by Zs (see below) we have an
extension[14] by U(1).

This is all similar to the odd spin representation of the Lie algebra
s0(3); its exponentiation gives a representation not of SO(3) but of its
double cover SU(2). In the same way the unitary matrices obtained by
exponentiating the representation of sp(1) on the harmonic oscillator states
give a representation of a double cover of SP(1) called M P(1). Weil coined
the word “Metaplectic” to describe this group (as well as the representation
of sp(1) on the harmonic oscillator). We can rephrase this in the language
of group extensions: There is an exact sequence of group homomorphisms

{1} = Zo - MP(1) —» SP(1) — {1}.

We omit the proofs of these statements. The exquisite mathematics
(with deep connections to number theory) can be found in the book by
Folland [16] and in the original paper of Bargmann [17].

There is an important difference with the case of so(3) however. The
group SO(3) is doubly connected (has fundamental group Zs), so that
SU(2) (its double cover) is simply connected. By contrast, SP(1) has fun-
damental group Z: It is infinitely connected. Indeed, as a manifold SP(1)

is diffeomorphic to R? x S': the “noncompact” directions (which are tan-
gential to ((1) 701) and (2 (1))) correspond the contractible part R?; the

rotations (tangential to (? _01) ) correspond to the circle. The Metaplec-

tic group is also diffeomorphic to R? x S'; except that its circle is a double
cover of the circle in SP(1).

There is a simply connected Lie group Sp(l) which is diffeomorphic to
R3; it has the same Lie algebra as SP(1). But it does not have an easy
description. See [17].

8.9. The Orthogonal Lie Algebra

We now return to the case of linear transformations that preserve a positive
inner product (i.e., a symmetric positive matrix or metric tensor). There
is always an orthogonal co-ordinate system (i.e., cartesian) in which the
metric tensor is simply the identity matrix.
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An infinitesimal rotation is generated by the analogues of the orbital
angular momentum operators

Lab = xaab - xbaa
Their effect on the co-ordinates are easily worked out
[Lab; mc] = 0peq — Ogcp

This says that L, only affects x, or z; which are rotated into each
other: It is a rotation in the ab plane.

The commutation relations of the Lie algebra follows also by direct
computation:

[Lab; Lcd] = 5bcLad - 5aCLbd - 5deac + 5adLac

If the dimension of the underlying Euclidean space is even, (say 2n )
the following generators form a maximal set of commuting elements:
L12; L34; LR L2n71,2n
Since there are n of them we see that is the rank of the o(2n) Lie algebra.
The dimension is
2n(2n —1
dimo(2n) = % =n(2n—1)

If the dimension is odd (2n+1 say) the maximal commuting set is again
Ly, L3y, ..., Lap_12n

and the dimension is

2n(2n + 1)
2

The case 0(3) is of rank one and dimension three, as we already know.

dimo(2n+1) = =n(2n+1)

There are in addition, polynomials in the generators (analogous to L?)
which also commute with all the L,;. The number of them that are alge-
braically independent is equal to the rank:

LabLab; LabLbchaa T LalazLa3a4 - L

AnGn41

The irreducible representations of the Orthogonal group are given by
traceless tensors of various symmetry types: unlike in the case n = 1, it
is in general possible to make tensors that are neither symmetric nor anti-
symmetric (mixed type). The irreducible representations of mixed type are
constructed using an elaborate theory of “Young Tableaux” which we skip.
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As in the case m = 3, there are representation of the Lie algebras
o(m) which do not exponentiate to a representation of O(m); instead they
exponentiate to representations of the double cover of the group (extension
by Z2) called the “spin group”.

1 — Zy — Spin(m) — O(m) — 1

These spin representations are of great physical interest, for all values
of m (and even in the limit m — o0).

8.10. Clifford Algebra

Recall that the Pauli matrices satisfy

0109 + 0901 = 0, Jf =1=o0,

Given o', 0% we can get

03 = 10102
and verify that the algebra extends to three dimensions:
0i0j + 0j0; = 205, 1,7=1,2,3
Then we find that the matrices provide a representation of the rotation

Lie algebra. Also,

o1 + 109 b o1 — 109

2 2
satisfy the Canonical anti-commutation relations (are the creation and anni-
hilation operators for fermions).

All this generalizes to higher dimensions, and is central to our under-

standing of spin and fermions.

bt =

8.10.1. The Clifford algebra on R?" is generated by matrices
satisfying the relations

L.y + 100, =00, a,b=1,2,...,2n

Let us first consider the case where a, b take the range of values 1,2, 3, 4.
Once we understand this, we will see how to extend to any even dimension
2n. A simple trick will then allow us to pass to odd dimension 2n + 1 as
well.
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Let us start with the ansatz
M=o1®1l, Ta=02®1
If we choose also
I's=03®01, Ti1=03®02

we get what we want! The point is that o3 anti-commutes with both oy
and o9 so that the last two matrices anti-commute with the first pair.
Now, if the dimension is six, we choose

M=0®1®1, Tp=0201®1
I's=03®0®1, I'y1=03R02®1
and
I's =03®03®01, I'¢=03®03R02
Now, you get the idea for the general case.
Pop—1 =03 ® (k—1 times) - ® o3 ® o1 @ 1(n — k times) -+ ® 1,
[op =035® (k— 1 times) -+ ® 03 ® 09 ® 1(n — k times) -+ @ 1
for
k=1,....n

This is a representation of the Clifford algebra on an even dimensional
Euclidean space. The representation matrices act on a vector space of
dimension 2". The space on which they act consists of spinors.

Note that the Clifford matrices are hermitian (direct products of her-
mitian matrices.)

8.10.2. The matriz product T'y ---T's, anti-commutes with
all the elements T,

The point is each I'; commutes with itself but anti-commutes with the
others; so we get an odd number of negative signs as we pass I', through
I'y---T'y,. Moreover

Dy Do)l =Tap - Ty = (=1)2 12024 LTy

7F1 s an n odd

= (_1)n(2n+1)rl o FQ'rL =
I'y---Typ n even

So, if we define

=i"T'y---Top
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we will find that
rf=r, r2=1.

8.10.3. Bilinears of the Clifford matrices provide a unitary
representation of o(2n)

1
Yap = 3 Lo, Ty

They satisfy the commutation relations of o(2n)

(Eab, Xed) = OpeXad — dacXbd — OvdXac + 0adXbe

Exercise. Prove this by direct calculation.
Moreover, they are anti-hermitian matrices
Elb = —Zap
Also, the Clifford matrices transform as a collection of vectors:
[Yav, Te] = 6acly — 0pela
while T' is a scalar:
X, T =0.

Since I' is not a multiple of the identity, the representation of o(2n) is
reducible. The two eigenspaces of I' (with eigenvalues +1) do provide irre-
ducible representations of o(2n). (Takes a bit more work to prove this.)

8.10.4. Using I', we can construct a representation of the
Clifford algebra over odd dimensional FEuclidean
spaces R2™t1

We just have to define
o1 =T
Then
I3, =1
and it anti-commutes with all the others:

Lol 4+ Tyl = 260, a,b=1---2n+1
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8.10.5. Using the Clifford matrices we can construct the
Dirac Operator on spinors, which is a “square root”
of the Laplace operator

Suppose we have spinors that depend on position. Define

oY
Dy =T,—
v ox®
This is a rotation invariant® operator: both gﬁt and I', transform as
vectors. It is called the Dirac operator.
Then
0 oY
D% =T,— | )—
v Oz ( bc’)a:b)
0%y
=T y—
b 0zt
. 8%y . .
since 57— is symmetric in ab,
1 0%y
== (Lol + Tpl'y) ———
2 (Tal'y +ToT'a) Ox*dxb
Thus the square of the Dirac operator is the Laplace operator:
0%
D% = 6y ———
v b 9xa0zb

This will be important when we study relativistic wave equations. The
Dirac operator can be extended to Riemannian manifolds and provides
much subtle topological information not contained in the Laplace operator.

3Dirac originally discovered this operator while looking for a wave equation for the
electron. The group involved there is not an orthogonal group, but the Lorentz group

0(1,3).
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Chapter 9

THE ISING MODEL

A phase transition is a spectacular phenomenon in thermodynamics. The most
familiar example is the boiling of water as it turns to steam. This is a first order
transition: There is a discontinuous change in the energy, called the latent heat:
The amount of energy needed to convert water to steam of the same temperature.
As we increase the pressure, the latent heat decreases. At a critical pressure and
temperature, the latent heat vanishes so that the energy is continuous. But the
derivative w.r.t. temperature (specific heat) is infinite at that point: This is called a
critical phase transition. (For water the the critical temperature is 374 C and the
critical pressure is 218 atmospheres; for nitrogen it is —147 C and 34 atmospheres.)
You cannot liquefy a gas above the critical temperature no matter how much
pressure you apply.

Another important example of a critical phase transition occurs in a magnet.
At low temperatures a ferromagnet (indeed iron is an example) has most of its
magnetic moments point in the same direction. But above a critical temperature (the
Curie point) these magnets are randomly oriented. Remarkably, the singularities
at the critical point is the same for gases and magnets, even though the underlying
physical processes are very different. Understanding of this surprising phenomenon
of universality is one of the great achievements of twentieth century physics.

Onsager made the first step towards understanding critical phase transitions,
by solving a two dimensional model for a magnet exactly. This is possible because
of a surprising connection with spinors: The transfer matrix of the magnet on an
M x M square lattice can be shown to be a spinor representative of a rotation
in 2Mdimensions. Using the representation theory of 0(2M) the partition func-
tion can be determined exactly. As M — oo the free energy has a singularity,
corresponding to a critical phase transition.

167
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This showed for the first time that summing over molecular degrees of freedom
can lead to singularities in the free energy: Until then it was only a conjecture that
phase transitions could be explained this way.

9.1. The Hamiltonian

Our aim is to build the simplest model of a large number of molecules with magnetic
moments. The collective behavior of these magnets must lead to a low temperature
phase in which most moments point in the same direction (the ordered phase).
At high temperatures, there should be a disordered phase in which the magnetic
moments average to zero. A molecule has a magnetic moment that is proportional
to its angular momentum (spin). The proportionality constant (the gyromagnetic
ratio) depends on the structure of the molecule and is not important for us. In the
simplest model, the Ising model, this magnetic moment (or spin) can point in one
of two directions: We have a variable s = =1 at each molecule that describes this
orientation. There are more intricate models where the spin can lie on a circle (the
XY model ) or on a sphere (the Heisenberg model) but we look only at the simplest
case. The molecules are arranged on a cubic lattice (other lattices can be chosen
as well) of L sites in each direction.

Two neighboring spins will interact with an energy —Jss’. If the constant J > 0,
the spins will have a tendency to align producing a ferromagnet at low temper-
atures!. This interaction is due to an intricate quantum mechanical phenomenon
involving tunneling, (the exchange interaction) and decays exponentially with dis-
tance (as chemical bonds do as well). So we can ignore the interaction except for
molecules that are very close together. That is why we only include interactions
among nearest neighbors.

Thus the magnetic energy of the Ising model is

H(o) = —jz SxSy —EZSX
x—y x

where x — y denotes two positions on the lattice that are connected by a nearest
neighbor bond. The quantity B is the externally imposed magnetic field (times the
gyromagnetic ratio of the molecule). The partition function of this system is

ZL(J)= ) &l Bey s tB Lo

s==*1

If J < 0 the spins will try to be opposite: An anti-ferromagnet.
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where
T, B
kT kgT
and kp is Boltzmann’s constant and 7 is temperature.

Recall that the thermodynamic free energy is the limit of a large number of
molecules

logZ; (J, B)
L3

From this every other thermodynamic quantity (specific heat, magnetization)
etc. can be calculated by standard formulas in thermodynamics.

No one has been able to get an analytic formula for the free energy for the
cubic lattice. It is commonly accepted that this is impossible in terms of the usual

W(J.B) = lim

functions known to mathematical physicists.

Onsager solved the two dimensional Ising model; i.e., on a square lattice. He
was building on a technique developed by Ising for the one dimensional lattice,
called the transfer matrix method. Although the one dimensional model is too
simple (it does not have a phase transition) it is a good place to start.

9.2. Transfer Matrix of the 1D Ising Model

Imagine along chain of L spins arranged at regular intervals along a line. Each spin
interacts with its two nearest neighbors. We will eventually take the limit L — oo.
The hamiltonian can be written as

L-1
H=—stxsx+1 —EZSX
x=1 X

A more symmetric way to write this is

L-1
o 1.
H=-J XE:] SxSxtl — EB xg (Sx + Sxt1)

It is convenient to split the term involving a single spin as an average of nearest
neighbors.? The partition function is then

ot L SR SR S . 1
ZL(J, B) — Z e]S152+zB(5]+52)e]5253+23(52+53)e]5354+zB(S3+S4)
s=%1

.. e]SL—lSL"'%B(SL—l"'SL)

The boundary spins are counted with half the strength; we will see that they don’t matter much
anyway in the limit L — oo
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Define the 2 X 2 matrix labeled by s, s” = +1

Ty = e]ss’+%B(s+s’)

That is,

with

This is called the transfer matrix: It transfers us by one step along the lattice.
Then

ZrL (-]) = Z T5152T5253TS354 T TSL—]SL

s1,82-=%x1

The simplifying feature of the one dimensional model is that the s, only appears
in the first two factors, s3 only in the second and third and so on. The sum over
52,83 - - - sz can be thought of as matrix multiplication.

ZLU.B) = ) Tl

S1,SL

The power of a symmetric matrix 72! can be calculated conveniently in terms
of its eigenvalues (which are real) and eigenvectors (which can be chosen to be
orthonormal).

Ty =0y, Tyor =
ylyr=1=ylys, yly,=0.
TE = Apyny + 50005

Suppose 11| > [42].

Tt =2y = Ag]

1 L
vyl + (f) Yoyl

as L — oo. Thus the free energy is simply the log of the largest eigenvalue of the
transfer matrix:

1
W = —Llim [log/l] + Zlogwlwlr] = —log
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A little algebra gives

1 T+u? + Vaurv2 +ud = 2u2 + 1
1:

2uv

The only singularities (poles or branch cuts) in the physical region u,v > 0
areatu = 0,1 or v = 0, 1; these correspond to zero or infinite temperature. The
one dimensional Ising model does not have a phase transition at any intermediate
values. Still it is a starting point for more intricate models.

9.2.1. A Trick with Pauli Matrices

It will be useful to write 7 (with B = 0) in terms of the Pauli matrices:
J -J
e e
T = =ell,+e™”
(ej eJ ) e lrp+e "0
Since

e’ 7" = coshJ’ + o sinhJ’

we can write

where

J

acoshJ' =e¢’, asinhJ =e’

Solving,
tanhJ = e/, a?>=¢* —e? =2sinh2J

This trick with Pauli matrices has a useful generalization for more complicated
models.

9.3. Ising Model on an L x 2 Ladder

The next setup is to consider the Ising model on a ladder of two rows of spins,
coupling nearest neighbors along the row and columns (again we ignore the external
magnetic field):

L-1 L-1
H=-J Z [Sx,15x+l,l + Sx,25x+1,2] -J Z Sx,18x,2

x=1 x=1
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The same idea as before can work except we must think of the transfer matrix
as a 4 x 4 matrix.

Zr(J) = § el susattssntsiisi ,J 921531+ 522530+ 521522
s==1

. e]SL—l,lSL]+]SL—1,25L2+]SL—1,15L—],2

Note that s»; and sy, only appear in the first two factors, s3; and s3only in
the second and third factor and so on. So we can again think of this as a matrix
product, but we need matrices to be labelled by pairs of spins, each taking values
+1 independently.: A 4 X 4 transfer matrix.

Define a “spin vector”

s = (s1,52)
with each component taking values +1 independently. Define the 4 X 4 matrix
Tss’ — er-s'ejslsg
This transfer matrix is a product of two matrices, a diagonal matrix

’
Oys = 6ss’e] 1%

and a non-diagonal matrix

The precise way we treat the boundary spins s; and s; will not matter for
most values of temperature. Periodic bpundary conditions are mathematically
convenient; i.e., impose s; = s, and sum over s;. In that case

ZN = tI'TLil.

9.4. The Ising Model on an L x M lattice
If we have M rows, the same idea works except that

s=(51,50,...5m)
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is a vector with M components and each one takes +1 values. The transfer matrix
is a 2M x 2M matrix which is again the product of a diagonal matrix

ryM oo
Oss’ = 6ss’ej Ziem1 Sk ke

and a non-diagonal matrix

The problem is to find the eigenvalues of
T =PQ.

As L — oo, the largest eigenvalue dominates.3 The difficulty is that the size of
the matrix grows exponentially with M.

9.4.1. Clifford Algebra to the rescue

Now we recall that the Clifford matrices in R*™ are also 2™ x 2™ dimensional.
Kaufmann found a surprising use for them in the Ising model. (Onsager had solved
the problem earlier by a somewhat opaque method. Kaufmann, an associate of
Onsager, clarified the solution greatly. Mere mortals could understand Onsager’s
idea after that.) Kerson Huang’s wonderful book [20] on Statistical Mechanics has
a much deeper discussion than ours.

9.4.1.1. Transfer matrix in terms of Pauli matrices

Recall that the transfer matrix of the one dimensional Ising model can be written
in terms of Pauli matrices:

’
T =ae’ 7

tanhJ' = e >, a=V2sinh2J

The matrix P is the direct product of M copies of this 7.

Pgyr = TS]S;TSZ%MT

’
SMSM

P :aMe]’O'] ®e]’0’1 ®e]’0’1

1 1 . I
3 A more symmetrical choice of transfer matrix would be Q2 PQ72. But it is a bit simpler to work
with this P Q in this case.
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In other words
P=aMel im0y
where
op=1®l® - ®rme el

with 1 everywhere except at the kth site.
More obviously, the diagonal factor can be written in terms of 03:

FyM 33
0= e’ Zi=1 TR T

9.4.1.2. Clifford Bilinears in terms of Pauli matrices

We can choose a representation of the Clifford matrices#:

N=m;e1&1---, Ih=0m®1®1---
I[3=01®03®1---, Iy=01®0m®1---
I's=0®01 Q03+, [g=01 @01 Q07

You can check that it still satisfies the Clifford Algebra; this representation is
a bit more convenient for our current purpose.

Then
INly=-icg ®---
y=-il®@o; Q-
Islg=-il®l®@o ®:--
etc.
Thus
oy = ilo-1Tok
P = qM o1V’ Zili Tak-1Tok
Moreover

I3 =—ios®@03Q - -

IJ5=-il®o3®@03® -

4Compared to section (8.10.1) we are interchanging oy and o3
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so that

0= e’ DI B8 EYoe

Thus

T=PQ-= aM e’ S T Tk e S Parlakan

Since Clifford bilinears represent infinitesimal rotations, and T is a product
of their exponentials, it can be thought of as a spinor representation of a rotation
matrix O(2M). Strictly speaking, it is a rotation by an imaginary angle (if J is
real) but that won’t affect our algebraic considerations: We can always analytically
continue the formulas.

9.4.1.3. Self-duality

Before we solve the problem completely, we can already notice a surprising sym-
metry. It is obvious that interchanging the matrices I'ax_11x 2 Torl k41 IS a
symmetry: It amounts to a relabeling of indices. If we combined with J < J’ this
will change PQ to Q P. Now, the partition function

Zr, =trtPQPQ ---PQ
will go over to

trQPQP --- QP

which (by cyclic symmetry of the trace) is the same as Zy .
So, the partition function of the Ising model has a symmetry

aMZy())=a"MZy )

This is a symmetry that relates high temperature to low temperature (/ —
0 = J’ — o0). This “duality” was discovered by Elliott Montroll (by a different
method) and was one of the first indications that the Ising model can be solved. In
particular, it gives the exact location of the phase transition to be at the self-dual
point: J =J' = J = Llog(1 + V2) ~ 0.440687.

9.4.1.4. From spinor to vector representation

Recall that X, = %[F «»'»] provide a representation of 0(2M) Lie algebra. The
defining representation is by matrices generating rotations in R>* . Explicitly they
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are matrices of the form

[pab]cd =0acOpd — 0adOpc

That is the cd component of the matrix p,j is 1 if ab = cd, equal to —1 of
ab = dc and zero otherwise. For example,

0O 1 0

-1 0 0 0
P12 = 0 0 0 0

o 0 0 . O

The transfer matrix of the Ising model is a 2 x 2™ matrix:

T = aMR R = eZiJ’ Zﬁ] Z2k—l,2ke2i-122k,2k+l
9

It is the spin representative of the matrix

r= 621']' o P2k-1,2k 20T P2k 2kc+1

This is a 2M X2 M matrix: much smaller when Mis large. There is an orthogonal
matrix v which can reduce r to a canonical form

M _
F = yesk=1 Ikprr-1,2 =1

This means R has the canonical form by the spin representative of V:

R = Vezivil Ok Za-1, 2k~

Without knowing V explicitly, we can read off the eigenvalues of R. The
matrices Xox-1 2k commute with each other and have eigenvalues i%. So, the

%
eigenvalues of R are e* = where e = +1.
The partition function is given by the trace:

M

4 0

ar= Y, o [ [2eom % |
e=+1 k=1

Thus the problem of finding the partition function can be solved if we can find
the “characteristic values” 8y of r .
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9.4.1.5. Diagonalizing Cyclic matrices

To determine the characteristic values 6 of r, the trick is note that each factor has
a simple form

cosh2J’ sinh2J’ 0 0
sinh2J” cosh2J’ 0 0
0 0 cosh2J’ sinh2J’
P SV 0  sinh2J’ cosh2J’
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 cosh2J sinh2J 0
0 sinh2J cosh2J’ 0 0
Q2 Xk =10 0 0 cosh2J sinh2J
0 0 0 sinh2J cosh2J
0 0 0 0 0
0 0 0 0 0

Another way to write this is

2i0'YM otk
[e W Lz P2k m] L= C16ap + 51 E [6a,26-10p 2k + 260 2k-1]
a
k

2iJ XM poriok
[e i =1 P2k m] =C20cd + 52 Z [6¢.200a,2101 + S 214100 21|

1

cd
The product is some matrix of the form (setting ¢; = coshJ’, s = sinhJ’, ¢ =

coshJ, sp =sinhJ)

=c1€20ad

[621']' Y part ok pry porl P2k—l,2k]
ad

+s102 Z [6a.2k-10a,2k + 6266261 ]
3

+5201 Z [0a210a.2041 + 8214165 21 |
7

+ 5152 Z [6a,2k-1021.2k0 2141 + 6, 2602k-1,21416b.21 |
Kl
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The last term simplifies to
5182 Z [6a,26-10d,2k41 + 0a,2k0p,2k-2 ]
ki

This matrix has the form (displayed below for with M = 7, but the pattern is
valid generally)

cicp c15p spsp 0 0 0 0 0 0 0 0 0 0 cos
c18p cicp cas1 O 0 0 0 0 0 0 0 0 0 518
0 c¢p81 ciep c15p sysp O 0 0 0 0 0 0 0 0
0 150 182 cico c251 O 0 0 0 0 0 0 0 0
0 0 0 c¢p81 cicp c1s2 sy1s2 O 0 0 0 0 0 0
0 0 0 sys0 c182 cicp cp51 O 0 0 0 0 0 0
0 0 0 0 0 c¢p81 ciep c152 s1s2 O 0 0 0 0
0 0 0 0 0 s150 c18p cieo ¢cp51 O 0 0 0 0
0 0 0 0 0 0 0 cos1 cicp c1s2 s1sp O 0 0
0 0 0 0 0 0 0 sy8p c182 cicp cas1 O 0 0
0 0 0 0 0 0 0 0 0 c¢p81 ciep c152 8152 O
0 0 0 0 0 0 0 0 0 5185 c18p ciep 51 O
s1s2 0 0 0 0 0 0 0 0 0 0 cas1 cicp 152
cs1 O 0 0 0 0 0 0 0 0 0 s152 c18 clen

Each row is repeated two steps below, shifted by two permutations. With
periodic boundary conditions this will become a symmetry under the cyclic group
Zpr. So it is a good guess that it has eigenvectors of the form

u
zu
Zu

v=|2ul, z

where u = (Z;) is a two dimensional vector. This ansatz reduces the problem of
diagonalizing r to an eigenvalue equation for a 2 x 2 matrix[20].
1 +C1852

C1C2 + 818522 €2812°
u=Au

c281Z2+C182 C1Cr + 851522
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Extracting the thermodynamic information (e.g., the phase transition) from
this is a rewarding exercise in statistical mechanics, but it does not involve any
more group theory. Read more in [20].

In three dimensions, the Ising model has not been solved exactly; may be it
is not possible. But the ideas introduced by Wilson (based on renormalization)
have given us a deep understanding of the physics. Further ideas using conformal
symmetry (“‘conformal bootstrap” of Rychkov) also have been effective. These are
beyond the scope of this book.
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Chapter 10

WAVE EQUATIONS

10.1. Lorentz Invariance

We saw that rotations are described by 3 X 3 matrices satisfying
R'R=1, detR=1.

In relativity, space and time (similarly, energy and momentum) are combined
into a single vector with four components. Our convention will be that time (or
energy) is the zeroth component.

Its length? is given by the Minkowski rule:

Po
P1
P2
P3

p=

p.p = E2 - p?

It will be useful to think of this as

pp=p'np. n= 5

where the matrix 5 is called the “Minkowski metric”. It will be convenient to
use units with ¢ = 1 in discussing relativistic physics. You can always convert

181
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to ordinary units by dimensional analysis. We will use these units (mostly) from
now on.

Thus mass is simply the length of the energy-momentum vector (up to a factor
c?). More generally the scalar product of a vector with itself may be positive
(energy-momentum for massless particles), zero (massless particles) or negative.
A vector with p - p < 0 cannot be the energy-momentum of any particle: It would
have imaginary mass. But such “space-like” vectors can represent other interesting
things; like the separation between two points in space-time.

There are transformations analogous to rotations that preserve the length? of a
vector. Obviously, any rotation is of this type. But there are also transformations
that mix space and time. For example,

cosh® sinhd O
sinhd coshéd O

A= 0 0 1
0

0 0

- O O O

This is an example of a Lorentz transformation. The variable 6 (called rapidity)
is analogous to an angle of rotation. Unlike an angle, it can vary from —oo to co.

Exercise 33. Verify that (cosh 68po +sinh6p;)2 — (sinh @pg + cosh 6p;)? = p% -
p? for any 6.

The condition that a linear transformation p +— Ap preserve the Minkowski
dot product is

(MN'n(Ap)=p'np &= A'nA=n

Exercise 34. Show that detA = +1.

Such transformations can be divided into four types, depending on the sign of
Ago and of det A. If Agy < O the Lorentz transformation also involves a reversal
of time (called T'). If det A = —1 it involves a reflection of space and time (called
PT). It turns out there are subtle effects in particle physics (weak interactions) that
are not invariant under 7" or PT. The subset of Lorentz transformations (“proper
Lorentz transformations™) that have Agy > 0,det A = 1 are true symmetries of
nature.

It should not be surprising that the scalar wave equation and the Klein-Gordon
equation (see below) are invariant under all Lorentz transformations; proper or
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not. Later we will see wave equations for spinors that are only invariant under the
proper Lorentz transformations. They describe neutrinos, for example.

10.1.1. Index Notation

It will be convenient to denote a 4-vector as p, with the subscript ranging over
0, 1,2, 3. The Minkowski inner product can be written as

2 2 2 2
Po—P1—Py—DP3= Z pupry™”
)13%

where 7% = 1,7'! = 5?2 = *3 = —1, all other components being zero. We can

abbreviate it further as
Po = Pi— P35 — P35 = purv™”

by dropping the summation symbol: Any index that is repeated will be summed
over.

P0qo — P1q1 — P2q2 — p3q3 = puqyn*”

Part of the deal is that an index can appear no more than twice. For example
2
(Poqo = P1q1 = 292 = P343)” = pugs* ppqon’”
and not pq,n*" pugyn*”.
10.2. Lorentz Group and Its Lie Algebra

10.2.1. The Lorentz Group consists of matrices that satisfy the condition

AnAT =7
1 0 0 0
0 -1 0 0], . . .
Heren=|(, , _, , |isthe Minkowski metric.
00 0 -1

10.2.2. The determinant of such a matrix is +1

The set of matrices of determinant 1 forms subgroup SO(1, 3). Under continuous
deformations, the sign of the determinant cannot change. There is a further sign
that cannot change under such deformations:
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10.2.3. The set of matrices of determinant one and Ay > 0 is a subgroup
$0.(1,3)

The SO, (1, 3) is the subgroup that does not invert either time or space. Thus, the
Lorentz group breaks up into four connected subsets, according to the signs of Agg
and det A. Of these, SO.(1, 3) is a connected subgroup.

10.2.4. Surprisingly, only SO, (1,3) is an exact symmetry of nature

Space reversal (parity) is broken by weak interactions. The combination of space
and time reversal SO(1,3) is broken by a subtle phase in the quark mass matrix
(Kobayashi-Maskawa). So, only the connected components of the Lorentz Lie
group (the part determined by its Lie algebra) is an exact symmetry.

10.2.5. Infinitesimal Lorentz transformations satisfy Mn + nMT = 0

Here A = 1 + eM where € is an infinitesimally small quantity. Equivalently, n M is
anti-symmetric. There are (3) = 6 independent solutions for this condition. They
form a six dimensional Lie algebra under commutation. It includes the Lie algebra
of rotations as a sub-algebra. The remaining generators mix time and space (e.g.,
“boosts”).

10.3. The Variational Principle for the Wave Equation

Let us start with the simplest case

10.3.1. The 1+1 Dimensional wave equation ¢ — ¢"’ = 0 is the condition
Jor S[$] = % / [¢2 - ¢’2] dtdx to be an extremum

Consider the class of functions satisfying the initial and final conditions
¢(11,x) = q1(x),  ¢(12,x) = g2(x)
It is convenient also to put a cut-off on space (“box” boundary conditions)
¢(t1,—L) =0 =¢(t1, L)

Usually we are interested in the case of unbounded space. The mathematically
correct thing to do is to first consider the finite box, then take the limit. We won’t
bother to do that usually. But let us do it in this simple context to see how it is
done.
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We will consider variations that preserve these conditions. That is
Pe(t,x) = ¢(1,x) + €£(1,x)
with
£(11,x) = 0=£(12, %)
We must also require the variations at the spatial boundary:

E(t,—-L)=0=£&(t1, L)
Then

1 L
S[¢el :S[¢]+e/ dt/ [$€ - ¢'¢’] dx+%52/ [£% - &7] drdx
31 —-L

By integration by parts (the boundary term vanishes because of the b.c. above)

in space
/ sea=1oerty - [ oea

and in time (we use the condition on £ at initial and final times)

L) =t L o
/ digé = [¢],27 - / dié

3|

Thus the first order variation can be written as

(5S=6'/tlt2dt/j[qﬂé—qﬁ’f’]dxz—e/[ltzdt/z[(if—(;ﬁ”]fdx

At an extremum this must vanish for all £. That is possible precisely when the
wave equation is satisfied:

§-¢"=0.

You might wonder why we kept the second order term in S as we don’t need it to
prove the wave equation. But it helps us to understand the nature of the extremum.

10.3.2. We can cast the action in a Lorentz invariant form

Stol =3 [ 1" 9,00,0das

Its variation is

1 L
Slpel = S[o] +€ / dt / . " 0,0, Edx + %ez / n" 0,£0,Edtdx
11 -
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The integration by parts we did is based on the identity

U”V5y¢5v§ =0, [TI”V3;4¢§] - [U”Vayavfﬁ] &

and the following theorem

10.3.3. Gauss’ theorem: The integral of a divergence over a region Q can
be written as a surface integral on its boundary 0Q

/8ﬂj”dx=/ jHdoy
Q oQ

You have seen proofs of this in two and three dimensions. It holds in all
dimensions. Here do,is the area element on the boundary. It should be thought of
as a vector pointing along the outward normal to the boundary.

In the above example, 9Q consists of four pieces:

t=t, t=t), x==L

which works out to

L L 1 %)
—/ jO(tl,x)dx+/ jO(tz,x)dx—/ jl(t,—L)dt+/ j(t, L)dx
-L -L 1 1

The signs arise because the outward normal points backward in time (the first
term) and to the left (in the third term).

In that case each of these pieces j* was zero. But later we will need the general
case of Gauss’ theorem.

10.3.4. Another important application of Gauss’ theorem is to conserva-
tion laws

If 0, j# = 0, the surface integral of j on the boundary of any domain is zero.
Applied to the above region it says that

L L 1 1
/ 70(r, x)dx = / 7212, x)dx — / jl(t, =L)dt + / jl(t, Lydx
-L —L 151 I3l

If we assume that the flux j! tends to zero as L — oo we get

/ fo(tl,x)dxzf 7%(t2, x)dx

Think of j° as a charge density. The total initial charge is equal to the final
charge. Thus, 9, j# = 0 is the differential version of a conservation law.
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10.3.5. Now we see that the wave equation in any dimension follows from
the variational principle S[$] = % f n*"0,¢0,ddx

Here dx = dx%dx", ... . The Lorentz invariant version of the argument carries over
with no change to higher dimensions. Read it again with u, v = 0, 1, 2, 3. You may
strain our geometric imagination a bit but the equations are the same.

10.4. The Klein-Gordon Equation

10.4.1. The set of four-momenta of a particle with mass m satisfy

2 22 22 22 2 4
py—C py—cpy—cpy=mc’, po>0

10.4.2. Ifweignore the condition that the energy has to be positive, we can
express this as a simple differential equation for its wave-function

62 62 62 62

2 2 2 2 2 4
— —c—-c"—-c"—|d=mc"¢
or? 6x% ﬁxg 3x§

Recall that pg = ih% ,P1= —ih% etc. in quantum mechanics.

10.4.3. In Lorentz invariant notation n*" 0,0, ¢ + u*p = O where y = e

Note that i has dimensions of length™'. The static (time-independent) solutions
satisfy Yukawa’s equation.

10.4.4. The equation is invariant under Lorentz transformations-
including parity and time reversal

The equation allows for negative energy solutions. To properly interpret this situ-
ation, we need quantum field theory. We will return to this topic later.

10.4.5. If ¢ is complex-valued, the Klein-Gordon equation implies a con-
servation law

Ju =2Im¢*d,¢
The point is that

0y ¢ 0] = 1" 0y 8" 0 + Y 3,0
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The second term is zero because of the equation of motion:

0"y [¢°0ud] = "0y "0
The quantity of the r.h.s. is real (complex conjugation interchanges the two
factors up to a switching of indices u 2 v). So,

O j, =2Imo* [¢*due]| = 0.

10.5. Noether’s Theorem

10.5.1. This conservation law can also be understood as a consequence
of a symmetry of the action under ¢ — €' ¢

S = / [10,6" utp + 176" ¢ dx

Varying w.r.t. ¢* gives the equation of motion. The action is clearly invariant
under the above transformation when « is a constant. To derive the conservation
law, we use a deep idea of Noether. Consider the change of S under infinitesimal
changes §¢(x) = iea(x)¢(x) where @(x) can depend on x. We already know that
S is invariant under such changes when « is a constant. So, 6.5 must be of the form

6S=/6,,aj"dx

for some j* which depends quadratically on ¢ and involves one derivative of ¢.
By a straightforward calculation we can see that it is

= id e g +igt 9o
which is just the j# we defined earlier.
To proceed further we need two facts:

e 58S = / Oy [aj*] dx—f @0, j*dx. The first term is a surface integral by Gauss’s
theorem and hence can be set to zero (the fields and hence j# must vanish at
infinity).

e When the equation of motion is satisfied, 65 = 0 for any variation.

Together they imply that
0uj" =0

which is the conservation law.
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10.5.2. The power of Noether’s theorem is that it holds for non-linear
equations as well: Any symmetry implies a conservation law

For example, the action
2 2
S = / [n/”avqb*a,,(p +3 (¢*¢ - az) ] dx

also has the symmetry under ¢ + e!?¢. The same argument as above implies
again the conservation of

JH=—idr e p+ig ot e
But this action leads to a more complicated non-linear equation of motion,
0" By 0ud + A(¢7°¢ — a®)¢ =0

A version of this occurs is the standard model, in connection with the Higgs
boson.

10.5.3. Noether’s theorem also applies to non-abelian symmetries: Every
symmetry of the action under a Lie group implies the conservation
of a current valued in its Lie algebra

For example, let ¢ : R1»> — R” be a scalar field as far as Lorentz transformations
are concerned; but it transforms as a vector under some “internal” O (n) symmetry.
An action of the form

5= [ 1170.6u0,00+ V(o) dr. 16 = a0
is invariant under O (n). This leads to the conservation of a current
Jhy = 0" $ats = $auds

The argument is the same as above, applied to 6¢,(x) = €ayc (x) P (x) where
@qp (x) is anti-symmetric in ab. Note that the current is an anti-symmetric matrix
for each u (in the indices ab): It is valued in the Lie algebra o(n).

In fact the earlier case of a complex scalar field is just the particular
case n = 2.
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10.6. Fermionic Wave Equations

10.6.1. The Weyl Equation

A scalar field represents a particle with spin zero. This is partly why the Klein—
Gordon equation cannot describe the electron. Even when it is not moving, the
electron carries an angular momentum of % Before we discuss the Dirac equation,
let us look at an even more basic equation, the Weyl equation for a massless spin
half particle. After that we will see how to add mass to it. There are two ways of
doing this, the so called “Majorana mass” and the “Dirac mass”. The electron mass
is of Dirac type, but the neutrinos (at least two kinds of neutrinos are massive; we
don’t know for sure yet which two) may well have a Majorana mass.

To understand this, note that the length2 of a four-vector can be written as a
determinant:

po+p3s pi-— ipz)
pL+ip2  po—p3

2 2 2 2
Py~ P _pz_P3=det(

In terms of Pauli matrices

10 10 0 —i 10
0 _ 1 _ 2 _ 3 _
A=)l A =l ) el )

The matrix above is hermitian and can be written as a linear combination of
Pauli matrices:

b= (Po +p3  piL—ip2

P1+ipas po—p3

Conversely, every 2 X 2 hermitian matrix can be thought of as a four-vector.
(The number of independent components of a 2 X 2 hermitian matrix is four.)
If p is the momentum of a massless particle it would be a null vector; i.e.,

0 1 2 3 _
)=p00' +p1o 4+ pro”+p3o’ =0t py,.

detp = 0.
In this case there will be a spinor i (p)such that
pi(p) =0.
If we pass to the Fourier transform
ut) = [ aper 2L
this becomes a differential equation

p Ou

o =
OxH



WAVE EQUATIONS 191

This is the Weyl equation: an analogue of the wave equation for a massless
spin half particle. Itis the most elementary of wave equations.

10.6.2. The Weyl Equation implies the wave equation

This is obvious in the momentum picture. If there is a non-zero spinor satisfying
pii(p) = 0, we must have det p = 0 which implies the wave equation. We can
derive it another way. Define the “parity” conjugate Pauli matrices
FH=(1,-0', -2, -0?)
Then
gha” + gVot =2nt”
Equivalently

FHoY pupy =" pupy

We can apply the operator * % to the Weyl equation to derive the wave

equation
du 0 du i ou 0%u

v _ ] v _ MV nv —
o =0 = ot—->0 =coto = =
ox” oxH  OxV OxH OxV U OxHOxY

10.6.2.1. Lorentz invariance transformation of spinors

A Lorentz transformation must take p to another hermitian matrix. This suggests
that there is a 2 X 2 complex matrix corresponding to every Lorentz transformation
such that

Ap = ApAt
The r.h.s. is hermitian for any A. The condition that the length be unchanged
becomes det p = det [/lﬁ/ﬂ]; i.e.,
|deta)® = 1.

Now, if you change A by multiplying it by a complex number of magnitude
one, 1A is unchanged. We can use this phase freedom to choose

detd =1.

So, we suspect that to every Lorentz transformation A, there is a 2 X 2 complex
matrix of determinant one such that

Ap = pAt (10.6.1)
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for all four-vectors. This is true, but with some important caveats.

e Both A and —A give the same A. Thus we have a 2 to 1 map, A is much like a
“matrix square root” of A.

e A must be a proper Lorentz transformation. That is, Agg > 0 and detA = 1.
This subgroup of of Lorentz transformations is called SO (1, 3). To see the first
condition consider the special case p = (1,0, 0,0). Then (7\;)00 = Ago = |Aoo]?.
Similarly, we can show that det A > 0 as well if it arises from a A as above. So,
we cannot find such a A for parity (space reflection) or time reversal: For the
first case det A < 0 and for the second Agg < O.

The precise statement is,
Theorem 35. There is a homomorphism A : SL,(C) — SO (1, 3) such that
A (Do = A0k AT

The kernel of this homomorpism is Z, = {1,—-1} C SL,(C) .

Explicitly, for A = (a b),
C

d
I (lal + 6> +|c* +1d]?) 1 (ba* +ab* +dc* + cd”)
% (ca® +ac* +db* + bd") % (da* + ad* + cb* + bc™)

aw=| }
—3i(ca* —ac* +db* — bd*) —5i(da” — ad* +cb* - bc")

% (|a|2+|b|2—cc*—dd*) %(ba*+ab*—dc*—cd*)
1
2
1

yi(da” —ad™ — cb” + bc™)

i (ba* —ab*+dc* —cd*) % (|lal*+|c|* - bb* - dd*)
% (ca*+ac* —db* — bd*)

% (da* +ad* — cb* — bc*)  —5i(ca* —ac* — db* + bd™")

=

%i(ba*—ab*—dc*+cd*) % (|a|2+|d|2—bb*—cc*)

This is the analogue of the homomorphism R : SU(2) — SO(3) we found in
Sec.4.4. Indeed if we restrict to the subgroup SU(2) c SL,(C) it reduces to that
case.

Exercise 36. Prove the above theorem.

Now if the spinor u transforms as

u Ay
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the Weyl equation is invariant under proper Lorentz transformations SO.(1, 3). It
is not invariant under Parity, as a A does not exist in this case, as noted above.

Pauli actually discovered the Weyl equation first. But he rejected it as unphys-
ical, because at that time Parity was believed to be an exact symmetry of nature.
But once physicists discovered that Parity was violated in reactions that involve
neutrinos, it became natural to use this equation to describe a neutrino.

But this story is full of twists and turns. Now, we know that at least some kinds
of neutrinos are massive. So they cannot be described by the Weyl equation any
more.

How would we modify the Weyl equation so that the particle has a mass? That
is, so that the condition for a solution is det p = m?> ? There are two kind of masses:
Majorana mass and the Dirac mass. The latter requires that we double the number
degrees of freedom but has the added benefit that the equation becomes parity
invariant.

10.6.3. The Majorana Equation

Letuswrite/lz(a b),ad—bc:l.Then/l_lz(d b
c

d -c a

0 -1\fa Db\(O 1) (0 —I\(-b _d—c_/l_lT
1 0)\c d/\-1 o/ \1t 0o)\-d ¢ \-b a]
so that matrices of determinant one satisfy
(0 =1} 7 (0 1
=S )
Recall that the set of matrices of determinant one form a group, called SL,(C).
Now, u +— A1y implies that

) . Now,

Q

ut o Ty
0 1) . 0 1) _ir .
(_1 0) u - (_1 0) A u

{0 =1y (0 1\ (O 1\, [0 1\,
‘(1 0)1 (—1 0)(—1 0)” _/l(—l 0)”

That is, the combination (f)] (1)) u” transforms the same way as ioc#0,u :

and

0o 1) ., o 1\ ., . .
(_1 O)u »—>/l(_1 0)14, ioHd,u v Aict Ouu
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Thus the equation

ictdu+m (_01 (1)) u =0

is Lorentz invariant. Because of the presence of the complex conjugate in the
second term, this equation is no longer complex linear (i.e., u being a solution
need not mean iu is a solution.) It is better to think of as a system of equation for
four real variables rather than two complex variables. This is the way Majorana
thought of it originally.

This equation violates parity, as can be verified by writing it out explicitly in
terms of spatial derivatives. There isn’t even any way of implementing parity as a
transformation on u.

10.6.4. The Dirac Equation

But there must be a way to give the fermion a mass without violating parity. The
electron is massive and its most important interaction (electromagnetic) is parity
preserving. The idea is to double the number of degrees of freedom, so that parity
interchanges them. That is, we introduce two independent spinor fields # and v
which transform as

7= /lT_lu, Vi Ay
Then
ictdu+my=0

is invariant, as we saw earlier. We need an additional equation involving derivatives
of v.
Define

=0 &'=-0, i=123
so that G is the Parity transform of o*. Then we see that
icHov+mu=0
is also Lorentz invariant.

Exercise 37. Show that AX,(1)F” = AT 1gHA!

We can combine the two equations for u, v into a four component equation:

()
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to get the Dirac equation
iy oy + myr = 0.

Here, the Dirac matrices are

5H
7= %)
They satisty the “Clifford algebra”
YRy Tyt =M
There are other representations for the Dirac matrices which differ from the
above by linear equivalence transformations (changes of basis). In calculations,

it is best not to rely on any choice of basis, and use only properties that follow
directly from the Clifford algebra.

Exercise 38. Show that the Dirac equation implies the Klein—Gordon equation
for each component of . This verifies the claim that it describes a massive free
particle. Also, show that the Dirac equation is Parity invariant, if we let u and v
interchanged under Parity.

Having doubled the number of degrees of freedom, you should expect that the
equation describes twice as many particles as the electron itself. This is true: It
also predicts the existence of an anti-particle with the same mass but the opposite
(positive) charge. To understand this, we have to couple the Dirac equation to the
electromagnetic field (see later) and also “second quantize” it [15].

10.6.5. The Feuter Equation

The analytic continuation of the scalar wave equation to Euclidean space (imagi-
nary time) is the Laplace equation. What is the analytic continuation of the Weyl
equation? We would replace the Pauli matrices by

Fr=c=1, &'=V-ie!, @ =V-1c? o3 =V_1o
and

d
OX 510X 20X a0k _
ox?* Ox! ox2 ox3

This has an interesting mathematical meaning. If we denote
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the algebraic relations satisfied by the “Eulcidean Pauli matrices” becomes
P=-1=j2=k?
ij=k=—ji, jk=i=-kj, ki=j=-ik

These are the relations satisfied by quaternions: A generalization of complex
numbers to higher dimensions discovered by Hamilton. Then the “Eucidean Weyl
equation” is the quaternionic analogue of the Cauchy-Riemann equations (quater-
nionic analyticity).

Ox | ox oy oy
ax* oxt T oxr ax3

Independently of Dirac, Feuter discovered this equation in this context. The

theory of quaternionic analytic functions is much more complicated than complex

analytic functions, because quaternions do not commute. Still, it has been worked

out in some detail. Most physicists just use Pauli matrices instead of thinking in

terms of quaternions.

0.

10.7. Variational Principle for Fermionic Wave Equations

Recall that the wave equation for spin zero particles can be deduced from a
variational principle. There are similar principles for fermions as well.

Let us begin with the Dirac equation. Note that y#is hermitian for y = 0
and anti-Hermitian for 4 = 1,2, 3. Yet, y’” satisfies the same anti-commutation
relations as y*. In fact

P =y Ty
Define
o=y

We can use arguments similar to those in the section on the Dirac equation to
see that

e Jy transforms as a scalar
e JyHy transforms as a vector

when ¢ transforms as a Dirac spinor. Thus

SF =/t/7 [iy'“[)ﬂ +m] Wdx
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is Lorentz invariant. It serves as the variational principle: Varying w.r.t.  yields
the Dirac equation. Similarly, for a Weyl spinor, u" (P] (])) u* is a Lorentz scalar

and uo*u is a Lorentz vector. Thus

. 1
Sw :/u' [io-“aﬂu+m(_01 O) u*] dx

is a variational principle for the Majorana equation.

10.8. Maxwell’s Equations

The book by Jackson on Classical Electrodynamics has become a standard refer-
ence. The second volume of the series by Landau and Lifshitz Classical Theory of
Fields shows greater physical insight.

10.8.1. All magnetic fields must have zero divergence

V-B=0
This means in particular that there is no analogue to an isolated electric charge
in magnetism: A permanent magnet has to be a dipole. If you cut a dipole into
two we will not get an isolated North pole and South pole. Instead we will get
two dipoles again. Some theories that go beyond the standard model do allow for
magnetic monopoles; but none have yet been observed.

10.8.2. This equation can be solved by postulating that the magnetic field
is a curl of a vector potential

B=VxA

10.8.3. Two vector potentials that differ only by the gradient of a scalar
give the same magnetic field
This is called a gauge transformation
A’=A+VA, B'=B
VxVA=0.

It turns out that invariance under this transfomation is a fundamental symmetry
of nature. We will see that gauge transformations that generalize this are the
fundamental symmetries of the standard model.
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10.8.4. Another equation of Maxwell relates the time derivative of the
magnetic field to the eletric field

0B
— =-VxE
ot X

10.8.5. We can solve this by postulating in addition a scalar potential V

E=—-VV
ot
Remark 1. Recall that we are using units such that ¢ = 1. Otherwise there will
be some factors of call over the place.
The gauge transformations must now change the scalar potential as well

, oA
Vi=V+ ar
so that the electric field is unchanged.
OVA oA
ot ot

10.8.6. Under Lorentz transformations the scalar and vector potentials
combine into a four-vector A = (V,A).

We will introduce an index u = 0, 1,2, 3 such that
Ag=V, A= (Ag A1, A2 A3)
Then the gauge transformation can be written as
Al = Ap+ 0\

where 0, denotes differentiation along the u th direction. Gauge invariance is
based on the identity

00y = 0,0, A.
The electric and magnetic fields are then
E; = 0oA; — 0;Ag, 1=1,2,3.
By = 0hA3 — 0342, By =03A1 — 0143, Bz =01A; — 0 A
This suggests that we combine them into a single matrix Fj,,

Fuy = 04A, — 0,A,
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It is an anti-symmetric matrix:

0 E E> E3
—-E; 0 B; —-B»
-E, —Bj 0 B
-E; By —Bj 0

10.8.7. The remaining Maxwell’s equations can be written in Lorentz
invariant form as

a'uFuv = Jv
Expanded in terms of three-dimensional quantities
OE

— =-VxB+j
ot .

V-E=jo

The scalar jy is proportional to charge density and the vector j to current
density.

10.8.8. The potential A satisfies a wave equation

10.8.9. The electromagnetic field describes a particle of mass zero and
spin one

Mass zero because it travels at the velocity of light. (Duh. it is light.) Spin one
because in three-dimensional language it includes a vector field, which has spin
one.

10.9. Quantum Electrodynamics

So far we know the equations for the wave functions of spin 0,% and 1 particles. To
understand the interactions of these particles with each other we must introduce
non-linearities. The key is gauge invariance. A complete study of the resulting
theory, quantum electrodynamics is well outside the scope of this course. Itzykson
and Zuber Introduction to Quantum Field Theory is still a good reference. At a
level closer to this course is the book by Kerson Huang, Quarks and Leptons.

Exercise. The Dirac equation implies the conservation of a current

ety =" ¢
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That is,
Oujt =0.
This implies that

0

-0 53
— d’x =0.
ot e

Thus we can think of Q = e f j%d3x as the electric charge and j°,j as the
charge and current densities respectively. The constant e is the electric charge of
the electron (or whatever other particle to which we will apply this equation).Thus

10.9.1. The Maxwell’s equations in the presence of electrons is

O Fuy = edyud. (10.9.1)

Just as electrons create electric and magnetic fields, these fields must affect

their motion. The change in the Dirac equation due to the presence of electric and

magnetic fields is more subtle. Gauge invariance is the key to understanding this.
Recall that under gauge transformation

4 —_—
Ay =Ap+ 0
where A is an arbitrary function. We want to preserve this symmetry when we

introuduce A, into the Dirac equation. We must transform yas well so that the
changes in ¢ and A, compensate for each other. Notice that if

lﬁ, — eiEAl,b
Oy’ ="M [0y + (ied ) ¥
Remark 40. Sensible people can handle the double use of the symbol e here.
The e in the exponent is the electric charge and that below is the base of natural

logarithms. Their values of course, have nothing to do with each other.
Thus in the combination below the derivatives of A cancel out:

[0 —ieA), |y’ = e M [0, —ieA, ]|y
10.9.2. The Dirac equation in the presence of an electromagnetic field is

Y [0y —ieAy| v = imy (10.9.2)

Under a gauge transformation both sides are multiplied by the same factor,
so it cancels out. The pair of equations (10.9.1,10.9.2) describe Quantum Electro
Dynamics (QED) of charged spin one half particles and photons.
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10.9.3. The equation of a charged massive spin zero particle is

n" |0, —ieAy] [0, —ieA,] ¢ = -m*¢

This also follows using gauge invariance. Of course, here ¢ is a scalar not a
spinor.

10.9.4. The proper interpretation of the equations of Quantum Electro-
dynamics involves renormalization

The trouble is that the equations as described above lead to infinities when quantum
effects are fully included. They have to be removed by a strange set of rules called
“renormalization”. These rules work remarkably well and agree with experiments
to high precision: Fifteen decimal point accuracy is the best science has ever
achieved. Yet the correct mathematical formulation is still not clear. Dirac himself
was very unsatisfied by this situation. New ideas in analysis are needed. But that
is another story.

10.10. Lagrangian Formalism

10.10.1. Hamilton’s Variation Principle gives a concise formulation of
equations of motion

Define the Lagrangian L to be some function of position and velocity; and action
to be its integral:

S=/L(q,67)dt

The condition that the action be stationary w.r.t. to small changes in ¢ leads to
the condition

d oL OJL
dtdqg dq
With the choice
[
L=3mg*=V(q)
this gives the Newtonian equations of motion
. _ oV
mg =

_a_q’
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10.10.2. In a relativistic theory the dynamical quantities are fields:
Functions of space and time

10.10.3. The Lagrangian depends on the fields and their derivatives

The Lagrangian is a Lorentz scalar.

10.10.4. The action is the integral of the Lagrangian over space and time

S = / L(¢,0¢)d*x

ol
“1o(0u9)] 99

The Lagrangian of a free massive scalar field is
_ 1 uv 1 2,2
L=3n 00y — Fme
leading to the Klein—Gordon equation
80" ¢ +m*¢p =0

More generally, an interacting scalar theory will have a lagrangian that has
terms higher degree than two:

L= 30" 8,40,¢ - V(4)
0udtp+ G5 =0

For the Higgs field of the standard model ( a complex doublet)

. A
L=1"0,0'0,6 - V(9), V(p)=5[o'9-v]’

We can see directly that the ground states are on the sphere

¢Tp =1
10.10.5. The Lagrangian of Maxwell’s theory is

1
L= ZF”VF’”’ +jHAL,  Fuy =04A, — 0,A,
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leading to the equation

a'uFuv = Jv
10.10.6. The Lagrangian of Dirac field is
L=y [iy'“[)ﬂ +m] v

10.10.7. To getinteracting theories we add the free lagrangians plus terms
that depend on several fields

For the Yukawa theory,
L= [iy" 0.+ 8|y +1" 0,90, - V(9)
For QED

_ _1
L =yiy" [0 +ieA,| v +myy + ZF,,VF’“’

For the Abelian Higgs Model

A

L=n"" (V.| Voo - V(d), Vup=0d,—iep V(¢)= 5107 - v2]?

10.11. Yang-Mills Theory

10.11.1. Yang-Mills Theory is the foundation of the theory of elementary
particles

It describes the self-interaction of spin 1 particles: The photon, Z, W* and the
gluons. The principle of gauge invariance also determines the interactions of these
spin one particles with those of spin zero and spin %: The quarks and leptons.There
is also a theory of interactions of spin zero particles (Higgs fields) and spin two
particles (General Relativity).

10.11.2. Maxwell’s theory of electromagnetism is invariant under an
abelian gauge group

Let A : R* = R be areal valued function. Recall that under the gauge transforma-
tion

Ay = Ay +0,A
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the field strength
Fuy = 04A, — 0,A,
is unchanged. Thus, the Lagrangian

1
L= F"Fy

is invariant under both gauge and Lorentz transformations. Two successive gauge
transformations is equivalent to one under the sum

A+ Ay
This is a commutative (abelian) group. Suppose a scalar field transforms as
¢ — e
Then the covariant derivative
Vup=0u¢d+iAud
transforms as
Vup — eiAVll(zﬁ.
The Lagrangian

1 1
L= 5 F" Fuy + 51V = V(I9))
is gauge invariant. We saw a version of this in the discussion of the Higgs mecha-

nism.

10.11.2.1. The value of e determines the strength of the interaction

We have chosen to define the gauge potential such that the coupling constant
appears as a constant factor in the Lagrangian. For any e the gauge invariance
holds. and is determined experimentally to be about a third. More precisely

e? 1

4r 137

10.11.2.2. The commutator of covariant derivatives is just a multiplica-
tion by the field strength

V.Vy¢ =V, V¢ =iF,,¢

This is similar to the definition of curvature in Riemannian geometry.
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10.11.3. In Yang-Mills theory, the gauge transformations are valued in
a Lie group

Let g : R* — G be a function from space-time into a Lie group. The cases of
most physical interest are G = SU(n) or U(n). Suppose we have a scalar field
transforming under some representation of this group. (Think of G = U(n) and
¢(x) € C".) Then

¢ — 8¢
We can define a covariant derivative by analogy
Vup=0ud+iAud

where A, is valued in (matrix representation of ) the Lie algebra of G. For example,
if G = U(n), then each component of A, (x) is a hermitian matrix. How should
A, transform in order that this covariant derivative transform as before?

Vup — gVuo
A short calculation gives the answer
Au— gAug™ +20,(g7")

If g = e'“” this reduces to the transformation of Maxwell’s theory. What then is
the analogue of the field strength? We can calculate

VVop =V, Vo =iF,,¢
where
Fuy = 0,A, —0,A, +i[Au, AV

The commutator term on the r.h.s. makes all the difference: It implies interac-
tions among spin one particles that have no analogue in Maxwell’s theory.
Under gauge transformations,

Fuy — gF'qu_l.
10.11.3.1. Recall that Compact Lie algebra is one that admits a positive
invariant inner product
That is, for non-zero elements of the Lie algebra

(u,u) >0
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and under the adjoint action it is invariant:

(gug™", gug™y = (u,u).

On compact simple Lie algebras (e.g., su(n)) such an inner product is unique
up to a scalar multiple. On u(n) ~ su(n) ® u(1) there are two independent con-
stants determining the general inner product. These constants are called coupling
constants in the context of Yang-Mills theory

10.11.4. The Lagrangian of Yang-Mills theory is determined by a positive
inner product on its Lie algebra

1
L= Z(F’”’,F,”,)

10.11.5. Using covariant derivatives we can bring spin zero and spin one

fields
1 113% 1 2
L= Z(F* Fu) + 51991 + V(I9))
L= %(F’“’,Fw,) +y[iy*V, +mly

10.11.6. The Higgs Model with U (2) invariance describes weak
interactions

_l v l 2 _
L_4(F" »Fuv) + 19817 = V(IgD)

where ¢ = ( g; ) is a vector with two complex components. It is convenient to split

the gauge field into a traceless 2 X 2 matrix L, and a multiple of the identity Y,
since u(2) ~ su(2) ® u(1)

Au=Ly+Y,
L= gt L Ly + 73V + 51V = V(I4])
where
Vup=0up+il,p+iqY,¢

The “hypercharge” g of the Higgs field and the coupling constants ey, es are
experimentally determined. With the potential

V(o) =5 [6'0 -
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this describes a set of three massive particles W*, Z and a massless photon. (Higgs
mechanism).

10.11.7. Yang-Mills Theory with gauge group SU (3) is Quantum Chro-
modynamics, the theory of strong interactions

Ny
1 .
L= AP Fu)+ ) Gy Ve +maly
a=1

Each quark field ¢, is a three component vector under SU(3)in addition to
being a Dirac spinor. There are six kinds of such quarksa = 1, . .., 6 corresponding
tou,d,c,s,t,b with widely varying masses:

mq ~ 5,10, 1500,250, 175000, 5000

in MeV. In most cases of interest in Nuclear Physics, only the lightest two or three
quarks needs to be considered. For an excellent summary of the standard model
see [10].
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Chapter 11

RANDOM MATRICES

The main reference is the book “Random Matrices” by M. L. Mehta [21]. More
mathematical developments are in the book by D. Gioev and P. Deift [23].

11.1. Sources of Random Matrix Theory

Random matrices arise in several disciplines of physics, probability theory and
statistics.

11.1.1. The Eigenvalues of a Matrix Whose Elements are Random
Variables

This is an idea, first pursued by Wigner in Nuclear Physics. The thousands of
energy levels of nuclei defied any simple dynamical description. The hamiltonian
was modeled as a hermitian or real symmetric matrix. Although the actual nuclear
eigenvalues are not well described by this model, the level spacing (energy dif-
ference between two successive energy levels) fits with those of a random real
symmetric matrix. (This happens when the spin-dependent part of the nuclear
hamiltonian is important.) Part of the reason for the success is the universality of
the spacing distribution: It is the same for a large class of random matrices.

This universality may be viewed as analogous to the central limit theorem,
which says that the sum of a large number of random variables is Gaussian for
more or less any collection of random variables. If the hamiltonian is a sum of a
large number of terms of independent physical origin, each matrix element will
tend to an independent gaussian random variable (the only relation between them
comes from being hermitian or symmetric). Since there is no preferred basis,

209
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the joint probability distribution must be invariant under unitary (or orthogonal)
transformations.

11.1.2. Covariance Matrix of Samples

Imagine we make p measurements of some quantities &;,i = 1,...,n (e.g., prices
of stocks in the S&P 500, annual rain falls in the counties of NY state etc.) We can
arrange these into an n X p rectangular matrix x;,. By subtracting the mean values
we get another vector:

p

1
Yia = Xia — ; inb

b=1

The covariance matrix of the data is
1
Xij=— Zyibyj'b
P

This is a positive! symmetric matrix of random variables. The eigenvector of
the largest eigenvalue of this matrix is important in statistics: It captures most of
the random variation (Principal Component Analysis). What is the distribution
of this eigenvalue? This answer turns out to be universal (the same for a large class
of random variables) and was found by Tracy and Widom. Such “extreme value
distributions” are an active area of research in random matrix theory. But we won’t
go into that here.

11.1.3. Operator algebras

A different approach (due to Voiculescu), with surprising connections to Wigner’s
theory, started in the theory of operator algebras. The simplest example, is based
on the Toeplitz algebra, defined by the relations

AAT =1,

Note the similarity to the canonical commutation relations for creation-
annihilation operators. Yet, an important difference is that it is the product AAT,
not the commutator that is equal to one. The states on which the operators act
can be obtained by acting with “creation operators” AT on the “vacuum state” |0)

! A matrix s positive ifu’ Zu > 0forall vectors u. In our case this is the sum % Zijb u;yipyjpUj =

IL) 2b | Ziyjpuj |2 which is clearly positive.
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defined by
A]0)=0.
We will normalize this state so that
0]0)=1.

A convenient way to characterize a probability distribution is in terms of
its moments. In operator algebras, this is the expectation value in some state
of the powers of some self-adjoint operator (“observable”). We state the main
result. Its proof will exploit the analogy with the simple harmonic oscillator. The
analogues of the Hemite polynomials will be Chebyshev polynomials of the second
kind. The analogue of the gaussian (the ground state) will be the semi-circular
distribution.

Proposition 41. The vacuum expectation values are

2k
ot =2k
O] (A+aH"[0) = "“(k) "
0 n is odd

The integers k% (zkk ) are called Catalan numbers. They arise as the solution
to many counting problems.
Proof. Define
|ny=A™]0), n=0,1,...
Using AAT = 1we get
(m | m)= (0] A™A™ | 0) = (0| A"~ AT | 0)
By iterating this we get

1 m=n
(m|ny=40]A™"]|0)=0 m>n
O]AT™10)=0 n>m
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The last equality follows from (0 | AT~ | 0) = (0 | A”™ | 0)*. Thus the
states | n) are orthonormal and complete (being the eigenstates of the hermitian
operator ATA):

(m | n)=Gma, Y | m)m|=1
m=0
Now,

0=A+A

is a hermitian operator. There must be a family of states which are eigenvectors for
this operator:

0lg)=qlq)

Since Q is hermitean, the eigenvalues are real. The relation of these to the
states | n) should be through some quantities v, (g)

| q) = i}w(@ | n)
We have _
q19)=(A+A") g =i0¢n(q) [A+AT] | n)
That is, _

CIi‘//n(Q) | n) =i‘//n(Q) |n— 1>"‘i‘/’n(‘]) | n+1)
n=0 n=1 n=0

qzm:‘/’n(‘” | n) = i‘/’nﬂ(‘]) | n) +i‘/’n—l(‘]) | n)
n=0 n=0 n=1

So, we have the recursion relations

q¥o(q) = ¥1(q) (11.1.1)
qUn(q) = Yne1(q) +¥n-1(q), n>1 (11.1.2)
Now, recall the Chebyshev polynomials defined by

sin ([n + 1]0)

T, (cos0) = cos (nf), U,(cosh) = -
sin
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They satisfy a similar recursion (a direct consequence of the addition formula
for cosines and sines):

cos([n+1]0)+cos([n—1]0) =2cosOcos(nf)  T,-1(x)

+ Tpe1 (x) = 2xT, (x) (11.1.3)
sin([n+1]0) +sin ([n - 1]0) =2cosOsin(nf) & U,_i(x)

+ Ups1(x) = 2xU, (x) (11.1.4)

Moreover
To(x) =1, Ti(x)=x, Upx)=1, Ui(x)=2x

What distinguishes U,, from 7, is the coefficient 2 in the formula for U (x).
The ansatz

un(a) = {aTy (2) + 60, (2)} 1(0)

will then satisfy (11.1.2). Then (11.1.1) reduces to
{a%+bq} =qg{a+b} = a=0.
Thus we find that
Un(@) = Un (2) o(@).

The orthogonality relations for the Chebyshev polynomials follow from those
of the sine functions:

T
/sin[(m+1)0]sin[(n+1)9]d0=%(Smn, mon=0,1,2--
0

Putting g = 2 cos 6 this becomes

g q
/ Unm (_) Un (_) 4_q2dq=2ﬂ6mn, m,n=0,1,2---
L, 0m\) P

Thus, it emerges that the spectrum of Q is continuous! In fact, it is the interval
[-2,2].
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Being eigenstates of a self-adjoint operator the states | ¢) satisfy the complete-
ness and orthogonality relations:

@) =6(a-q). /|q><q|dq=1,

which translates to
D Un@a(a) = 6(q-q), / Y (@¥n(q)dg = Smn
n=0

To get / v (@¥n(q)dq = 6,uy we must choose

1 2
-V4-¢q* lq| <2
2
lwo(q)l> =4 "
lgl =2

This is known as the semi-circular distribution.
Now we can calculate the moments

(O] (A+A7)" | 0) = / 4" Wo(@)? dg

By the symmetry ¢ — —g¢ this vanishes for odd n. For even n the integral can
be calculated (e.g., use Mathematica) to be

2
I 1 (2
2k
— J4—2dg = ——
Lq 2 VT k+1(k)

This proves the formula for the moments. 0

11.2. The Gaussian Unitary Ensemble

This is the original model of a random matrix, due to Wigner.

11.2.1. The Gaussian Unitary Ensemble (GUE) is a random hermitian
matrix whose elements taken together have the joint probability
distribution function

—_ 202 dA
Ze
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So, A is a hermitean matrix? whose matrix elements are gaussian random
variables. These are N” independent real random variables, once the condition of
hermiticity is imposed.

dA stands for the measure of integration over these N> components. Also, Z is
a normalization constant.

We assume that the mean of each matrix element is zero. The probability
distribution function (p.d.f.) is invariant under the action of the unitary group

A — UAU', AeU(N)
which explains the name.
11.2.1.1. The Gaussian Orthogonal Ensemble (GOE) is a random real
symmetric matrix with the analogous p.d.f.
This time it is invariant under the orthogonal group action
A—gAg", geO(N)

There is also a Gaussian Symplectic Ensemble which is a quaternionic ana-
logue. We won’t pursue these models further here. See the book by Mehta for more
on this.

11.2.2. Although the matrix elements are independent variables, the
eigenvalues are not

In particular, the eigenvalues exhibit the phenomenon of level repulsion: Two
eigenvalues of a matrix are unlikely to be close to each other. We can prove this by
considering the special case of 2 X 2 hermitian matrices. Any such matrix can be
expanded in terms of the Pauli matrices:

A=agl +a01+ayon+azos :=ap+a-o
The eigenvalues are
/11,2 =apxta, a-= |a|
The joint pdf of the matrices elements is

3
o307 La+lal’] dapd”a
- 4daod 4
Z

2]tis a coincidence of notation that both the random matrix and the annihilation operator in the Topelitz
algebra are called A. In fact, the random matrix A is more analogous to the quantity Q = A + A"of
that section.
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In polar co-ordinates, after integrating over the angular co-ordinates, this
becomes

L [24,2
e 37 [ai+a ]a2 dapda

Z
We have omitted a constant factor of 47 : It can be absorbed into the nor-
malization constant Z. The factor a? is the Jacobian for transformation to polar
co-ordinates.
Let us express this in terms of eigenvalues

A1+ Ay A1 — Ay
ag=———, a=———-

2 2
Thus joint of p.d.f. of the eigenvalues is (again absorbing a constant into Z)
bl ) pdhdl
V4

The p.d.f. of 1;, 1, does not factorize as a product of functions of single
variables 4| and A, , because of the factor [1] — A3 |2.; this factor is the Jacobian of
the change of variables from matrix elements to eigenvalues. The “level repulsion”
is the phenomenon that the joint probability density function for A; and A, vanishes
as 41 — A,. Another way of thinking of this is to rewrite this as

ef{ﬁ [3+23]-210g |11 - o]} dA1d A
Z
Physicists are used to thinking of probability distributions in analogy to sta-
tistical mechanics., where the probability of a configuration is proportion to e #F
where S is the inverse of temperature and E is the energy. So the above distribution
behaves as if the “energy” of the configuration Ay, A, is proportional to

1
E(11,42) = 73 [A] + 23] - 2log|A; - A5

As Ay and A, approach each other the energy grows: As if they repel each other.
This is not to be taken literally: There is no actual energy associated to eigenvalues.
But this analogy to statistical mechanics gives powerful physical intuition. This is
useful when we look at the case of N eigenvalues and let N — co.

11.2.3. The joint p.d.f. of the eigenvalues of the GUE is

L2 2dAy, ..., dAN
P(Ay,...,AN) =€ 27 1_[|/li—/lj| —

i<j
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The tricky part is to compute the Jacobian [],;; [4; — 4; |?: the transformation
to eigenvalues is analogous to that to polar co-ordinates. This factor can be thought
of the volume of the set of all matrices of a given spectrum {4y, ..., Ay }. Thus,
there is a unitary matrix such that

A = Udiag(Ay,...,Ax)U"
dA = Udiag(dA,, . ..,dAN)U" + [dUUT, A]

tr dA% = Z di? +2 Z(ai -’ [utau],; P

i<j

This is similar to the formula of the metric of Euclidean space in polar co-
ordinates. The eigenvalues are the “radial co-ordinates”; the unitary matrix is like
a rotation, and contains the “angular co-ordinates”. The analogue of the sphere
is the coset space U(N)/(U(1))N. Its volume is a finite constant times the factor
[Ticj 12 = 451* .

The formula for the p.d.f. above follows from the usual formula for the volume
element in Riemannian geometry (square root of the determinant of the metric.)
An overall finite factor corresponding to the integral over the “angular co-ordinates
(volume of ) can be absorbed into the normalization factor Z. See Mehta’s book
[21] for a more detailed derivation.

11.2.4. Of special interest is the probability density of a single eigenvalue
obtained by integrating all the others out:

ddy---dA
RO = [ NI a4y

i<j
Remarkably, this approaches a limit as N — co. (We choose 26> ~ N~! for

this limit to exist.) More precisely,

11.2.5. The p.d.f. of x = A1 tends to the semi-circular distribution

EVA-x2 x| <2
R(x) =
0 |x| > 2

In particular, the probability for |x| > 2 is zero.
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The proof of this uses some ideas from statistical mechanics. Consider the

negative log of the integrand
E() = NZA% - ZlogMi -4
i i#]

This can be thought of as the energy of a set of particles which repel each other
by the log potential, but held in place by a background harmonic oscillator potential.
(Remember that the probability of a configuration of energy E is proportional to
e PE; 50 the negative log of the probability density can be interpreted as a constant

times energy.)
If we define the density

1
() = % Zé(a - ), /p(/l)d/l _
this can be written as

E[p] = N?

/p(/l)/lz—%P/p(/l)p(/l')logu—/l'ld/ld/l

The principal value £ means we are to exclude a small region near A = A" from
the integral. In the limit N — oo we should expect that the density will tend to
some continous function: The pair wise repulsion will push the A; apart while the
confining potential will prevent them from going off to infinity. Since there are an
infinite number of them, they have to approach each other and form a continuous
distribution. The most likely configuration will have the least energy. Setting the
variation w.r.t. p to zero (subject to the condition that / p()da=1)

C+2%>= ZP/p(/l/)log |4 = A'|dX

(C is the Lagrange multiplier enforcing the constraint.) Differentiating (to eliminate
C) we get the singular integral equation

1:70/ 5(_12/511', /p(/l)d/lzl

The operator on the r.h.s. is (a constant times) the Hilbert transform, a well
known integral transform in complex function theory. The square of the Hilbert
transform is the negative of the identity operator. This allows us to solve the
equation by evaluating the Hilbert transform of the L.H.S. The solution is

VA2 2 <2
0 ] =2

p() =
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Exercise 42. Verify that this is a solution to the integral equation. This needs
some complex analysis (Hilbert transform and its connection to branch cuts of a
multi-valued function).

Note the remarkable fact that the eigenvalue distribution of random hermitian
matrices is the same as that of A+ AT in the Toeplitz algebra. This is the beginning of
anew theory of non-commutative random variables. Voiculescu’s “Free Probability
Theory” extends this idea to relate random matrix theory to the algebra of the Free
group. This is a frontier of research, outside the scope of this book. See [22].

11.2.6. Also of interest is the correlation function of a pair of eigenvalues
T, defined by

NS 2 dAz---dAn
RZ(/lls/lZ)z/e N 1_[|/li_/li|2?

i<j

T>(A1,42) = Ra(A1,42) — R(A1)R(A)

11.2.7. This tends to a universal function of the normalized difference

r=V2N|1- 4|

1 -

. 2
sin 7rr }

nr

We will not study the correlations further here. See the book [23] by Deift and
Gioev.

Although the formula is originally derived for Gaussians, the correlation turns
out to be the same as this for more or less any ensemble of hermitian random
matrices. This universality is reminiscent of that of critical phenomena in statistical
physics.

11.2.8. Amazingly, numerical computations show that the zeros of the
Riemann zeta function { (% + i) have the same correlation
Junction

Perhaps this is because the zeros A; are the eigenvalues of some hermitian matrix.
This suggests certain strategies for proving the most famous problem in mathe-
matics, the Riemann hypothesis. So far, they have not worked though.
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Chapter 12

HARMONIC ANALYSIS ON FINITE
GROUPS

12.1. Discrete Fourier Series

Harmonic analysis is a generalization of Fourier analysis. So let us begin with the
simplest kind of Fourier analysis, based on a finite cyclic group Z,, where A > 2
is an integer. We can identify Zy = Z/AZ as the quotient of the additive group of
integers by the subgroup of numbers which are multiples of A. We can think of Zx
equivalently as the multiplicative group of complex numbers ¢ satisfying ¢ = 1.
Whether we mean the additive or multiplicative picture should be clear from the
context; they are isomorphic to each other.

A function ¢ : Zy — C s simply a sequence of complex numbers ¢(n),n € Z
satisfying the periodicity condition

¢(n+A) = ¢(n),

which says that ¢ descends to a function on the quotient Z = Z/AZ.

A physical application could be a one-dimensional model of a lattice of atoms:
Arranged at equal separation, with the (unphysical) boundary condition that the
last atom be the nearest neighbor of the first.! .

The obvious example of such a function is the exponential e or any of its
powers e*Xkn Each exponential spans a one-dimensional representation of the
cyclic group Z:

e%k(lﬁn’) — e%kne%kn’.
Later we will see a generalization where Z is replaced by a finite non-abelian
group. Then these exponentials are replaced by the matrix elements of a represen-

tation, possibly of dimension greater than one.

I'Such periodic boundary conditions are commonly used as a prelude to taking A — oo in the statistical
physics of lattices.

221
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Clearly, there are A independent complex numbers ¢(0), #(1) - - - p(A—1) that
completely specify such a function ¢ : Zy — C. On the other hand, there are A

independent exponentials:
27i 27i 27i 27i _
/\”,e/\zn,e/\g'"’...’e/\(/\ l)n.

The constant function equal to one is the zeroth power of e%”; it is also the
Ath power. The basic theorem of Discrete Fourier series is that these exponentials
are a basis in the space of all periodic functions of period A. That is, there is a
periodic sequence ¢(k), k € Z with ¢(k + A) = ¢(k) such that

1 Al )
_ 7 2%kn
o(n) =+ ;) G(k)e FEn,

The overall factor of A is put in for later convenience.
Indeed we can give a formula for these coefficients:

A-1
- _2mi
k) =" p(mye” T hm
m=0
The proof is based on the following identity

& iy, [A n=0
Zel\ n_ (12.1.1)
& 0 n=1,....,A-1

The first statement is obvious: When n = 0 each term in the sum is equal to
one. Whenn =1,..., A — 1 suppose

AL
2mi
Snzze/\kn

k=0

In the sum we can shift k — k — 1:

= 2 A 2ri 2 A 2ri 2ri A 2ni
2mi 2mwi (p_ _2mi 2mi _2mi 2mi
Sn=§€/\kn=§€/\<kl)n=e An§eAkn:eA§eAkn
k=0 k=1 k=1 k=1

The k = A term of the last sum is equal to one, so that

A . A=l
k=1 k=0

That is,

Since n # 0 this means that S,, = 0, as was to be proved.
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This result can be restated as a

Lemma 43. The exponentials satisfy the relation:

A=1

1 i
Xze%“m*’) —5(m=n mod A) (12.1.2)
k=0

Therh.s.isequalto 1 if m =n mod A and zero otherwise.
Now we can prove the fundamental theorem of Discrete Fourier analysis:

Theorem. Given a function ¢ : Zy — C, define

A-1 -
k) = > plmye * k.

m=0

Then
1 A )
_ g 2%kn
o) =+ ;) G(k)e FEn,

Proof. Substitute the definition of ¢(m) into the series:

1 Al (Al . . Al (Al
ZOESONDY ¢<m>e-%k'"ﬁ"") =2 {x 2, ﬁ“’“‘”} o (m)
k=0 \m=0 m

=0 k=0

Using the Lemma above,

= 6(m=n mod A) ¢p(m) = ¢(n).
O

Exercise 44. Find the eigenvalues A of the difference equation ¥,41 — 2, +
Ym-1 = A, subject to the periodic boundary conditions ¥4 = ¥y,

Solution First of all

AL AL LA .

_2mi _2mi _ 2mi _2mi 27i g~
§ e A kml//m+1 — E e A k(m l)wm —e¢A k e A km',bm —e¢A k'pk
m=0 m=0 m=0

and similarly
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After Fourier analysis the eigenvalue equation becomes

R = 2+ e Ry = My =
{ZCOS 2k Z}z,bk—/h,bk & —4sin? (”T)‘/; Ay
Thus the eigenvalues are Ay = —4sin? (”Tk) k=0,1,---A—1. This is the

discrete version of the eigenvalue equation of the Laplace operator on a circle.

12.1.1. The Fourier transform of a convolution is a product

What is the function corresponding to the product of Fourier coefficients of two
functions ¢ and ¥? We can calculate

A-1 (A-1
A Z BT = LS {Z s } {Z yye kl} i
k=0 \n=0

Re-arranging,

_ N i 1 258k (m-n~-1)
= > ¢mu() X;‘f

n,l=0
Using Eqn. (12.1.2) we get

1 A-1 i A-1
= D 6Kk A = 3 g(myy(m —n)
k=0 n=0

This operation is called the convolution:
A-1

¢ y(m) =" ¢(myy(m—n)
n=0

Inverting the Fourier transform we can write the result as

Al 27i
D e spmye TE = Gk (k).
m=0

In the other direction we also have similarly:

Al 27i 1 Al ~ ~
D mgmye” TR = = 5 Gk~ (1)
m=0 1

The Fourier synthesis of a convolution is a product.
These are useful in many applications. Clearly, multiplication is a simpler
operation than convolution. The Fourier transform reduces the latter to the former.



HARMONIC ANALYSIS ON FINITE GROUPS 225

Thus, it plays a role similar to the logarithm, which reduces multiplication of
numbers to the simpler operation of addition.

12.1.2. The limit A — oo

We can guess that as A — oo the periodicity condition becomes irrelevant: We
just have a function ¢ : Z — C . The sum

A-1

~ _2xi
k)= p(mye Xk
m=0
can be given a meaning for large A by a change of variable:

X = —.

A
These will get very close together as A gets large. Define

A-1 )
D(x) = ) plme >
m=0

Clearly there is a periodicity x — x + 1. So x = AT_z,x = % is the same as
—_2 __1 .
X =-%,x=—%,¢€tc. respectively.

Using this we can enumerate the values it takes by starting at zero and going
out in both directions:
2 1 1 2

’_X,_X’ 9X9X”' >
Roughly % values are to the right of 0 and roughly % are to the left. AS A — oo

this tends to a continuous variable taking values in the range [—% % .

By identifying A — 1 with —1 and so on we can also enumerate the values of
m as

X=---

m=----2,-1,0,1,2,...

So, ®(x) tends to an infinite sum

D)= ) plme
ni=—co
This convergesif | ¢(m) | vanishes fast enough for large |m|. For example, each
summand has magnitude | ¢(m) |, so the sum converges if 3.5,__, | ¢(m) |< oo.
OTOH, the sum % ZQ;(} é(k)e%k" tends to an integral:

A=l 1
1 ~ i 2 . .
X ¢(k)esz" - / @ (x) e >
1
k=0 2
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Thus there is a version of Fourier analysis for functions on an infinite lattice:

1

¢(m) = '[i D (x)e>™ My

1
2

Although our arguments are not mathematically rigorous, this can be proved
under some assumptions on the decay of ¢ at infinity. It is in fact closer to
the original analysis of Fourier (who was an engineer solving problems in heat
conduction.)

The range of values of x can be thought of as a circle: It is a periodic variable
with period 1. So, the Fourier transform of a function on Z is a function on a circle.
We will return to this theme in the next chapter.

12.1.2.1. Convolutions
The convolution of functions on Z is defined similarly:
gory(my= > $(my(m-n)

This makes sense if the functions vanish at infinity fast enough (e.g., are square
integrable). Again, the Fourier coefficients of a convolution is a product:

D g p(mye M = (x) P (x)
m=—co
In the other direction, we have

Z ¢(m)¢(m)6727rixm — {Zi d)(y)e%riymdy} {Zi \P(Z)e%rizmdz}

1 1
m=—o00 2 2
>
— / d)(y)@(z) {Z 627ri(y+zx)m} dydz
7% mezZ
Exercise 45. Prove an identity analogous to Lemma (12.1.2)

Z plmixm _ 5(x)

mezZ

where the Dirac delta function for periodic functions of period one satisfies

[, 80080~ iy = (2.
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Using this, we get

o0 1
. 2 L ~
>, omume = [ a0)P0- )y
m=—co 2
The r.h.s. is a convolution on the circle, thought of as a group under the
operation of addition modulo 1. Instead of a sum we have an integral.

12.2. Non-abelian Finite Groups

The remarkable fact is that there is a far reaching generalization of Fourier anal-
ysis to non-abelian groups. We will see that the “dual” of a group is the set of
its irreducible representations. The exponentials of Fourier are replaced by the
matrix elements of these representations. All representations in this section will be
assumed to be finite dimensional complex vector spaces; and all groups are finite.
Later we will extend to certain kinds of Lie groups (i.e., compact).

The main reference for this section is the excellent book [24].

12.2.1. Finite dimensional representations of a finite group are
unitarizable

That is, each of them have an invariant inner product. This can be established by
a simple trick. Pick some inner product ((,)) in the vector space V carrying the
representation p. Define a new inner product by “averaging” over the group:

1

(a’b) = ﬁ

D ((p()a, p(g)b)), abeV

geG

The group being finite, we don’t have to worry about the convergence of the
sum; this could be a problem for infinite groups.

It is easy to see that this average is invariant:

(p(h)a, p(hb) = — " ((p(2)p(h)a, p(g)p(h)b))

1
Gl 22

= é D" ((p(gh)a, p(gh)b)) = ﬁ 2, (p(@)ap()b)).
e geG

In the last step, we re-enumerate the group elements by g — gh™'. So
(p(h)a, p(h)b) = (a, b) as needed.
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12.2.2. Finite dimensional reducible unitary representations are
completely reducible

If W c V is an invariant subspace of the vector space carrying a unitary repre-
sentation, then its orthogonal complement W+ = {v | (v,w) = OYw € W} is also
invariant:

Yw e W&Yv e W, p(glw e W = (v,p(g)w) =0 = (p(g")v,w) =
0 = p(g)vewt

Thus, the representation can be split as the direct sum of two representations

V=WeaeW".

The representation matrices are then block diagonal? (p Wo(g ) pW? (2) ) Then we

can repeat this argument on W and W+ until V is expressed as a sum of irreducible
representations (which don’t have any proper invariant subspaces). Thus any finite
dimensional unitary representation can be expressed as a direct sum3

pz@mrr

reG

Here, G denotes the set of all equivalence classes of unitary irreducible repre-
sentations. Also, m, =0, 1,2, ... (called the multiplicity) is the number of copies
of eac h irreducible representation contained in p. This is similar to the decom-
position of any number as a product of primes; the irreducible representations are
like primes and the multiplicities are like the exponents of each prime.

To proceed further we will need several tools of representation theory. We start
with

12.2.3. Schur’s lemma

This is really a couple of results. The first of them is

Lemma 46. Let r and s be two irreducible representations,on vector spaces V
and W respectively, of a finite group G; and T is a linear map T : V. — W such
that

T[r(g)v]=s(g)[Tv],VgeG,veV (12.2.1)

Then either T is an isomorphism or it is zero.

2If p is not unitary, there is the possibility that representation matrices are only block-triangular
(Pw (g) b(g)

PwL (g)

3If the representation p is irreducible, there is just one term in this direct sum.

); that is, the representation is not totally reducible.
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A map satisfying the condition (12.2.1)is called an intertwiner. First, we note
that ker7 = {v € V | Tv = 0} is invariant under r(g):

Tv=0 = s(g)Tv=0 = T [r(g)v] =0.

Similarly, Image T = {Tv | v € V} is an invariant under s(g).

But, since r is an irreducible representation, an invariant subspace is either
zero or all of V. Thus eitherker T =0 orker 7T =V.

Since s is also irreducible, Image T = 0 or Image T = W. The only two
possibilities are

ker7T =0, ImageT =W
in which case T is an isomorphism; or
kerT =V, ImageT7 =0

in which case it is zero.This proves the Lemma.

Thus, if 7 is not equivalent to s the only intertwiner between them is zero. If
r ~ s, we can identify V and W. An intertwiner of r to itself is simply a matrix
that commutes with all of the representation matrices.

Corollary 47. If an operator commutes with all the representation matrices of
an irreducible representation, it is a multiple of the identity.

For, every linear operator 7 : V. — V has at least one eigenvalue (recall that V is
a complex vector space) A. If T is an intertwiner of an irerducible representation to
itself, T — A1 is also an interwtiner. It cannot be an isomorphism because it cannot
be invertible (the definition of an eigenvalue!). So, it must vanish; i.e., T = A1.

Corollary 48. Any irreducible representation of an abelian group is one
dimensional.

The point is that the representation matrices commute with each other; so are
multiples of the identity in an irreducible representation.
Another tool we need is that of a character

12.2.4. The trace of the representation matrices associates a function on
the group to every representation, called its character

Let p be some representation. Define a function y, : G — C by

Xp(g) =trp(g)
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This functions is called the character. Note that this function is invariant under

conjugation:
xp(hgh™) = x,(2), g heG.

Also its value at the identity is the dimension of the representation.

Xp(1) =dimp.

Recall that if pand o are two representations, their direct sum is another
representation, whose matrices are block-diagonal:

_(p(g) O
p@a@)—(o U@J

It takes but a moment to realize that

Xpoo(8) = Xp(8) + X (8)
Iterating this, we see that if we decompose p into ireducible representations
p= s
reG

we have a formula for its character:

Xo(8) = D mexe(g)

reG

12.2.5. An inner product on functions: 1>(G)

The space of complex valued functions on G is a complex vector space whose
dimension is equal to the cardinality |G| of G: A function is completely determined
by its values at each point of the group.*

We can establish an inner product on it.

@0y =) ¢ (W (2).

geG

We will call this vector space with inner product /?(G).

#Put another way, the functions &5, h € G equal to one at i and zero everywhere else is a basis for
the space of functions on G. See below,
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12.2.6. The matrix elements of inequivalent irreducible representations
are orthogonal in 12(G)

Suppose r and s are two irreducible representations of G which are not equiv-
alent to each other. We have orthonormal bases e,,a = 1,...dimr and f;,i =
1,2,...dims in their vector spaces. Using them we have the matrix elements

rab(g) = (ea,r(glen), sij(8) = (fi.5(8)f;)

which are functions on G for each ab and ij.
The /%(G) inner product of these functions is

(rab,sij) = Z Fap(h)sij(h)
heG
Using unitarity this can be also be written
(Fab»Sij) = Z roa(h™")sij (h)
heG

The trick is to construct an intertwiner between the two representations out of
this inner product. Since r and s are inequivalent, such an intertwiner would have
to be zero.

For each choice b, define a matrix with elements.>

Tia = ) roa(h™)sij (h).

heG

Recalling (12.2.1), we need to show that

dimr dim s
Z Tiarac(g) = Z Sik(g)ch
a=1 k=1
Now
dimr dimr
LHS = Z Tiarac(g) = Z Z rba(h_l)sij(h)rac(g)
a=1 a=1 heG

Using the representation property we can combine the first and last factors:

LHS = > sij()rpe (h™'g)
heG

SWe suppress the indices b. j to simplify the notation; but beware that T;,, does depend on the choice
of b, j.
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OTOH,
dim s dim s
RHS = 3" sik()Tke = D D sic(@)rpe(h™)sij(h)
k=1 heG k=1

Again combining the first and last factors,

RHS = Z sij(gh)rpe(h™")
heG

Replacing 1 — g~ 'h

RHS = 3" sij(W)rpe(h™'g)
heG

Thus, we get LHS = RHS. This proves T is an intertwiner; but then it has to
be zero since r and s are inequivalent. This being true for each choice of b, j, we

get (rab, S,'j) =0.

12.2.7. The inner product between any pair of matrix elements

Now we consider the situation when 7 is equivalent to s. By choosing appropriate
bases, we can identify the matrix elements of r and 5. We look at the inner product

(Fabs Ty = ) oa(h™ ) ra (h)

heG

Again, keeping b, b’ fixed we define

Tya = Z rba(hil)ra’b’(h)

heG

The same argument as before shows that this is an intertwiner of r to itself:

dimr dimr
Z Ta’arac(g) = Z ra’a(g)Tac
a=1 a=1

But this time Schur’s lemma tells us that 7, is a multiple of the identity!

vy (hyran (h) = Ay 8ara
heG
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The eigenvalue can depend on r, b and b’, which we show explicitly. If we set
a = a’ and sum over a, this gives (using the representation property on the lhs)

Z rop (1) = A5, dimr
heG

Since the summand on the lhs is independent of %, we get
|G|rbbr(1) = /le’ dimr

But rpp (1) = 6ppr.

o e
|G|(5bbr = /lbb’ dimr = /lbb’ = m(sbbr
and
|G|
(rav>ra'p) = d_éaa’ébb’
mr

12.2.8. The component of a function along each irreducible
representation

Combining with the earlier result of orthogonality when r + s, we have

. |G
(rab, sij) = Z 7, (h)sij(h) = M@ﬁbﬁm
heG
Equivalently, d‘i‘(’;l’ rap is an orthonormal set of functions in /2(G) as r runs

over the set of equivalence classes G of representations of G, and a, b label the
bases in each representations. These are analogous to the exponential functions of
Fourier analysis.

So, the (dim r)? numbers

‘5;19 = Z r;b(h)(]ﬁ(h)

heG

can be thought of as the components of the complex-valued function ¢ for each
irreducible representation » € G. Do these components completely determine a
function? That is, can we reconstruct ¢ from its components (}52 »!

To answer this we need to prove the completeness of this decomposition. The
essential tool is the character of representations.
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12.2.9. Orthogonality of characters

A particular case of orthogonality is of special interest. By settinga = b andi = j
and summing over a and i we get from the above

Oroxs) = ) xr (x5 (h) = [Glorg, 1,5 €G
heG

Thus, the characters of inequivalent representations are orthogonal to each
other. Moreover, the /2 norm of the character of an irreducible representation is
|G|
Suppose we have a representation

so that

Xp = Z My Xr-

reG
If we know the character function of pwe can determine the multiplicities:

1

Xp» Xr) = Z(;;ms()(s,xr) =|Glm, = m, = E(Xp»)(r)
s€

This justifies the name character: It completely determines the representation!

12.2.10. The left regular representation

The vector space [>(G) carries a representation of the group, called its “left
regular representation”. That is, to every & € G we associate a linear operator
L(h) : I>(G) — I?(G) by the formula

[L(h)¢l(g) =¢(h7'g), heG.
We can check that this is indeed a representation®:

[L(h1)L(h2)¢](g) = [L(h2)$](hi'g) = ¢(hy'hi'g)
= ¢((hh2)"'g) = [L(h1h2)$](g).

6 A point about notation: L (/1)L (h2)¢ means that we act with L (k) acts on the result of the action
of with L(h;) on ¢. This is the meaning of the first equality.
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(What would have been wrong with defining [L(h)¢] (g) = ¢ (hg)?). More-
over, this is a unitary representation. That is

(L(h)¢, L(h)y) = {¢. ), heG.

For,

(L), Ly = > ¢"(h ')y (h™'g)

geG

In the sum we can replace g by hg: This is a one-one correspondence of
elements, just a different way to enumerate them. But then the r.h.s. just becomes
(¢, ¥), proving invariance.

Thus, the left regular representation is a unitary representation of dimension
|G| of the group.

Remark 49. The left regular representation of G is faithful. That is, L(h)¢ =
#,V¢ € I>(G) = h = 1. (Just choose ¢ to be 1 at the identity and zero
everywhere else).

Of course, there is a mirror image of this construction that gives the right
regular representation:

[R(R)$1(g) = ¢(gh"). h' €G

It is also a faithful unitary representation of G. But it contains the same
information, so we just study the left regular.

12.2.11. The character of the left regular representation

Let us now calculate the character of the left regular representation. A basis for
I2(G) is given by the functions &), defined by

1 g=h
5 -
n(g) {0 e h

Clearly any function can be expanded uniquely in terms of them:

$(2)= . #(2)dn(g).

heG
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(This is another way of seeing that /?(G) has dimension |G|.) Also, this basis
is orthonormal:

1 h="n
(6n,0n) = ) 0n(g)ow(g) =
hsOn g;th w(g) 0 Btk

The representation matrices are

, 1, 1 h=gh
Liw(2) = Y. 6u(g")ow(s'g") ={ ,
& 0 h#gh

The diagonal entries are all equal to one if g is the identity and zero other wise:

1 1=¢g
Lnn(g) =
0 1l#g

Summing over £, there are |G| terms equal to one when g is the identity:

xL(g) = ol g=1
0 g#1

12.2.12. Left Regular is the mother of all representations

See [25] for further study of the “mother of all representations”.
Like any finite dimensional representation, the left regular representation can
be decomposed into a direct sum of irreducibles.

L:@m,r. (12.1.2)

Since we know the character of L we can compute the multiplicities:

1
|G|

my L xr) = xr (1) =dimr

That s, left-regular representation contains every irreducible representation! In
fact it contains dim r copies of each irreducible representation ». We have moreover

xL(g) = Z dimr x,(g)

reG
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In particular, this gives for g = 1

dimL = Z (dimr)?

reG

But the dimension of the left regular representation is |G|:

IG| = Z(dimr)2 (12.1.3)

reG

This is a simple and beautiful relation between the irreducible representations
and the size of the group.

Remark 50. Of course we could have also said all this about the right regular
representation.In fact you see that the left-multiplicity of rbeing dim r simply has
to do with the action of G on the right.This becomes especially clear if we look
at how the components transform under the left and right regular actions. Perhaps
Right Regular is the father of all representations!

12.2.13. The transformations of the irreducible components of a function
under the left and right regular actions

Suppose we transform a function by the left regular action: ¢ +— Lg¢ where
Leg(h) = ¢(g'h).

How do its components change?

[L8¢];b = Z er(h)¢(g_lh)

heG

= > e, (gh)g(h)

heG

= D (@, (e (h)

heG

so that

[Let]., = ric ()0
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Similarly the right regular action

Re¢(h) = ¢(hg)

would give

[Red],, = > 7l (b (hg)

heG

= > i (hg He(h)

heG

= D e ()i, (g e (h)

heG

so that

[Rg‘ﬁ]:lb = ¢erin(g)

So we see that the left and right regular actions act on the left and right indices
of the components. As with Fourier analysis, there is a complex conjugation when
we pass to the irreducible components.

12.2.14. Peter—Weyl theorem for finite groups

The decomposition (12.1.2) can be stated more explicitly: Every function on the
group can be decomposed uniquely as a sum of matrix elements of irreducible
representations. This is the completeness we seekd earlier.

Theorem 51. Peter-Weyl Theorem Let ¢ : G — C be a function with Fourier
components in each irreducible representation r € G

o= rip(@)e(2)

geG
The Fourier series synthesizes ¢ from its components:
dimr .
#(g) = Z Z Wfﬁzbrab(g)
reG ab

By choosing ¢(g) = 65,(g), last identity can also be written as a completeness
relation for the representation matrices:

500 = Y, 2 Ta s (rans)

reG ab
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12.2.15. Convolution on groups

Let G be a finite group: We no longer require it to be abelian. The space of functions
I2(G) is a vector space of dimension equal to the number of elements |G| of the
group. This vector space becomes an algebra under the convolution

pp(e) = dhy(h'g)

heG

If G is not abelian, this convolution is not commutative: ¢ = ¢y # ¢ * ¢ in
general. But it is always associative!

Proposition 52. The convolution product of functions on a group is associative:

(p=yp)xn=¢==n)
Proof. Let us write

pry(e)= > ¢(h)y(hy'g)

h eG

so that

[(@xw)enl ()= ). [xulthn(h;'e)= > ¢(h)w(h han(hy'e)

hy€G hi,hy€G

In the last sum replace hy +— hjh; to get

() sl (@)= ). dhow(h)n([hiha]™"g)

hi,h,eG

OTOH, we can write

yen(e)= > w(hn(hy'g)

heG

and

[ (W xm)] (2) = ) @) [y ] (hy'g)
hy

= > et han (h3'hi'g)

h],thG

Since [h1hy]™! = hglhfl we have the equality we need. O
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12.2.16. Decomposition of the convolution algebra into matrix algebras

Let us express the convolution in terms of the components of the functions.

|650] = > e suh

heG

>, (e (h)w(h " h)

h,h’eG

Replace h — h'h

[#+el.,

T (W) )y (k)

h,heG

dimr

S R Wy (Mo (h)

h,h’eG c=1

The sum factors into two separate sums:

dimr
=Y {Z r:,c<h'>¢<h'>} {Z r:b<h>w<h>}

c=1 \WeG heG
Thus

- dimr
059 - 2, Fuctl

Thus within each irreducible representation, the convolution reduces to a matrix
product. There is no mixing of different irreducible representations. This gives us
a new perspective on the harmonic analysis of function on a group:

Theorem 53. The convolution algebra on 1>(G) decomposes into a direct sum of
matrix algebras labelled by irreducible representations

This explains in a natural why we have (dimr)? components foreach r € G: that
is the number of independent components of a matrix in the representation space.
Thinking of the components as matrices also captures the non-commutativity of
the convolution product.

12.3. Central Functions

Of special importance are functions satisfying the condition

£(g)=&(hgh™),¥g,h € G
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These are called central functions; the space of such functions will be denoted
by Z(G). The reason for the name is the following proposition

Proposition 54. Central Functions commute with all functions under the convo-

lution: ¢ x = ¢ =& forall ¢ € Z(G), ¢ € C(G)

Proof. By replacing g +— h~'g, the definition of central function can also be
written as

£(h'g) =¢(gh™), Vg, h € G
Now, setting 7 = gh"1
Exp(g)= ) EMP(h'e) = ) E(gh)g(K)
heG h'eG
Using the centrality of &,
Exg(g)= > EN'Q)p(h) = ¢ £(g)
heG

The obvious examples of central functions are characters of representations. It

should not be surprising that 0

Proposition 55. The functions \/% Xr, 1 € G provide an orthonormal basis for
the space of central functions

This is a corrolary of the Peter—Weyl Theorem: Just replace ¢ by &, puta = b
and sum over a. Moreover,

Proposition 56. The Fourier components of a central function are multiples of
the identity in each irreducible representation

This is a simple consequence of Schur’s Lemma. The commutativity of central
functions fits nicely with this.

12.4. An Example: The Finite Heisenberg Group

Let A > 2 be an integer and Zx = Z/AZ the additive group of integers modulo A.
On the set Zp X Zx X Z define the product
(m,n,c)(m’,n’,c"y=(m+m',n+n’,c+c" —nm’) mod A

This is not commutative, but is associative. We will call it the finite Heisenberg
group Heis(Zy). ( A similar group can be built out of any finite abelian group). If
Z, is replaced by the additive group of real numbers, we get the Heisenberg group
of quantum mechanics. Such finite “approximations” to quantum mechanics have
become of much interest in the context of quantum computing.
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12.4.1. Generators for Heis(Zy)

Define
X=(1,0,0), Y=(0,1,0), Z=(0,0,1)
Then
XY =(1,1,0), YX=(1,1,-1)
ZYX =(0,0,1) (1,1,-1) = (1,1,0)
so that

XY =7YX

With a little bit of work, we can see that the Heisenberg group is generated by
X,Y,Z:

Heis(Z)) = (X,Y,Z | XY =ZYX,ZX = XZ,ZY =YZ, X =1 =Y} = Z)

Remark 57. A more economic choice of generatorsis just X and Y: We can iden-
tify Z = XY X~'Y~!. We just have to add the relations that XY X~'Y~! commutes
with X and Y. But we find it more convenient to retain Z as a generator.

12.4.2. Some automorphisms

Clearly
X Z9X, Y2z, abeZy

leaves the commutation relations unchanged. These are inner automorphisms as
Xyx'=zvy = xbvxt=2z%
Y'XY =ZX = Y XY9=27°X

We now turn to studying representations of the group. We will denote the
matrix representing X by X, and similarly for ¥ and Z.

Since it commutes with everything, Z is a multiple of the identity in any
irreducible representation:

Z2=¢(1, (eZn

Here we are viewing Z, as the multiplicative, group of Ath roots of unity.
Hopefully it is clear from the context whether we mean addition or multiplication
as the group operation.
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Then, there is an equivalence transformation
X 0%, pe b7

We can use this to simplify the phases of the representation matrices (see
below).

It is possible to generalize this a bit. Now, consider the more general
transformation

X' =X4yb ¥ = X2y ay,a0,b1,by € Zp
Then

X'y’ = x@ybi xaybr — z-biax yar+arybi+b,
YIXI — Xazybzxalyb] — Z—b2a1Xa1+azyb1+b2

So,
XY =72YV'X bza] —b1a2= 1 modA

This is analogous to a symplectic transformation in mechanics.In particular
X YlY Xisan automorphism: Just choose a; = 0,01 = —1,a; = 1,
by =0.

However, these are outer automorphisms: They cannot be written as conjuga-
tions X — gXg~ Y > gYg ™! for some g € Heis(Zn).

Our next task is to determine all the irreducible representations of Heis(Zy).
But before we do that it is useful to work out a simpler special case:

Exercise 58. Determine all the irreducible representations (up to equivalence) of
Heis(Z,) when A is a prime number.

Solution

The representations of a finite group are unitary. Since X, Z commute they
have a simultaneous eigenvector .

Xy = o, Zyo = Lo

Choose i to have length one.

Since Z* = 1, we have £ = 1. Let us assume for now that £ a primitive root
Ath of unity. (This means that no smaller power of { is equal to one; and hence
that any other root can be written as a power of ).
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Since A is a prime, any root which is not equal to one is primitive:
MN=1, ¢#1.

This is one of the simplifications when A is prime. Since X = 1, & is also a
root of unity. There must be an a € Z such that & = ¢.
Now,

XV*yo = 275 Ryo = €5 F g

Thus Y*y are also eigenvectors of X and Z. The eigenvalues &%,k =
0,1,---A — 1 are distinct, since ¢ is primitive and A is prime. So, f’klpo are
orthogonal to each other and each of length one. (We also use the fact that ¥ is
unitary).

Thus, in the A dimensional space spanned by Ykz,bg, k=0,...,A—1, Xisa
diagonal matrix:

1 0 0 0
0 ¢ 0 0

X=¢{0 0 2 0 |, z=¢1a
0 0 0 A1

Also,
PPy = 75y, k=0,1,...A-2
PPN = v

So Y is a cyclic permutation:

0 0 0 1
10 0 0
v=|0 1 0 0
00 --- 10

We can now make the equivalence transformation
X yaxye, =09

to set ¢ = 1. This simplifies our analysis: £ is not a relevant parameter; it can be
removed by an equivalence transformation.
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To summarize, for each choice of a primitive root { we have a representation
of dimension A:

1 0 0 0 00 0 1
0 ¢ 0 0 10 0 0

X=|0 0 ¢ 0|, Y=|0 1 0 0],
0 0 0 ... A1 0 0 1 0

2=y, M=l #1

There are A — 1 such choices of £.

It remains to consider the case where £ = 1;i.e.,when Z is in the kernel.So these
representations factor through the commutative group Zx X Zy = Heis(Zp)/Za
where we quotient out the center. The equivalence classes of irreducible represen-
tations of this group (its dual) is again Zx X Z: there are A” such representations,
all of which are one dimensional:

X=¢ Y=n =1=p

This time we cannot remove & or 77 by equivalence transformations: All the
representations are one dimensional and so conjugations have no effect.

Recall that if G is the set of equivalence classes of irreducible representations
of a group G,

};(mmrf=|GL
reG

There are A—1 choices of a primitive root £ giving dimension A representations,
and A” one dimensional representations. Summing over all the representations we
have so far gets us

(A= 1DAZ+ A% = A%,

This proves that, we have found all the irreducible representations of Heis(Z,)
when A is prime.

Representations of this type are studied further in the delightful book by Terras
[25].

12.4.3. Irreducible representations of Heis(Z )

Since Z is central, in any irreducible representation it will be a multiple of the
identity:

Z={1p
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where D is the dimension of the representation. Since Z* = 1 we must have
™ = 1. Let d be the smallest number such that /¢ = 1; i.e., £ is a primitive root
of unity, of order d. Then d is a divisor of A. Now,

XY =272YX = Xy%=2z9x

Thus, X and Y9 commute with each other. So, Y4 commutes with all the
representation matrices, and must be a multiple of the identity:

f}dZT]lD

>

Since (Y9)? = 1 we must have

=
>
Il
—_

Let ¢ be an eigenvector of X:
Xyo = E1o
Choose ¥ to be of unit length. Then Y*y is also an eigenvector of X:
X(YEyo) = £V  Xyo = 175 (P o)
The eigenvalues &% are distinct from each other for k = 0,1,...,d — 1
(since ¢ is primitive root of order d). So ¢y = Y*y are mutually orthogonal for
k=0,1,...,d— 1. They are all also of length one as Yis unitary. Thus there is a

vector space V of dimension d for with ¥¥y is an orthonormal basis.
In this basis

Yoip=vpm k=0,1,...,d-2

and
Va1 = no

since Yiy_1 = Y%o. As matrices
1 0 0 0 000 n
0 ¢ 0 0 1 00 0
X=&[0 0 2 o, v=]0o 1 0 0],
R 0 . 0
00 0 gt 0 00 0

1 00 0

010 0

Z=010 0 1 0

- 0

000 1
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Since only multiples of identity commute with X and ¥ it is an irreducible
representation of dimension d, the chosen divisor of A.
Since
yoeXya = (9%,
we can transform & — £¢ by an equivalence transformation. Two different repre-

sentations with parameters £; and £] which are related by &{ = {“¢) are equivalent
for a € Z;. The equivalence class is labelled by Zx/Z; = Z A The projection

Zn > Z A is given by ﬁi. In other words, two representations are equivalent if
§‘11 = §{d.Let us denote & = .f‘lj.
To summarize, the representation we found is determined by three parameters’
(&.1,4) with®
EnelZy, d | A
and ¢ is a primitive root of order d.
Recall that for any finite group G

|G| = Z(dim r)?
reG

where G is the set of equivalence classes of irreducible representations. If we form
this sum for the representations we have found,

Z Z Zdz Z;X—XT(d)Xdz

N RIS dIA

The factors of % account for the choices of ¢ and 7. Also, 7(d) is the number of
primitive roots ¢ of unity of order d. This is equal to the number 7(d) of integers
co-prime to d, called the Euler totient function. So,

DI EISRT

d|A &, 77€ZA d|A

Now, it is a well-known identity® that

ZT(d) =A

dlA

1.
is an

7No need to list d separately, as it is determined by £ it is the smallest number such that &<

8We use a notation common in number theory: d | A means that d is a divisor of A. That is,
integer.

9The proof is elementary. The rhs is the number of roots of unity of order A; we can partition them
into sets of primitive roots of order d, for each divisor of A. The number of elements in each set is
7(d).

ISV =]
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Thus,

Zdz:As
7

Thus, we have found all the irreducible representations of Heis(Zy).

&, neZ

U>

Remark 59. Inparticular, only the representations where ¢ is a primitive Ath root
of unity are faithful. There are 7(A) such inequivalent representations, each of
dimension A. In this case, & and ;7 are both equal to one: The choice of £ determines
the representation up to equivalence. This is the finite analogue of the Stone—von
Neumann theorem for the continuous Heisenberg group of quantum mechanics:
The analogue of ¢ is the choice of a value of Planck’s constant. Given this, there is a
unique equivalence class of faithful irreducible representations for that Heisenberg
group. The discrete Heisenberg group we studied arises in approximating quantum
systems using “qudit” systems; there are hopes that quantum computers can be
built out of these.

12.4.4. Characters

Let us compute the character of the representation labelled by (£,7, ) .
We need the sum of diagonal elements of X”'¥”. But ¥”* has diagonal elements
only if d | n. Then

1 0 0 0

0" 0 0
gxmpnyc — évcé_-;nnﬁ 0 0 {Zm 0

. L 0

0 0 0 ... gmd-D

Recalling that /¢ = 1, the geometric series

m(d-1) _ 1 - é/md

1+§m+{2m+...§ 1_§m

vanishes if d ¥ m; if d | m each terms is equal to one so it sums to d. So, the
character is
X(&mo)(mn,c) = rX"y"7¢ = dg“cfrnﬁd(d | m)é(d | n)
Since .ffl = & we can write this as
X(&.m.0)(mon¢) = dgEdnas(d | m)s(d | n)

As expected the answer is symmetric under the interchange m < n, & < 1.
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12.4.4.1. Orthonormality of characters

Recall the general formula

> xi(Wxs(h) = |Gloys, r.seG
heG

Oers Xs)

Let us verify this by calculating

Wiemor Xerwe) = ), A4y is(d | msd | nd'¢

m,n,c€Zp
xETnws(d | mysd | n)
The sums factorize

Koy Xieom.en) =dd' Y &de

rm

F5(d | m)s(d’ | m)

meZx
x ) i #ed | mod | n) ) o0
nezZy CEZ

Since ¢, {’ are Athroots of unity we know that

D = oy

ceZp

Since d is the smallest number such that ¢ = 1 and similarly d” is for ¢’, it
follows that when ¢ = ¢’, we have also d = d’. Then we have

6(d|m)s(d | m=6(d|m)

The sum over m becomes, after the change of variables u = %7, (remembering
that &, & are roots of unity of order %)

> et im= Y engn= Do o

meZy HEZ
d

and similarly for the sum over n. Thus,

22

* A 3
KemeyXiemen) =d —0ee—0qay Mgy =Nbg gbnapdey

as was to be proved (since |G| = A3).
For a beautiful application of this representation theory to understand random
walks on the Heisenberg group, see [26].
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Chapter 13

HARMONIC ANALYSIS ON COMPACT
LIE GROUPS

13.1. Compact?

The abstract definition of compactness is somewhat obscure and not of direct utility

to us.

Definition 60. An open cover of a topological space X is a family ® of open
subsets such that X = (Jgeq S. If every open cover has a finite subcover F' € @ we
say that X is compact.

There are many familiar examples, though:

Any finite set is compact

The real line is not compact. But a subset of it is compact iff it is closed bounded
Vector spaces are not compact. But for finite dimensional vector spaces, a subset
is compact iff it is closed bounded

In infinite dimensional vector spaces, there are closed bounded subsets that are
not compact. For example the unit ball in a Hilbert space is not compact

An ellipsoid whose principal axes is a sequence that converges to zero is a
compact subset of an infinite dimensional Hilbert space

A closed subset of a compact set is again compact

Many familiar shapes such as a circle or a sphere are therefore compact spaces

It is useful to understand compactness in terms of its implication for continuous

functions. A continuous function on a compact space is bounded; moreover it

achieves its lowest upper bound.In many situations, compactness is a substitute
for finiteness. This is true of groups: Much of the theory of finite groups can be
generalized to compact Lie groups.

251
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13.1.1. Compact Lie groups?
When it comes to groups,
U(n),SU(n),0(n)
are compact for any n. Examples of non-compact Lie groups are

e The real line
e The Lorentz group O(1, 3)
e GL(n),SL,(R),SL,(C)

The point is that in these groups we can “off to infinity” along a one-parameter
subgroup.

13.2. Non-Compact Lie Groups

Before we get going, let us note an important fact about non-compact groups:

Theorem 61. A non-compact Lie group has no faithful® finite dimensional unitary
representation

The point is that a continuous map cannot take a non-compact set to a compact
set. The finite dimensional unitary group U(n) is compact. So it cannot contain
the image of a faithful representation of a non-compact Lie group. So, unitary rep-
resentations of non-compact Lie groups are infinite dimensional and so are much
more subtle. The mathematics, pioneered by Gelfand and Bargmann and devel-
oped fully by Harish-Chandra, is exquisite. But has not found much application in
physics as yet, apart from the work of Wigner on the Poincare’ group. There are
many excellent discussions of this, including Wigner’s original papers.

13.3. A Tale of Two Hilbert Spaces: I2(Z) and L2 (U(1))

We begin with the simplest case of a compact Lie group, U(1).
A Hilbert space is a vector space with an inner product (hence a norm) that
satisfies two additional conditions:

e Itis complete; i.e., every Cauchy sequence of vectors v, € H has a limit which
is also in H
e It has a countable orthonormal basis ¢,

! Faithful means that the kernel is trivial: the representation matrix R(g) determines g.
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Obviously any finite dimensional vector space with positive inner product
satisfies these conditions. So the interesting cases are infinite dimensional.

133.1. 12(Z)

The additive group of integers yields our first example of an infinite dimensional
Hilbert space. A function ¢ : Z — C is simply a sequence ¢,, of numbers indexed
by the integers. Define the space />(Z) to be the set of all square-summable
sequences:

2,

mezZ

*(z) = {& :Z—C bml? < oo}

If the function vanish fast enough for large |m| this sum will converge. We
define the norm ||$|| of ¢ € [*(Z) by

1112 =D 1dml?

mezZ
For two functions in /?(Z) we can define an inner product
(@Y=" Frlim
mezZ

This will converge because of the Schwarz inequality:

| <. &) 1< NIl [1]]

It is not hard to show that [>(Z) is indeed complete: That is, Cauchy sequences
converge to a limit in />(Z). And that there is a countable orthonormal basis. For
example the functions ¢, concentrated at each point of Z:

1 m=n
6m(n)={0 m#n

is such a basis.

13.32. L2(U(1))

The simplest compact Lie group is U(1); also called the circle group.Functions
¢ : U(l) — R are simply periodic functions of period 27 of the angular co-
ordinate 6.
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The space of continuous periodic functions admit an inner product

W= [ sowos

This inner product is much like the dot product in Euclidean space; instead of
a sum over products of components, we have an integral. This allows us to define
a metric; i.e., a notion of distance between two continuous functions.

1o~ vl =\// (0~ w(®) P o2

Alas, the space of continuous functions is not complete in this metric. Here is
an example:

Exercise 62. Define the “pyramid” function

f(e):{mu—m 6] < 1

0 otherwise

It is continuous on the interval [—m, 7]. (It can be extended to a continuous
periodic function of period 27 on the real line. )Show that the sequence fi(0) =
Vkf(k6), k =1,2,...1is a Cauchy sequence; i.e., that || frs1 — fil| — O as
k — oo. But that the limit is not itself a continuous function.

Solution

The constant V37 and the factor Vk are chosen so that || f¢|| = 1. (Verify by
calculating the integral using Mathematica).

The integral f_ 7; (fis1(0) = fr(6))? ‘Zi—ﬁ can be evaluated using Mathematica
to get a complicated formula for || fi+1 — fx||- We need only the limiting behavior

5 3
k5 +0(k™h
2V3n
which tends to zero. The limit of fj (6) is not a continuous function. For example,
Jfx(0) = V3rk tends to infinity. In fact the functions become more peaked at the
origin and the support tends to a vanishingly small interval of length % for large
k. See the figure.

[l frs1 = fill =

This leads to some technical complications which have been largely resolved by
mathematicians. The field of functional analysis is about this and related matters.
We will not delve into these matters much. We will just mention (without proof
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f5(0).f1(6)
7 =

4 - — f5(6)
— f1(6)

ul Il - L n - _ L L n " e
-3 =2 =1 1 2 3

or even a precise statement sometimes) some of the ideas involved; and give some
examples.

13.3.2.1. L*(U(1)) as a completion

Recall that a Cauchy sequence in a metric space is a sequence which approach
each other in distance: ||¢x+1 — ¢ || is as small as you want for large enough k. In
this language, what we are saying is that the space of continuous functions is not
complete. This phenomenon also occurs in the space of rational numbers Q: There
are Cauchy sequences of rational numbers whose limit is not rational. An example
is the sequence of decimal approximations for V2:

1,1.4,1.41,1.414,. ..

We can remedy this situation by enlarging Q by passing to space of equivalence
classes of Cauchy sequences of rationals. The notion of equivalence is this: Given
two sequences ¢y and ¥;, we can make a new sequence by interlacing them:

G101, 92,02, . ..

If this interlaced sequence is also Cauchy, we say they are equivalent. The idea
is that equivalent sequences “tend to the same limit”. The set of such equivalence
classes is again a metric space; but one that is complete. This is one way to construct
real numbers. It is just a precise way of saying that real numbers are those that can
be approximated as close as you wish by sequences of rational numbers.

A similar process can be put through for smooth functions on the circle with
the above notion of metric. L>(U(1)) is the completion of the space of continuous
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functions by in the metric ||¢ — ¥||. A typical element of L*>(U(1)) is not a
continuous function on U(1): But it can be approximated by continuous functions
as closely as we want.

13.3.3. An orthonormal set in L*(U(1))
Examples of continuous functions on the circle are exponentials such as
L e20 omi0 q ,i6 G20

We will denote them by e,,:

em(0) =™, meZ
Proposition 63. The exponential functions form an orthonormal set:
T . do
[ﬂ em(g)en(g)ﬁ = 6m,n, m,n € Z

Proof. When m = n this is obvious, as the exponentials in the integrand cancel
and the statement reduces to f_ 7; ‘21—3 = 1. When m # n the lhs is equal to

/”ei(n—m)eﬁ =lym=
x 2n

This is zero since the exponential has the same value at 6 = 7 and 8 = —x. O

i (n— O=mn
et(n m)G]
O=—m

i(n—m)

13.3.4. The duality of L>*(U(1)) and 1*(7Z)

Given any element of L?(U(1)) we can find its components along the exponentials:

b =ensd) = [ en(@00)5)

The integral converges because of the Schwarz inequality.

It is fair to ask if these components can be used to reconstruct the original
function from these components. We now state a few results which allow this
reconstruction. The proofs can be skipped in a first reading. The proofs of these
results (under slightly weaker assumptions) are detailed in the classic book [27].
They are summarized in subsections below.

From orthonormality we can conclude already the following:

Proposition 64. Bessel’s inequality

- de
Ylanl< [ le@Ps
U(1) T

mezZ
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The remaining question is whether there is some information about ¢ missing
in the components ¢,,. Can we prove

#(0) = X,nez dme™?? A systematic approach to studying this infinite sum is
to start with the partial sums

Sa = Z émem

Im|<A

and study the limit A — co. It turns out that the sequence S (6) may not converge
to ¢(0) for individual values of 6, for ¢ € L>(U(1)). But we don’t need that. We
do have convergence in the norm of L>(U(1)):

Proposition 65. Convergence in L>(U(1)). If ¢ is a continuous function on the
circle, imp_,o || — Spl| =0

This guarantees that e,,,m € Z is a basis for L?>(U(1)); the components ¢,
contain all the information contained in the element ¢ of L>(U(1)) at least for
continuous functions. And since any element of L>(U(1)) can be approximated
by continuous functions, this extends to all of L2(U(1)). So, L>(U(1)) is a Hilbert
space.

Theorem 66. The set e,,, m € Z is an orthonormal basis in L>*(U(1))
Moreover,

Theorem 67. Plancherel Formula a.k.a. Parseval identity

~ de
Y lanl= [ le@ry]
U(1) T

mezZ

This says that Fourier transform is a unitary map from L>(U(1)) to [*(Z). In
some applications (signal processing) the rhs has the meaning of energy; then this
says that all the energy can be accounted for by adding up the energies of the
Fourier components. In quantum mechanics, probability-rather than energy-is the
meaning of the rhs.

13.3.5. Proof of Bessel’s inequality

Given any orthonormal set (not necessarily a basis) e,,, we can find the components
Om = (em, @) = / e, (0)¢(0)42 and form the series S = ¥,,,cz dmem. It follows
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that

(@8 = | ul’

mezZ

Also,

ISI2 =" Gnlem ey = D | Gl

which is a version of Pythagoras’ theorem. Therefore
(S, —S)=0.
Thus
p=S+(¢-35)
is an orthogonal decomposition. By Pythagoras,
gI1> = 1ISII* + 116 = SII* > [IS11?

This is Bessel’s inequality.

13.3.6. Proof of Convergence in L*>(U (1))

This relies on a basic result of analysis (a version of the Weierstrass approximation
theorem) that continuous functions on a circle can be approximated by trigono-
metric polynomials (i.e., finite series of the form P(0) = 3, P,,e’™?) as closely
as desired:

For any € > 0 there is a trig polynomial P(6) such that

l$(6) - P(6)| <€

for all 6. Let M be the degree (the largest value of |m| for which P,, # 0) of this
polynomial. Integrating the square of the above inequality, and then taking square
root, we get

ll¢ — Pl <e.
Another fact we need is that
(em,d—Sp)=0, |m|l <A

(It follows from (e, ¢) = @m and Sx = 3|,y j<p Bmem). In other words, ¢ — S
is orthogonal to the subspace of trig polynomials of degree < A. If we choose
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A > M, the approximation P, will lie in this subspace. Since S — P is orthogonal
to ¢ —Sx,and ¢ — P = (¢ — Sp) + (Sp — P), Pythagoras says
¢ = PII> = 11§ — Sall* +[1Sa — PII?
Therefore,
llp—Sall < ll¢—Pll <€

Thus, given any € > 0, we can find a A such that ||¢ — Sx|| < €. This is the
convergence we seek.

13.3.7. Proof of Parseval’s identity
This is a consequence of the above convergence. The orthogonal decomposition
¢ =Sx+(¢—Sn)
gives, by Pythagoras,
I* = [ISAll” +1¢p = Sall?
As A — oo the second term tends to zero; and the first term tends to Y, ||

Exercise 68. For the “pyramid” function

f(e):{«/ﬁ(l—mp 6] < 1

0 otherwise

show that

B 3 sin% 2
<em,f>—2\/;( . ) .

13.3.8. Convolution

Define a multiplication operation on continuous functions
, ,.do’
seu® = [ 600w
Vs

called convolution. This is commutative:
, . do’
ve00 = [ wo-000) 5

Making the change of variables 6" — 6 — 0" we see that it is equal to ¢ * i (6).
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Proposition 69. The Fourier components of a convolution is the product of
Fourier components. That is,

—im6 % ﬁ_ g
[eimor w3 =i

The proof is simply to evaluate the double integral:

do de’

—im do _ —im
/e 9¢*¢(9)5—/ 900w (0) 55

We change variables 6 — 0 + 6 :

_ y do de’
= [ emeisoue) s
and notice that the integral factorizes as the product of two integrals:
i do Zim@ o d0
= / e ™M0p(0) - / MY (0) =~ = Gmilm
2r 2n

Fourier developed his analysis to solve partial differential equations arising
from engineering. In this context, the following exercise is interesting.

Exercise 70. Solve the Laplace equation in the unit disc, given the boundary
value at the unit circle: In polar co-ordinates

92 10 1 0?
a2(13( 9)+——(1>( 0) + — iy

—®(r,0) =0, rlir?_ D(r,0) = ¢(0)
Solution

If the solution is continuous inside the disc, lim, g+ ®(r, 8) must be indepen-
dent of d(since all values of 6 describe the origin when r = 0). We can choose this
value to be zero without any loss of generality (a constant can always be added to
the electrostatic potential).

Fourier analysis

O(r,0) = " Bu(r)e™, 9(0) = ) Gue™

nez nez
gives
d¢()+li®()__q,() lim ®,(r) = ¢, lim ®,(r) =0
dr? d rdr d d ’ r—l- nir —¢n» r—0* nir) =

The solution is ®,, (r) = r/"!$,,. Thus
o(r,0) = > " g e

nez
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Equivalently we have the convolution

do’
O(r,0) = / P-(0—-0")¢(0")—
2n
where the Poisson kernel P, is defined by
P,.(0) = Z plmlgime@
mezZ

Summing the geometric series for m > 0 and m < 0 and recombining we get
the explicit formula

172

P.(0) = ————
r(©) 1 —2rcosf+r?

Note that in this case the solution in the interior is smoother than the boundary

data on the unit circle: The factor 7! in the sum Y, 7 r"!@,e™? provides a

nice convergence factor. Incidentally, we can deduce the mean value property of

solutions of the Laplace equation:

[ o

is independent of r. If we insert the series Y,z "¢, ¢ into the integral, only
the term n = O survives.

Fourier Analysis also gives a formula with far reaching applications in number
theory and physics:

Exercise 71. Poisson Sum Formula Let f : R — C be a (necessarily not
periodic) function on the real line that vanishes at infinity along with all of its
derivatives. Define f(¢) = [ f(x)e™2™¢*d&. Then

D Fmy = fo.

nez nez
Apply to the special case f(x) = e~ witht > 0.

Solution
The trick is to build a periodic function by averaging f:

00)= Y (5= +1]

nez
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The sum converges because f and all its derivatives vanish at infinity.Clearly
$(0)=>" f(n)
n

On the other hand we know from Fourier synthesis that

$(0)= )" m

mezZ

where
- —iOm do
bn= [ o035
n

The Poisson sum formula is proved if we can show that f(m) = ¢(m).
We can calculate

make the change of variables x = 72 +n

%—Z/ e £ (1) dy

nez

2ni[nm] _ 1

(5 Z'/_‘T—n 727rimxf (x) dx

1
2t

{ /% /% [::11 .. } e—27rimxf (x) dx

=[ 72T £ (x) dx = f(m)

Since e

as needed.
If f(x) = e~ with ¢ > 0, the Fourier transform can be calculated using
simple methods (completing the square in the exponent):

Ny
—¢e t o,

[ = N

Thus

Yoy

nez neZ
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The point of this formula is that the lThs converges fast for large r while the rhs

does so for small ¢. This leads to an inversion symmetry for the elliptic modular
function #(1) = Y,z et

9(1) = gﬁ(ﬂ;)

This function arises in the study of lattices and in string theory.

13.4. Invariant Integrals on Lie Groups

Our task is to generalize Fourier analysis to compact Lie groups. In other words,
replace U(1) by a possibly non-abelian Lie group in the theory of the last section.
Alternatively, we want to generalize the harmonic analysis on finite non-abelian
groups (the last chapter) to compact Lie groups. An essential tool of that chapter

were sums of the type
Z $(g)

geG

These sums are invariant under the left or right action of the group:

D Lug(e)= > ¢ (h‘lg) = > ¢(2)
heG 8

geG
D Rie(R) = Y ¢ (gh) = 6(2)
geG heG g

It turns out that there is an analogue of this on connected compact Lie groups;
there is a volume form dg such that

/Lh¢(g)dg=/¢(g)dg=/Rh¢(g)dg

Moreover, this volume form is unique up to an overall constant.

If the Lie group is not compact, but still finite dimensional, there are two
different volume forms dy g and dg g which are left and right invariant respectively;
they might differ by a non-trivial function.

We will construct left and right volume elements dy g and drg in the general
case of non-compact (finite dimensional) Lie groups. Then we will see why they
are proportional to each other in the case of compact groups.

Remark 72. Haar constructed a left-invariant measure on topological groups
(i.e., without assuming they are differential manifolds), using only local
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compactness. We do not need this more general and much more subtle concept.
Even so, the invariant volume element is still often called “the Haar measure”.

As always, the best practice is to work out a couple of examples before we
work out the general case.

13.4.1. Example: GL(n,R)

In some ways the general linear group is the easiest case. So let us start with
that. The matrix elements themselves provide a natural co-ordinate system on
G L(n, R); the only condition is that the determinant be non-zero. This cuts out
a one-dimensional sub-set out of R"*. The co-ordinates are transformed by left
multiplication g — h~'g

gij = Z[hil]ikgkj
k
The volume element dg“dgz] .o -dgn] dglzdgzz cee dgnz e dgln e dg,m is

transformed by the magnitude of the Jacobian determinant of this transformation.
The first column of co-ordinates

&11,8215---,8nl
are transformed linearly by the matrix 4~!. This means that
dgi1dgay -+ - dgm > |deth™!| dgiidgor - - - dgni
The next column similarly changes by
dgiodga - dgm = |deth™"| dgiadga - - dgna
and so on. Putting all the changes from the columns together,
dgiidgay - dgn1 dgindga - - dgm -+
dgin - dgnn — |deth™|" dgi1dgay -+ - dgn1 dg12dgar -+ dguy -+ dgin -+ dgnn
Now, the determinant of g transforms as
detg > (deth™!) detg
so that its magnitude transforms as
|detg| — |det h_1| |det g|

Thus the combination

_ dgiidgai - dgni dgiodgr - - - dgny - - dgin - - dgnn
|det g|"

drg
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is invariant under left translations. Exactly the same argument (applied to rows
instead of columns) shows that the same expression is also invariant under right
translations. So we have the left and right invariant volume element

_ dguidgay - dgn dgiodg -+ -dgny - dgin - - - dgnn

d
& detg["

on GL(n,R). This group is not compact; so the volume of the group fdg is
infinite. So even for some non-compact groups the left and right invariant volume
elements coincide.

We now turn to another example that illustrates phenomena of a different sort.

13.4.2. Example: The upper triangular group

Consider the group of matrices of the form g = (aoo " ) with ap > 0 and a; € R.

In this case ag, a; are themselves co-ordinates on the group. The Lie algebra has

c_(roy (o
=10 o)> "7 \lo o)

Consider the combinations

-1 _a dag  day
- () (4 dal)z(ao 0)44

basis

dat 0 1 0 0 0
ﬂo—da—?, 1—da—‘:)]

Under a left translation by /& = ( %0 b]' ) we have

ay ai—b;
_ bo b
h 1g =
0 1

Treating h, by, b1 as constants, we can vary g, dg, dj:

<) ¢ 25|
0 0
= AO’ )-] [ T
bo by

=4

Thus, Ay, A;are left-invariant differentials.
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Similarly,
-1 ag dagy ay
6—g-d ip—1 _ dag da ag “a | — | a0 da) — a—odao = pot :
dar 448 (0 0 0 1 0 0 = polo + o101
dagy

po= "2, p1=day - gdag
Under a right translation

(a()b() ay +a0b1)
gh=

0 1
dlaobo]
po — ———— = po,
aobo
aj +apby ai
p1 = d [al +aob1] - 7(1[(10[)0] = da1 +b1da0 - —da() - blda() =pP1
apbyg ao

We see that pg and p; are right invariant differentials. Thus,?

daoda, daoda,
drg =2, drg=—rrt
ag ap
are left and right invariant volume elements respectively. Note that they are not the
same:

1
drg = A(g)drg, A(g)=—

ag

The ratio % = A: G — R is a group homomorphism.

13.4.3. Invariant differentials

In a more complicated matrix group (such as SO(n) ) we cannot argue as for
GL(n, R), as the matrix elements are not independent of each other. The second
example suggests that we must use invariant differential 1—forms; and take their
wedge product (a kind of determinant) to get the invariant volume element.

The matrix elements are functions of some independent co-ordinates
£ ..., &P where D is the dimension of the group. Under an infinitesimal change
of the co-ordinates, the matrix elements will change by %dfk . It is more

2For brevity, we are using the idea of a wedge product in differential geometry. The same result can
be obtained by taking the determinant of the components of A and p.
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natural to consider the products with g~!

198
ek

as they belong to the Lie algebra of the group. (Recall our discussion of the Baker—
Campbell-Hausdorff lemma where we saw that derivatives such as g~! (t)dfj—gt)
belong to the Lie algebra). Under a transformation g > h~'g (where 4 is indepen-
dent of g) this is invariant.

Choosing a basis for the Lie algebraz,, a = 1,... D we can definea D X D
matrix A whose components are Ag:

dg

;ﬂak(g)fa =g ek

By using the chain rule of differentiation, under a change of coordinates £* +
¥ the matrix A transforms as

an'!
/lak g Zl: /lal 3—§k .
Thus its determinant transforms as

det A — det A det @
¢

So the combination
detAd¢! - - - dgP

transforms as a volume element invariant under these co-ordinate transformations.
A change of basis in the Lie algebra

ta = Saptp
will only change det Ad¢'! - - - déP by a constant multiple:
detAdg' - - deP v det SdetAdé' - - - déP.
Thus we see that:
drg =|detd| d&'---ded

is invariant under left translations, as well as changes of basis and co-ordinates (up
to a constant multiple).
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In the same spirit, we can get a right-invariant volume element from the

matrix p:
Z Paita = -
65’

drg =|detp| d¢' - d&?

These dr g and drg may not coincide.

Exercise 73. Show thatinversion g — g~ takes the left invariant volume element
to the right invariant one:

dLg_l = ng
—1 0,
Solution Note that & o T =8 > éflg so that
38 _ 38 71
35’ 35’

Aai(87 )ta = _pai(g)ta
and
| detA(g™") |=| detp(g) | -

So, if the left and right invariant volume elements coincide, they are also
invariant under inversion.

13.4.4. The modular homomorphism

Since

98 1 _ g [g198 ) o
gk gk

we have a relation between A and p:

Zpakta =8 (Z /lakta) g_l
ak ak

Since
~1 ~
8tag = &ablp
where g, is the matrix of g in the adjoint representation, we have

Pak = &badbk
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Thus, the ratio

Alg) = drg _ | detp(g)|
drg | deta(g) |

is simply the magnitude of the determinant of the matrix representing g in the
adjoint representation:

A(g) =| detg |
In particular, it is a continuous homomorphism A : G — R™*:
A(gh) = A(g)A(h)

This is called the modular homomorphism. If A(g) = 1 the left and right
invariant volume elements are equal. Such groups are said to be unimodular.

13.4.4.1. Unimodular groups
There are many examples of unimodular groups:

e For compact groups A(g) = 1: The left and right invariant measures are the
same.

For, suppose there were a g € G with A(g) # 1. Then either A(g") or A(g™")
would tend to infinity for large r. But continuous functions on a compact group
are bounded. So this can’t happen.

In particular, groups such as SU(n) or SO (n) are unimodular, being compact.

e If G is a simple Lie group (i.e.,the only normal Lie subgroup is the trivial one)
again A(g) =1

Even if there are normal subgroups that are discrete (i.e., not Lie subgroups)
unimodularity holds. For, the kernel of A would be a normal Lie subgroup. For
example, SL,(R) is unimodular; because its normal subgroups are discrete.

We saw earlier that

e GL(n, R) is unimodular; although it is neither simple nor compact.
Obviously,

e Abelian groups (compact or not) are unimodular: There is no difference between
left and right translations

In these cases we will denote by d; rg a volume element that is both left and right
invariant. Note that our construction only determines it up to an overall constant:
a change of basis in the Lie algebra can change it by a constant multiple.
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13.4.5. Example: SU(2) in exponential co-ordinates

Let us work out an example in detail. Recall that the group SU(2) can be described
by exponential co-ordinates g = e* with a being a trace-less anti-hermitian 2 X 2
matrix. Explicitly,
sin (M)
2

la]

2

a
g=cos(%)+a-s , aeR, la| <27
where s1, 52, 53 is a specific basis in the Lie algebra. The co-ordinate system breaks
down at |a] = 27; all the points with |a] = 27 correspond to g = —1.
Using

, a-da
df (lal) = f" (lal)
|a
we get
1. | |a|cos(%)—2sin(%) a-da sin(%)
dg=|-zsin—+a- +da-s
|a|? |a] lal
Since
ey (%)
g =cos(7)—a-s Tal
2
we get
la] - lal
ldg = cos lal 1sin IaI+a S |3|COS(%)—ZSIH(%) ada
& a8 2727 a2 la|

+da-s
la|
2
sin la] sin la|
+ 1 2 || ( )2 2
a sin a
la] la]
2 2
2
|a| cos (M) — 2sin (M) sin (M)
2 2 a-da 2
X —a-sda-s
|a|? |a] la]
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Using (4.3.1) and some trig identities we can simplify this to

al —sin|a sin |a
gildgz u a-sa-da+da-s 2|
la] |a
1 —cos|a
+ (axda)-s —2||
|a
Or,
1y T{|a|—sin|a| | sin |a| +Al—coslal}
8§ 48 =S \y—7"T— ¢ 3
|a® |a |a]?

0 -a; a al aiay ayaz

where 4 = ( az 0 al) anda®a=|aiax a} aas | as before. The matrix in the
-ay a; 0 ajas araz a§

curly brackets is

|a| — sin |a| sinja] ,1-cos|a|
Ag) =—FF75— I3
|a® E] |a|?
Then,
4sin? 12
detA(g) = ——=
|a|?

The left-invariant volume element in exponential co-ordinates is thus,

4 sin? la]
dLg = TzzdaldadeB

The volume of the group SU(2) in these conventions is
2 .5 |a| )
4 4sin” — dJa| = 167
) 2
The 47 comes from the “angular co-ordinates”, leaving an integral over the
“radial” co-ordinate |a|.

13.5. Representations of a Compact Lie Group

The fundamental work of Peter and Weyl developed the harmonic analysis on
compact Lie groups. They showed that L?(G) can be decomposed into direct sums
of finite dimensional unitary representations. The whole theory is remarkably
similar to that of finite groups: Compactness is a good substitute for finiteness.
The basic reason is that the integral of any continuous function on a compact group
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is finite. In particular, the integral f dg = vol(G) is finite. This volume plays a
role analogous to the number of elements |G| in the case of finite groups.

One important difference with the case finite groups is that the left regular
representation is infinite dimensional. In particular, it does not have a character:
The trace diverges. Peter and Weyl found a way around using this character.

13.5.1. Finite dimensional representations of a compact group are unitary

The trick is again, “averaging” over the group. Let p : G — G L(V) be a continuous
finite dimensional representation on some vector space V. Pick some inner product
((,)) on this vector space. Then define

@6 = [ (p@ap@b)dle). abev
Now,
(p(h)a,p(h)b) = /((p(g)p(h)a,p(g)p(h)b))dg
= [ (otema.ptenb)ds
using the invariance under g — gh~! we get
(p(h)a,p(h)b) = / ((p(g)a, p(g)b)) d(g) = (a, b)

proving unitarity.
Now recall that we already proved in the earlier chapter that

13.5.2. Finite dimensional unitary representations are completely
reducible

This means that any finite dimensional representation can be decomposed as direct

sum
o= D

where G is the set of equivalence classes of irreducible representations; and m, is
the multiplicity (i.e., the number of copies of r contained in p).
The proof of Schur’s Lemma and its corollaries are also essentially the same:
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13.5.3. Schur’s lemma

Lemma. Let r and s be two irreducible representations, on vector spaces V and
W respectively, of a compact group G; and T is a linear map T : V — W such
that

T(r(g)v]l =s(g)[Tv],Yg e G,veV (13.5.1)
Then either T is an isomorphism or it is zero.

Corollary. If an operator commutes with all the representation matrices of an
irreducible representation, it is a multiple of the identity.

Also,

Corollary. Anyirreducible representation of an abelian group is one dimensional.

13.5.4. The character of a finite dimensional representation

The character of a representation remains a powerful tool in the theory of compact
groups. If p : G — GL(V) is a finite dimensional representation of a compact
group, its character is the trace:

Xp(8) = trp(g)
p being finite dimensional, the trace converges for any g. In particular
Xp(1) = dimp
We also have the notion of direct sum of representations

rorw=' )

with
Xpoo (&) = xp(8) + X (g)

More generally, if
p=@mr
we have

Xp(g) = Z myxr(8)

reG



274 PHYSICS THROUGH SYMMETRIES

We will have to work a bit harder to understand the characters of infinite
dimensional unitary representations.

13.5.5. Inner product space C(G)

We can define an inner product in the vector space of continuous functions

(G.u) = / 6" ()0 (g)dg

This is not quite a Hilbert space: We cannot yet prove that it has a countable
basis. Indeed, this completeness is a direct consequence of the Peter—Weyl theorem
which we have not proved yet. Still this inner product is a powerful tool when
combined with Schur’s lemma.

13.5.6. Orthogonality of representation matrix elements

Exactly as in the case of finite groups, we can define the quantities
bj _
107 = [ 1o sy

Here, r and s are two inequivalent unitary representations and r and s;; are
their matrix elements in orthogonal bases.

The invariance of the volume element can be used to prove that, for each choice
of bj, this is an intertwining operator between the representations r and s. Since
they are not equivalent, Schur’s lemma says this is zero:

Proposition 74. Matrix elements of inequivalent irreducible representations are
orthogonal

Also, defining
100 = [ roa e

we again have (for each choice of bb” ) an intertwining operator of r to itself. This
time Schur’s Lemma gives,

(rav>Tarv') = CréaaOpiy (13.5.2)

for some C,. We can determine it by putting a = a’ and summing over a. On the
lhs we get

2 / rap(&)rap (8)dg = / [ @@, s
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Using unitarity of r

Z(rabs Farp) = Vol(G)Opp .
a

Here vol(G) = f dg is the volume of the group. It depends on the choice of

invariant volume element. The rhs of (13.5.2) is, upon putting a = ¢’ and summing
vol(G)
dimr *

over a, equal to C, dimr dppr. Thus C. =

Proposition 75. Matrix elements of an irreducible representation satisfy

r ,}"// = "
<ab ab> dim r

We can combine these two statements to
ops . di .
Proposition 76. The functions %rab form an orthogonal family when r
runs over the set of equivalence classes of unitary irreducible representations and
a, b label an orthonormal basis in the vector space of each such r

What we do not have as yet is the completeness of this family: That any
continuous can be expanded as a linear combination of functions in this family. This
is the content of the Peter—Weyl theorem (see below).

13.5.7. Fourier components of a function

We can, as in the case of finite groups, define the components of a function
¢ : G — C along this orthogonal family:

5= [ rinmoman
Just from the orthonormality of the family, we have3

Proposition 77. Bessel’s inequality

dim r

di .
2 2 Vollr(nGr) | Far |2$/¢*(h)¢(h)dh
reG ab=1

Once we have completeness (that any continuous function can be expanded
in the above basis with these components) we can get the Plancherel theo-
rem/Parseval’s formula.

3The factor % comes from the fact that its is | % Fqp that is the orthonormal family; not 7,

which appears in the definition of the components.If we had defined components w.r.t. the orthonormal

family, there would be some factors of \S‘I(Lé) in other places.
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For each r € G the components form a ~mAatNrix ¢ ,. The sum Y, | 67, |
for each fixed r is the trace of the matrix ¢"'¢". (This trace is also called the
Hilbert-Schmidt norm of the matrix ¢”). The matrix ¢"@" is therefore of some
interest.

13.5.8. The convolution algebra

Given two continuous functions, define the convolution

bou(g) = / o(gh™ ) (W) dh

Using the invariance of the volume element we can see that this is an associative
multiplication; although not commutative if G is not abelian.

Proposition 78. Fourier components of a convolution are the matrix products*
of the Fourier components of each function:

(¢29),, = D0ty
Proof. For,
(659), = [ rinterds [ otenwiman= [ 1, 0(en g
Using the invariance of the volume element under the change g — gh
(659), = [ rintemoterundsan

Using the representation property of r

dimr

(#59), = 3. [ rietoriy s dzdn
c=1

The integral factorizes into one over g and another over A:

(629) =3 ducil

4This accounts for the non-commutativity of the convolution.
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13.6. The Peter—Weyl Theorem

A function of the form

D2 chpran(e)

reG ab

with only a finite number of non-zero terms is the non-commutative analogue of
a trigonometric polynomial: The matrix elements .5, (g) generalize the exponen-
tial functions on U(1). Let Lilg(G) be the space of these “algebraic” functions.

Then the abstract version of the Peter—Weyl theorem is that L?(G) is the comple-

tion Lilg(G) of this space of algebraic functions. But we can be more concrete:
Determine the coefficients ¢/ .

Exercise 79. Show that of all linear combinations of the form ., ., ¢!, 7ap(g)
the one that minimizes the distance ||¢ — 2., 45 ¢, 7abl| has

, _ dimr o
Cab = vol(G) Pab

Solution Minimize f | ¢(8) = 2r.ab € pran(g) |> dg with respect to c’, and use

dimr_

orthonormality of /Gy ran () -

Theorem 80. Peter—Weyl Let ¢ : G — C be a continuous function with Fourier
components in each irreducible representationr € G

F, = / v (9)6(g)ds.

Then the Fourier series converges in the L*>- norm, synthesizing ¢ from its

components:
dimr -
#(g) = Z Z F(G)%br“b(g)
reG ab

Moreover, this allows us to promote the Bessel inequality to an equality:
Theorem. (Plancherel) We have

dimr
dimr

[ 1P as- > 2 waiigy | S

The original proof of Peter and Weyl used the theory of compact integral
operators, which had already been developed in Schmidt’s thesis with Hilbert.
This is still a good way of understanding the proof. We will make a digression



278 PHYSICS THROUGH SYMMETRIES

to review the theory of such operators [28], which is also useful in many other
places in mathematical physics (e.g., the Green’s function of the Laplacian in
a compact manifold is such an operator). We won’t give complete proofs, only
a summary of the main ideas. A complete proof is given in the rigorous (yet
remarkably clear) course meant for mathematicians by P. Etingof at MIT, available
online [29].

13.6.1. Compact integral operators

Let us start by considering a self-adjoint linear operator (i.e., hermitian matrix)
K : V — Vin a finite dimensional vector space V with an inner product. A basic
result is the spectral theorem:

V=kerk ® (P Ea
20
That is, the vector space V can be decomposed orthogonally into
e ker K, the subspace of vectors y such that Ky = 0
e the eigenspaces E, of vectors ¢ satisfying Ky = Ay. These eigenvalues are

real and non-zero; the eigenspaces corresponding to unequal eigenvalues are
orthogonal to each other

Since V is finite dimensional, kerK and the eigenspaces E, are also finite
dimensional.

Hilbert and Schmidt found a generalization of this spectral theorem to integral
operators of the form

Ku(x) = /X K (e (y)dy

where X is a compact topological space and dy is a measure on it with finite
volume

VOl(X)z/dx.
X

In the application of interest to us, X will be a compact group and the measure
will be in the invariant volume element dg. Self-adjointness means in this case

K(x,y) = K*(y,x)

In other words, we are treating x, y as continuous matrix indices, with sums
replaced by integrals. The kernel of K is again the subspace of vectors with
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eigenvalue zero:
kerK = {y | Ky = 0}
The eigenspaces E, are again defined similarly:
Ex={y K=y}, 1#0

The eigenvalues A of hermitian integral operators such as K are again real.
Each eigenspace £, with 4 # 0 is finite dimensional; in other words, non-zero
eigenvalues have finite multiplicity. (There can be an infinite number of such non-
zero eigenvalues.) But the degeneracy of a zero eigenvalue can be infinite (for
example, a compact operator can have finite rank. See below).

Remark 81. A word of explanation is perhaps needed to understand why non-
zero eigenvalues have finite multiplicity, but a zero eigenvalue can have infinite
multiplicity. Within each eigenspace, the operator K reduces to a multiple of the
identity, A1 on E,. A multiple of the identity is compact only if either

e the space E, is finite dimensional
e the multiple A is zero; so kerKcan be infinite dimensional

Theorem 82. (Hilbert-Schmidt) A compact self-adjoint operator K : L*(X) —
L*(X) yields an orthogonal decomposition

L*(X) = ketK ® @MEA (13.6.1)

Since there can be an infinite number of non-zero eigenvalues, we must take
the a completion of their direct sums; this is the meaning of the &5 symbol.

An equivalent statement is that there is an orthonormal basis for L?(X) con-
sisting of eigenvectors of K.

13.6.1.1. Example: Finite rank operators

Especially simple examples are finite rank operators. These have only a finite
number of non-zero eigenvalues. So for them we do not need do any completion
in (13.6.1).

They are finite linear combinations of the form

K(6,y) = D" Aatha (W5 ()

Note that kerK is infinite dimensional. The image of K (i.e., the set of vectors
that can arise as Ky for some ) is finite dimensional. This dimension is called the
rank of K.
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13.6.1.2. Example: Heat kernel

An example of a compact linear operator which is not of finite rank is the heat
kernel on the circle:

2, . .
he(x,y) = Z e MM e Lt > ()

nez

13.6.1.3. The identity operator on an infinite dimensional Hilbert space
is not a compact operator!

Its integral kernel is the Dirac delta, which is not a continuous function on X X X.
Its only eigenvalue is 1, which has infinite multiplicity.

But a sequence of compact operators can provide an approximation to the
identity operator. For example, the heat kernel above satisfies

/ B Gra )W () dy — ()

as t — 0, for all continuous functions on the circle. For each ¢ > 0, the operator
h; is compact, but not in the limit r — 0.

13.6.2. Proof of Peter-Weyl

Armed with this machinery, we can outline a proof of the Peter-Weyl theorem.
The idea is to approximate the identity operator on L*(X) (the Dirac delta) by a
sequence of continuous functions. Each of these will define a compact self-adjoint
operator to which we can apply the above spectral decomposition. More precisely,
let ky : G — R be a sequence of continuous functions satisfying

/kN(g)dg =1, kn(g)=kn(g™")

Also, we want the support of k (the set of g for which ky (g) # 0) to shrink
to just the identity element of G as N — oo.

Itis not hard to construct such functions. From such a sequence we can construct
the integral operators

Kn(g) = f K (g, hyw () dh
with
Kn (g, h) =kn(gh™)

Since ky(g~!) = kn(g) we get that Ky (g, h) = Ky (h,g) . That is, K is
symmetric. Since it kn (g) is real we also get self-adjointness of K . The group
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being compact we get that K is a compactintegral operator. So, we have a spectral
decomposition

L*(G) = kerKy @ @/HOE/kN

where E, n are the eigenspaces with non-zero eigenvalues. They are finite
dimensional:

Y eEin, ¥(R)= ) cutu(e),

u

the sum being finite.
Moreover, we can see that each E, y carries a representation of G. For this we
note the symmetry

Kn (gh',hh') = Kn (g, h)
So K commutes with the right-translation Ry :
Ry (g) =y (gh'),
KnRpy = RyKn
Therefore
yeE) N = Rpy ek,

Thus there are matrices p,, (g) such that
uu(gh') = ) puv(h)uy(g)
v
These matrices provide a finite dimensional representation of G

Puv(h,h”) = Z Pucr(h)PLrV(h’)~

Thus the elements of E, are algebraic functions: They are finite linear combi-
nations of irreducible representation matrices. Thus we see that

L*(G) = L} (G)

This is one statement of the Peter—Weyl theorem.
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Chapter 14

QUANTUM GROUPS

Modern theoretical physics needs notions of symmetries that go beyond groups.
The story begins with the solution by Bethe of the “isotropic spin chain” with
hamiltonian

n
H=J Z of0hy, Opy =07

i=1
where of =1®---®0c“ ®1---® 1 are Pauli matrices associated to the ith site
on a chain (one dimensional lattice). It is invariant under rotations of all the spins
simultaneously (i.e., global SU(2) symmetry). This symmetry is crucial to solve
the problem, by a fiendishly clever guess (the Bethe ansatz).

Later, Yang and Baxter were able to solve this problem even when the rotation

invariance is broken:

n 3
H= Z Z Jaof' ol
i=1 a=1
This was possible because of a mysterious identity satisfied by the scattering
matrix of the spin waves (the “Yang-Baxter Relation”). Faddeev and collaborators
discovered that this is related to the quantum analogue of the integrability of the
corresponding classical spin chains. Although the systems do not appear to be
rotation invariant at first, they are invariant under a “quantum deformation” of the
rotation group.
It was Drinfeld who realized that the underlying mathematical structure is
a “Hopf algebra”, a generalization of the idea of a group. Hopf had postulated
them, motivated by applications to Algebraic Topology. Even when a group is
non-abelian, the algebra of functions on the group (by point-wise multiplication)
is commutative. Hopf algebra is a generalization in which this operation is also

283
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non-commutative. Drinfeld coined the phrase “Quantum Group” to describe this
new kind of non-commutativity.

Hopf and followers (Sweedler, Taft) had discovered the “quantum’ analogue of
finite groups while Faddeev er al. had found examples of “Quantum Lie Groups”.

All this happened over nearly a century (starting with Bethe). The forty years
since Drinfeld’s work were especially productive mathematically: The classifica-
tion of Hopf algebras and their modules (i.e., representations). There is no doubt
that this is a major breakthrough in mathematics.

Groups were discovered first in a corner of mathematics far from
physics(“exact” solution of polynomial equations by radicals) . Much later they
were found to be central to quantum mechanics and to modern particle physics.

“Quantum Groups” were discovered in a somewhat specialized area of
physics.It is possible that Hopf Algebras will be more broadly important to physics
and central to the next generation of fundamental physical theories. Glimpses
of the future we have today (e.g., quantum gravity might be described by non-
commutative geometry) point in this direction. There are already several textbooks
[31, 33] devoted entirely to Quantum Groups. We will discuss only one approach
to this rapidly evolving subject, along with the simplest examples.

14.1. Algebras and Co-Algebras

It is a theme of modern mathematics that the algebra of functions on an object
contains all the information about it. For example, the algebra of (continuous, dif-
ferentiable, analytic) functions of a (topological, differentiable, complex) manifold
determines it.

The idea is to first translate all the properties of a group to those of the space
of functions on it. Then we will generalize the idea of a group by generalizing the
properties of this space. The end result will be an algebraic structure (the Hopf
algebra) which may not any more be the space of functions on anything! This is
similar to the way observables of a quantum system are no longer functions on
any phase space: The process of quantization forces us to give up on the idea that
observables are some kind of functions.

Let G be a finite group and let C(G) be the space of complex-valued functions
on it. This is a commutative algebra under point-wise multiplication:

fif(g) = fi(g) f2(2).

The dimension of the vector space C(G) is the number of elements of G; at
each element of the group, we can specify one independent complex number as
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the value of a function. By linearity we can extend this multiplication as a bilinear
map

m: C(G) ® C(G) — C(G).

But this multiplication has no information about the underlying group multi-
plication law: We can define such a commutative algebra on functions over any
set. The group law allows us to take a function of one group element and turn it
into a function of two elements:

A(f)(g1,82) = f(g182).

In other words, A takes a function of one variable and turns it into a function of
two variables.

We can think of a function of two elements as a “matrix”! labelled by g1, g2-
More precisely, A(f) € C(G) ® C(G). Thus, A is a map that goes in the oppo-
site direction from a multiplication A : C(G) — C(G) ® C(G): It is a co-
multiplication. We can make this precise by defining the idea of a co-algebra: A
kind of mirror image of an algebra.

Definition. An algebrais a vector space A along with alinearmapm : AQA — A.
A co-algebra is a linear map in the opposite direction A : B — B ® B on some
vector space B.

It is useful to recall how to think of an algebra in terms of its structure constants
in some basis e, . (For now, let us think of finite dimensional algebras for simplicity.
Also, we will use the summation convention.) Then the product e, e, can be
expanded as a linear combination of the basis elements:

— c
eqep =My ec.

The quantities mgb are the components, in this basis, of a third order tensor.
They are called the structure constants of the algebra. Various properties of the
algebra translate into identities satisfied by the structure constants

e Commutative: e, ep = epe, — mé, =m;
o B d _ d
e Associative: e, (epe.) = (faeb)ec — mfl%mbC =mé, mg,.
M . — a c — SC — C
e Unitelement: n = n“eq, n”m; =06, =mi, n . .
: . c  _ _pC s e e
e Lie algebra: m{, = —mj , (anti-symmetry) and m;, m$ .+ mj m§ +

mé, m%, =0 (Jacobi identity)

The simplest way to construct a co-algebra is to take B to be the dual vector space
of an algebra. The multiplication on A induces a co-multiplication on its dual.

'We saw such integral kernels already in the proof of the Peter-Weyl theorem.
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Recall that an element of the dual of A is a linear function f : A — C. We can
identify B ® B with the space of bi-linear functions of two elements of A. Thus a
co-algebra is a map

A(f)(x,y) = f(xy).

So a co-algebra is a kind of mirror image to an algebra: Its dual. Thus there
is a notion of a co-associative co-algebra, a notion of a co-unit etc. A co-unit for
example, is a linear map

e:B—-C

satisfying some conditions that are dual of the identity element in an algebra. Other
ideas of algebra can also be translated. For example a co-algebra is co-commutative
if A(b) is a symmetric tensor in B ® B.

Translating all this into components is again useful. Let ¢, be a basis in B.
Then the element A(e,) € B ® B can be expanded in terms of ej, ® e:

Aleq) = A2e; @ e,

In this notation the various subtypes of co-algebras correspond to conditions
on the structure constants of the co-multiplication:

e Co-Commutative: A(e,) = A(e,)T & AL = ACP

e Co-Associative: AgdAZ“ = AZ”A?"

e Co-unitelement: € : B — C, €(e,) = €4, satisfying ebAlc’“ =04 = A?beb

e Co-Liealgebra: A% = —A;j .(anti-symmetry) and A;’b Ade +AZC Ada +AS! AL =
0(co-Jacobi identity)

Thus a dual vector space of a co-Lie algebra is a Lie algebra and so on.

If the notion of a co-algebra is just the mirror image of an algebra, why do we
need a separate theory for them? The point is that you may have the notion of a
multiplication and a co-multiplication on the same vector space.

Definition. A bi-algebra is a vector space A on which there is a multiplication
m:A®A — A aswell asaco-multiplicationA : A — A® A which are compatible
with each other. That is, the co-multiplication is an algebra homomorphism of A
t0OA®A.

Implicit here is that if A is an algebra, there is a natural multiplicationon A® A:

(x®y)(s®t) =x5Q yt.
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Again, the conditions on the multiplication and co-multiplication of a bi-algebra
can be translated into properties of the structure constants. Let us compute:

Aleaes) = Aea)Aep), Ales) =AiSer ®eq,  Alep) = Ale, ® e

— pd —
efen=my eq, ege;= mz,l.ee,

Aleqep) =mé, Alec) = mZbAfeed ® e,

so that the bi-algebra condition is

- arde _ Afg. d e Ahi
M A = Ng“m'p  me; ALt
Note that this condition is symmetric between the structure constants of the
algebra and the co-algebra. So the dual of a bi-algebra is again a bi-algebra with
the structure constants of multiplication and co-multiplication interchanged.

14.1.1. Examples

e The space of complex-valued functions of a group is a commutative bi-algebra:
The co-multiplication defined above using the group product is compatible with
the point-wise multiplication. The associativity of group multiplication implies
that the co-algebra C(G) is co-associative. The identity element ¢ € G in the
group defines a co-unit: e(f) = f(e).

e Since we haven’t used the existence of an inverse, we can get a commutative
bi-algebra on any semi-group.

e Given a Lie algebra with basis e,, its universal envelope is the associative
algebra generated by e, satisfying the the relations [e4, e5] = f5, €. With the
co-product

Aleg)=1®es+e, 1,
this is a co-commutative (but usually non-commutative) Hopf algebra with the

co-unit defined by €(e,) = 0.

14.1.2. Sweedler notation

There is an elegant notation [31] due to Sweedler that allows us to do computations
on bi-algebras more easily. Recall that A(a) can be written as a linear combination
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of tensor products of elements of A:

A(a) = Za(l)k ®a(2)k
k

Sweedler suggests we drop the index on this and write it as
Aa) = Z acy ®ag)
or even drop the summation symbol and write
Ala) =an) ®a()

After a bit of practice this becomes natural and quite useful,just like Einstein’s
summation convention. But it has to be used cautiously until you are used to
it. Have fun going back and forth between the index notation and the Sweedler
notation.

As an example, let us consider the notion of a convolution on bi-algbras that
generalizes the convolution of functions on a group. Let ¢,/ : A — A be linear
maps in a bi-algebra. Then we can produce another linear map ¢ i : A — A

¢ y(a) = ¢lay)y(a))

Let us translate this into basis notation:
¢eq) = phen, Ylep) =vlep
Aley) = Azceb ® e
¢ (ea) = AJm(dlen) ® Y(ec)) = A pppimleqe.) = Ny gy iml en
so that

(¢ =) = AL pdyeml,.

In particular if id is the identity map in A
¢ *id(a) = ¢(a(y)a(),
(¢ xid)s = Abegdml (= y)j = Abydml,.

This will be useful soon.

14.2. The AntiPode

c2)

We still haven’t used the existence of an inverse in the group. It defines an “antipode
map on the group bi-algebra C(G)

S =rfgh, f:G—oC, geG
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1

satisfying certain compatibility relations. Also, gg~" = e becomes

(1@ 9A(f) = Ale(f))
etc.Given a basis on C(G) the anti-pode can be thought of in terms of its compo-
nents: S(e,) = Sbey,.

Definition. A Hopf algebra is a bi-algebra H with a unit 57 and a co-unit € which
admits a linear map S : H — H (called the antipode) satisfying

Sxid=noe=id*S

In index notation this is AZ"SZmZC = e = AZ"ngZd.

There are also some (more obvious) conditions on the unit and co-unit which
we omit [31]. Not all bi-algebras admit an antipode. If a bi-algebra does admit an
antipode, it is unique [31].

The antipode reverses the multiplication and the co-multiplication:

S(ab) = S(b)S(a)., SemS, = SgShmd,
A% (S(d)) = (S® S)A(d). S5A%" = sbs4As!

We have written out each statement in the index notation for clarity.

14.2.1. Elementary examples of Hopf algebras

e The bi-algebra of functions on a group become a Hopf algebra with the choice
S(f)(g) = f(g~") mentioned above. This is commutative.

e The bi-algebra of a Lie algebra becomes a Hopf algebra with S(e,) = —e,. This
is co-commutative.

14.2.2. First example of a quantum group

To go beyond groups and Lie algebras, we should look for Hopf algebras which are
neither commutative nor co-commutative. Such Hopf algebras are called quantum
groups: In a sense they are more non-commutative than either groups or Lie
algebras.

The elements of such a general Hopf algebra may no longer be functions on
any set! To generalize any property of a group we first translate it to a property of
the space of functions on it; then find a way to generalize it to a Hopf algebra that
may not be either commutative or non-commutative.

The first example was found by Sweedler and a more general one by Taft. These
are the first “Quantum Groups” although that name was not coined until later.
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Example 83. The Taft Algebra [32]. (The special case n = 2 is the Sweedler
algebra.) Let w be a primitive root of unity of order n; i.e., w" = 1 and no smaller
power of w is equal to one. Define an algebra generated by a,u satisfying the
relations

The co-multiplication is
Auy=u®u, Aa)=a®l+u®a
and the co-unit
€(a) =0, e(u)=1
and anti-pode
S(a)=-u'a, Su)=u"

So this is neither commutative nor co-commutative. There is no underlying set
on which elements such as a and u are functions. This is what we give up in order
to have such a generalization.

Exercise 84. Verify that the above satisfies the axioms for a Hopf Algebra of

dimension nZ.

14.2.2.1. “Classical limit”

In the limit n — oo the Taft Algebra reduces to the co-commutative Hopf algebra
corresponding to a familiar Lie algebra. Thus, in a sense it is a “quantization” of
this Lie algebra. To see this, let us note that

w=1+@+0(i)

n

Set
2mi
u=ent a=1,

The condition ua = wau becomes

2mi 2ri 2mi 1
{1+ﬂLO}L+={1+ﬂ}L+{1+ﬂLO}+o(_2) —
n n n n
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Equating terms of order % we get
[L()» L+] = L+

which are the commutation relations of the two dimensional non-abelian Lie
algebra. Also,

2ni 27 27 1
Aw)=A0+—ﬂLq={1+13u&®{1+13u}+0(7)
n n n n
2ni 1
=1+JEU@®1+1®L@+O(7)
n n

so that to leading order
A(Ly) =Lo®1+1Q® Ly.
And, again to leading order, A(a) = a ® 1 + u ® a reduces to

AL)=L,®1+1® L.

14.3. Primitives, Group-Like Elements, Skew—Derivations

The following statements are easy to prove:
e Let H be a Hopf algebra. The subset of elements of Hsatisfying
Alg)=g®g

form a group. Such elements said to be “group-like”.
In the example above, u and its powers are group-like; they form the group Z,.
e Elements of v € H satisfying

AV)=v®l+1®v (14.3.1)

are said to be “primitives”. If v and w are primitives, so is vw — wv. Thus the
sub-space of primitives is a Lie algebra. The condition (14.3.1) is a version of
the Leibnitz identity of differentiation:

V(oY) =v(d)y + dv(¥).

Primitives are derivations in some sense. This will become clear when we look
at Hopf modules.
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e Given a group-like element g € H we can define a generalization of a primitive,
a skew primitive w.r.t. g (also called a g—derivation ) by the condition
Av)=v®1l+g®v
They are derivations up to an action by a group-like element:

v(gy) =v(d)y +g(d)v(¥)

In the Taft algebra, a is a skew-primitive w.r.t. u. Indeed we will see it defines a
“quantum vector field” on a non-commutative torus.

14.4. Hopf-Modules

The idea of a group becomes concrete when we study its representations. The
analogue for a Hopf-algebra is a Hopf-module.

Definition 85. An algebra A is a Hopf-module of the Hopf-algebra H if there is a
linear map H ® A — A (denoted by 2 ® ¢ — h(¢) ) such that

hh(¢) = h(h(¢)), h(1) = e(h)1,  h(¢y) = ha)($) ) (¥)

We are using Sweedler’s notation here. The first condition is analogous the
condition for a Lie algebra representation. The last condition is a generalization of
the "Leibnitz rule" of differentiation.

14.4.1. Example: A Hopf-module of the Taft algebra

We seek an algebra A of matrices and a map H ® A — A. The conditions they
must satisfy are h(¢y) = h(1)(d)h2) () when h is each generator u,a of H. If
we expand this out, we get

u(@y) =u(P)u(y), a(dy)=a()y +u(¢)a(y)
If A is generated by z;, 2o and
u(p) = 2202, a(¢) = 216 — 202, ' 2

we can satisfy these conditions. The conditions on u#" and a” can be satisfied if we
choose

nu=wnn, =1, H=1 w=en
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This is a representation of the finite Heisenberg group, Heis(Z,) where the
central generator takes the value of w . We already know how to realize z; and z;
as n X n matrices. It is not hard to see that any n X n matrix ¢ can be written as a
“polynomial” in z; and zp:

n—1
¢ = Z bz, ¢ eC.
k,1=0
Thus we have the Taft algebra realized as transformations on the algebra A
of n X n matrices. The elements of A can be viewed as functions on a Non-
Commutative Torus (NCT) with z; and z, as co-ordinates.Since the dimension of
A is n2, this NCT is a sort of non-commutative lattice with 72 points.

14.5. SL,(2)

We saw that the Taft algebra is a quantization of the two dimensional Lie algebra.
There is also a Hopf-algebra that reduces in the classical limit to the Lie group of
2 x 2 matrices with determinant one. It is best to construct it as a symmetry of the
quantum plane [31].

Let us start with two variables zj, z» satisfying

2221 = 42122 (14.5.1)

They are co-ordinates of the “quantum plane”. Here, ¢ € C is a complex
. 27i . . .
number?. The special case ¢ = e = (where n is an integer greater than 2) will be

of special interest. The special case ¢ = 1 is the usual plane C2.

Suppose g = (g; g;) acts on z to get some new variables z’, z:

(z])_(gn 8]2) (Zl) (zi’)_(gn 821)(21)

)\ g»f\z2)” \&¥) \en g2/\z

We are not to think of g;; etc, as complex numbers: they are some abstract quantities
whose multiplication properties we are about to derive.

What conditions should be satisfied? by g11, g12, €21, 22 in order that zi, z’2 as
well as z}', 7} also satisfy the condition (14.5.1)? By direct calculation, they are

812811 = 4811812, 822812 = 4812822
821811 = 4811821, 822821 = 4821822 (14.5.2)

812821 = 821822, 811822 — q_lgl2821 = 822811 — 4812821

2For reasons that will become clear later, we require that q2 * 1.
3We are assuming that the elements of g commute with the elements of z.
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These relations (14.5.2)imply that the “quantum determinant”: det,g =
211822 — q’]gugz] is central; i.e., that it commutes with 211,812, 821,822 So
we can set it to one:

21182 —q 'ginga = 1. (14.5.3)

The algebra defined by the relations (14.5.2,14.5.3) is called SL,(2). We can
turn it into a bi-algebra with the co-product

A1) =811 @811 +812®821, A(g12) =811 ®812+81208g»
A(g21) =821 @811 +82® 821, A(gn)=8210812+820gn

etc. It has a co-unit given by

€(gn) =1=¢€(g), €(gi2)=0=c¢€(ga).
Also define

S(gi1) = g2, S(g12) =—qgn2
S(g21) = —q 'ga1,  S(g2) = g1

This can be verified to satisfy the conditions of an antipode. The Hopf algebra
SL4(2) is thus a symmetry of the quantum plane. That is, the quantum plane is a
Hopf-module of SL,(2).

14.5.1. Finite approximations to Lie groups

We know that the Lie group U(1) can be approximated by the finite sub-group Z,,:
In the limit n — oo the group algebra of Z,tends to that of U(1). This allows us
to approximate the Fourier series on U(1) by finite series. For simple Lie groups
such as SU(2) or SL(2, C) there is no obvious analogue for this. The obvious idea
of approximating by finite sub-groups fails: There are only a very small collection
of such finite subgroups (e.g., the symmetries of the Platonic solids in the case of
SO(3)).

But if we look at the larger category of quantum groups (allowing for co-
products to be non-co-commutative) there is a way around this. We illustrate this
with the example of SL,;(2).

If g is a primitive nth root of unity we can impose additional relations that
reduce the dimensions of the above algebras. For example, 7} and zJ are now
central and we can impose

Z’f:l:zg.
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This is the NCT we discussed earlier. Then g7, g7,. 815, 85, are also central in
SLy4(2) and we can impose

gh=1=gyn g&hH=0=g),

This reduces the dimension of SL,(2) to n3. Recall that the dimension of a
group algebra is the number of elements of the group (hence infinite for all Lie
groups). This SL,(2) for g a primitive nth root of unity can be thought of as a
“quantum group” with n* points.

By setting ¢ = ez‘nﬂ, we get a sequence of finite dimensional Hopf algebras
which tend to the Hopf algebra of functions on the group SL(2,C) as n — oo.

To get finite approximations to compact Lie groups such as SU(2) we need
a generalization of the hermitian conjugate: An anti-linear map which preserves
multiplication but reverses the co-multiplication.*

a'=d, b= —qc, ¢l = —q_l*b, d =a

Such finite approximations could be useful in numerical computationsin lattice
gauge theory [34].

“This differs slightly from [31] since we are allowing g to be a complex number.
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Chapter 15

EULER-ARNOLD DYNAMICS

Let us begin with two important physical systems, both due to Euler.

15.1. The Rigid Body

A rigid body is one whose molecules remain at a constant distance between each
other as the body as a whole moves. We will consider the case when there is
no external force or torque on the body. So, the translational degree of freedom
is uninteresting: The center of mass moves at a constant velocity. Its rotations
can be quite intricate if the shape of the body is not symmetric, so that its three
principal moments of inertia are mutually unequal. Euler discovered the equations
that describe this rotation. It is a staple of classical mechanics courses [13]. But
we will briefly review it to set the stage for the vastly more complicated examples
to follow.

The absence of external torques mean that the angular momentum of the body
is constant in time, as measured by an inertial observer. But, the angular velocity
would not be constant as the moment of inertia (which is a symmetric matrix
in general)varies with the orientation of the body. A simpler description can be
obtained in the reference frame that is moving with the body. There is such a frame
in which the moment of inertia is a diagonal matrix. Then the components of the
angular momentum L and the angular velocity € are proportional to each other :

Qi =hL;, Q=hLy, Q3=h3l; (15.1.1)

The constants &y, hy, h3 are positive and are the inverses of the principal
moments of inertia. L, Ly, L3 depend on time, as they are measured in a reference
frame that is rotating with the body, with an angular velocity €. So the total time

297
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derivative, including the effect of this rotation, is zero:

dL
L +QxL=0 (15.1.2)

Combining (15.1.1,15.1.2) we get the Euler Equations for a rigid body

dLy dL,

—+(hy —h3)LrL3=0, ——+(h3—hy)LsL; =0,

7 (hy = h3) Lo L3 T (h3 = hy) L3L,

dL

d—t3+(h1—h2)L1L2=0 (15.1.3)

When h; = hy = hj3 these equations simply say that L is a constant: The
angular momentum is constant even in the rotating reference frame. When just one
pair of the parameters are equal (say h; = hy # h3) a component of (here L3) of
angular momentum is constant. The remaining components of L. and Q are then
expressible as trigonometric functions of time.

This is a good approximation for the rotation of the Earth. Because of the
bulge at the Equator, the moments of inertia are not all equal. But the shape is, to
a good approximation, circularly symmetric: A pair of the moments of inertia are
equal. The axis of rotation of the earth itself precesses around a fixed direction,
with a period of about 26,000 years. Ancient astronomers (e.g., Aryabhatta of 5th
century AD) knew of this precession. Newton himself gave the first mechanical
explanation.

Jacobi solved the general case of the Euler equations when Ay, hy, h3 are
mutually unequal. This depends on the conservation of the magnitude of angular
momentum

2_ 72,72, 72
L =L+ L5+ L5
even in this general case. In addition, the energy
1 1
H=3Q-L= E(h]L% + oL} + h3L3)
is also conserved.

Exercise 86. Directly verify that dd—Ltz = 0 = 4H ysing the Euler equations of a

dt
rigid body.

The solution L(z) describes a curve in R3. This curve is the intersection of the
sphere given by constant L% and the ellipsoid on which H is a constant. Jacobi
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found the solution explicitly in terms of his elliptic functions
Li(t) = Ajen(vt), Ly(t) = Apsn(vet), L3(t) = Azdn(vt)

These elliptic functions satisfy differential equations that generalize those of
the trigonometric functions

d d d
——sn(z) =cn(z)dn(z), —-cn(z) = -sn(z)dn(z), —-dn(z) = —men(z)sn(z)
dz dz dz

They also depend on a parameter m called the modulus.

Exercise 87. Find the relation of the constants A, A, Az, m and v to hy, ha, h3
and the two conserved quantities.

More details are in [13].

15.2. Euler Equations of a Fluid

There is another equation in physics also named for Euler. It describes the flow
of an ideal incompressible fluid. Unlike the rigid body, this is very far from being
exactly solvable. It exhibits a virulent, as yet mysterious, kind of chaos called
turbulence. Understanding turbulence is on everyone’s list of the most important
problems of physics.

The equations of motion of a fluid can be derived [35] from the mechanics of
a fluid element!:

P
divv =0, 6—:+V-VV=—Vp (15.2.1)
Here

e v is the velocity of the fluid, which depends on position and time.

e The first condition is the conservation of mass under the assumption that the
density is constant. (This is the meaning of incompressibility.)

e The second condition is Newton’s law for a fluid element. The left hand side is
the acceleration of a fluid element. In addition to the explicit time derivative,
it has a term describing the acceleration of a small fluid element being carried
along by the fluid flow itself.

!'A fluid element is a region whose size is small compared to the vessel containing the fluid but large
compared to the distance between molecules. Fluid mechanics is the effective field theory of particle
mechanics in this approximation.
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e p isthe pressure divided by density. Even in the absence of external forces (e.g.,
gravity) the fluid has to exert some forces on itself to keep the density constant.
An equivalent point of view is that p is the Lagrange multiplier that enforces
the condition of incompressibility.

We can eliminate p from the equations by taking a curl. It is useful to think of the
fluid flow in terms of vorticity:

w=curlv
Given appropriate boundary conditions this equation can be inverted
v =curl'w.
curl™! is an integral operator called Biot-Savart operator2.

Remark 88. These boundary conditions on v usually say that the normal com-
ponent of v vanishes at the boundary. In other words, that the fluid does not cross
the boundary. We will find it simpler to assume the fluid fills the whole of R? with
the “boundary condition” that velocity and vorticity vanish at infinity faster than
any power.

The Euler equation in vorticity form is

(Z—(;) +[v,w] =0. (15.2.2)
Here
[, W] =u-Vw-w-Vu
is the commutator of vector fields.
Exercise 89. Derive (15.2.2) from (15.2.1). The following identity will be useful:

curl (w X u) = wdivu — udiv w + [u, w]

Show also that the commutator of two vector fields with zero divergence again has
zero divergence.

2]t also arises in magnetism, relating a magnetic field to its current source.
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15.2.1. Energy of a fluid
The two assumptions we made

e there are no external forces (such as gravity)
e the fluid is incompressible

imply that all the energy of the fluid is kinetic. With density set to one
1
H== [ vdx.
2 / v

Exercise 90. Verify by direct calculation that ‘iJ—IZ =0.

15.2.2. Helicity

There is another conserved quantity, called Helicity:
H = / v-wdx, Helicity
The proof of its conservation is straightforward enough:

%?{ = —2/ v.[v,w]dx = 2/ v.curl(v X w)dx = 2/ w.(VXw)dx =0.
In the last step we do an integration by parts using the identity

div(axb) = (curla) -b— (curlb) -a (15.2.3)
Traditionally, it is given a topological interpretation [36,37] . But in our context,

it is more appropriate to understand it as an invariant of the Lie algebra V.
For more on Fluid Mechanics see [35,37].

15.3. Euler-Arnold Equations on a Metric Lie Algebra

Now we will describe a theory of Arnold [37] which unifies the above two examples
into a single framework. It addition it gives us a host of examples of intermediate
complexity. Since turbulence is such a hard problem, it is useful to have these
simple examples. We will study one of them in more detail later.

Let V be areal Lie algebra and G a positive inner product® on it. That is,

G:VXxV—->R

3We will not assume that G is invariant. In fact the interesting cases are precisely the non-invariant
ones.
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is a symmetric bilinear on S. Positive means that
G(u,u) >0
and that
Gu,uy=0 = u=0.

This means that there is an invertible linear map ( also denoted by G to save
on notation)

G:Vi—>V

where V* is the dual vector space* of V.
Recall that every Lie algebra has a representation on itself, the adjoint repre-
sentation:

ad,(w) = [u,w], u,weV
Therefore it also has a representation on its dual, the co-adjoint representation
ada(w) =a([u,w]), uweV, aeV’

Definition 91. A dynamical system on V* evolving in time according to the
differential equation

dw .
E+adea)=0

is called an Euler-Arnold system.

Thus, if V is abelian or if G is invariant, this dynamics would be trivial: w
would be time-independent.

15.3.1. Index notation

It is useful to express these ideas more explicitly, in a basis e, € V and a dual basis
b *,
e’ e V¥ ie.,

eb(ea) = 62

We will assume for the moment that V is finite dimensional, although the
general theory makes sense even for infinite dimensional cases. The Lie algebra

4That is, V* is the space of real-valued linear functions on V.
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structure constants f;, are defined by
lea,ep] = f;bec
Then the positive inner product defines a symmetric matrix
Gab = G(ea, ep)
with an inverse G*? defined by
GGy = 6.
The adjoint representation is, in component form
[ad,w]¢ = fbacubwc, u,wev
Given a € V* the co-adjoint representation is determined by the condition

[adfla]a w +a, [ad,w]% =0

That is
[ad;;a]a we + acflfaubw“ =0
so that
[adZa]a = —a.ffu’
Thus

[ad*cww]a = _wabCadewd = defacbwcwd.
The Euler-Arnold equation is then

d .
% + def;bwcwd =0

This can be thought of as a mechanical system with hamiltonian

1
H = Edewbwd

and Poisson brackets

{wa’ (Ub} = f;bwc
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for the dynamical variables. In particular, the hamiltonian is a conserved. So
these are ideal systems, where there is no dissipation of energy: Frictional effects
such as viscosity are ignored. There may be symmetric invariant tensors (Casimir
elements) in the Lie algebra which can lead to additional conserved quantities.

If there is an invariant inner product

(ea>ep) = Nab
we would have
(ea, [eb,ec]) +([eb,eal ,ec) =0
which means
d d
fbcnad + fbancd =0.

The inverse matrix ¢ defines an inner product on V*. By multiplying the

above equation by 7%/ we get

n°n™ {finad + fianeat =0 =

nee £l +n £, = 0.

Switching indices f — ¢, ¢ — a, in the first term and just f — ¢ in the second

N fra 1 f, = 0. (15.3.1)
The quantity
C= nabwawb

is then a conserved quantity. For,
dc

ar = _27]ae{def;bwcwd}we = 2de77aefbcawcwdwe

We now symmetrize in e, c:
_ rbdy _ae pc ac re
=G"{n fba +7 fba}wcwdwe

which is zero by the above identity (15.3.1).

15.3.2. Special case: The rigid body

In this case the Lie algebra is so(3). The Lie bracket is the cross product of vectors
in R3. The angular momentum is the dynamical variable L, = w,. The Moment
of inertia matrix is the matrix G, of the inner product. Its inverse relates angular
velocity to angular momentum:

Q4 =GL,
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Thus the energy of the rigid body is

1
H= EG“bLaL,,.

The quantities &y, hy, h3 are the eigenvalues of Gab (i.e., inverses of the eigen-
values of G, the moment of inertia).
The extra conserved quantity L? arises from the fact the dot product

u-v=35,utv?t

is an invariant inner product in the Lie algebras. Equivalently, L?> = L, L;,6%? has
zero Poisson brackets with all the components of L.

{L?, L.} =0.

Because of this invariant inner product, we can identify so(3) with its dual
space. In the index notation this is obvious as the covariant and contra-variant
components are the same because of the Kronecker delta. So in this case we can
think of Q and L as belonging to so(3).

The structure constants are completely anti-symmetric with fj23 = 1. Thus the
Euler-Arnold equations become

dL,
/ + zb: hbfabchLb =0

d

For a = 1 this reduces to

dL
d_t] + (hy = h3)wrw; =0

as needed. The remaining equations are cyclic permutations of this.

15.3.3. Special case: The incompressible fluid

Vector fields satisfying the condition of incompressibility

divu =0

SThus there are two inner products of interest here: G is not invariant and gives the energy. The dot
product is invariant and gives another conserved quantity.
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form an infinite dimensional® Lie algebra with the Lie bracket [u,w] = u- Vw —
w - Vu. (Recall the exercise showing that the commutator of two incompressible
vector fields is again incompressible). We will call it S. (There are analogous vector
fields on any manifold with a volume form.)

At constant density, (which we choose to be one by a choice of units) the total

energy of the fluid is
1
H = E/Vzdx

15.3.3.1. Helicity as an invariant inner product

Let us define a bilinear

(u,w) = / u-curl'wdx, uwes

where curl™! is the Biot—Savart operator we mentioned earlier. The first thing to
note is that this is symmetric.
If we put”

u=curla, w=curlb, diva=0=divb

These a, b are unique due to the invertibility of curl. Then,
(u,w) = / (curl a) - bdx
so that
(u,w) —(w,u) = / {(curla) - b — (curl b) - a} dx

This is a total divergence because of the identity (15.2.3).

So, the anti-symmetric part is a surface integral which vanishes for our bound-
ary conditions.

Due to the invertibility of curl in S, we can see that this bilinear is non-
degenerate:

(u,w)=0, YweS = u=0.

Thus (u, w) is an inner product on S.

Any such vector field is determined by two independent functions: Three components satisfying
one condition. Since there are an infinite number of linearly independent functions, the space of
incompressible vector fields is infinite dimensional.

7Recall that the curl of. a vector field is unchanged if we add a gradient to it. We impose the condition
of zero divergence on a and b to remove this ambiguity.
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It is however, not positive. For example, parity reverses its sign. (Recall that
curl u contains the cross-product which changes sign under parity).
Next we will see that (u, w) is an invariant inner product:

{[s,u] ,w) +(u, [s,w]) =0, Vs,u,wes.
For,
[s, w] = curl(w X s)
so that

(u, [s,w]) = / u- (wxs)dx.

By the anti-symmetry of the triple product and the symmetry of (, ),

(u, [s,w]) = —/ w- (s xXu)dx = —(w, [s,u]) = —([s,u] , w)

proving the result.
Thus (u, w) is analogous to the dot product in so(3). Helicity is the special
case

H={w, w)

which is analogous to L - L. Its conservation is thus, a direct consequence of the
invariance of the inner product.The main difference with L? is that helicity is not
positive.

15.3.3.2. Energy as a positive inner product
Expressed in terms of vorticity,
1
H = 3 / curl ' w - curl ' wdx

After an integration by parts this can be written in terms of the Green’s function
of the Laplace operator on vector fields on R>.

H= %/wi(x)Gij(X’J’)wj(J’)dXdy

This is a positive inner product on S* which is however, not invariant.
We can also write this in terms of the invariant inner product above as

1
H = E(curlflw, w)

which is analogous to the formula H = %Q - LL for a rigid body.
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15.4. Euler-Arnold Dynamics on SO (3,1)

When physicists are confronted with a problem that is too hard to solve, we
seek a simpler “toy model” which captures some of the essential aspects of the
original problem. The rigid body is not a useful toy model for fluids, because
it is exactly solvable. It does not exhibit the essential chaotic phenomena. We
seek an example which is close to being exactly solvable (so that we have hopes
of understanding it) but has some chaos as well. We would also like it to have
an invariant inner product (analogous to helicity) which is not positive. This
suggests a non-compact Lie algebra. It would be better for it to be simple,
as the Lie algebra of incompressible vector fields does not seem to have any
ideals.

The best choice appears to be SO(3, 1), the Lorentz group. It is familiar to us
from studying relativistic wave equations: A completely unrelated use of the same
group. Thought of as a real Lie algebra it is six dimensional.

SO(3,1) is arank two Lie algebra, only one step more complicated than SO (3)
of the rigid body.Other familiar rank two Lie algebras such as so(4) ~ so(3)®so0(3)
and 50(2,2) ~ so(1,2) & so(1,2) are not simple.

15.4.1. The Lie algebra

Let us begin by choosing a basis in so(3, 1). The Minkowski metric on R*! is8

100 0
lo 100
™lo 01 0
0 0 0 1

so(3,1) is the vector space of anti-symmetric 4 X 4 matrices with the Lie
bracket

[X,Y] = XnY - YnX.

The Minkowski metric on R!>? induces not one, but two, invariant inner product
on the Lie algebra so(3, 1):

1 1
Ko = 3T XY (XX = 3 00" = 10™) XY

8We chose a different sign convention when we discussed wave equations earlier, because it is more
common in particle physics.
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Here e*”P7 is the completely anti-symmetric tensor with €123 = 1. (X, Y);
changes sign under parity, but it is still invariant under the connected component
of the Lorentz group.

15.4.2. A basis

A basis in so(3, 1) is the set of six matrices

00 0 0 0 1 0 0
oo 0 o 100 0
M=o 0 o 1| M Tlo 0 0 ol

00 -1 0 0 00 0

The - - - denote the cyclic permutations ] -2 -3 > 1,4 —>5 56 — 4.
That the components of so(3, 1) can be split into two groups of three, with a cyclic
symmetry Zz in each subset is a common theme in the calculations below.The
inner products are brought to standard forms (for @, b = 1, - - - 6) in this basis®:

(aa)—03 13 =(aa)—13 03
as b/l — 13 03 ) Uab— as b/2 — 03 _13

The structure constants are defined by

[aq, ap] = f;ba'c — ;b = UCd<[a'a’a'b]’ad>2
It is not hard to compute them explicitly in Mathematica; we do not see the need
to list them as a table.

15.4.3. Aside: Embedding so(3,1) in S

We note in passing that so(3,1) is a Lie-sub-algebra of S, the Lie algebra of
incompressible vector fields. Thus, in some sense, we are studying a sub-system
of fluid mechanics. However, the metric of S does not split as a direct sum of a
metric in so(3, 1) and S: Solutions of the Euler-Arnold equations on so(3, 1) are
not special solutions of the Euler equations for the fluid.

To see that so(3,1) c S we need to find a set of six incompressible vector
fields that satisfy the commutation relations of so(3, 1). Fact familiar to particle
physicists will help us do this. The Lorentz group acts on the time-like hyperboloid;

9We abuse notation slightly here. What is meant is that the inner product (@, @p); is the a, b
component of the matrix on the RHS.
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this is the “mass-shell” of a particle of unit mass and positive energy. The Lorentnz
invariant volume measure is

d’p
V1 +p?

Knowing how so(3, 1) acts on vectors in R>! the basis above translates to

o, 9 .
el =—p3— —...e4 = —_— ...
1 P3ap2 P26p3 4 6[)]

=25(pg — p* = 18(po > 0)dpod’p

where again - - - denotes cyclic permutations over 1,2, 3.
Now, the hyperboloid is diffeomorphic to R? as a manifold. The change of
variables

_ s(lpD
Ip|
with
s(jpl) 1
= = |ply/1+[pI> +log [~[p| + /1 +[p[*||.
3 2
d’p

maps the volume to d°x. The expressions for the vector fields e, in these

N

coo-ordinates is quite messy. But we don’t need them, as commutation relations
are unchanged under such co-ordinate transformations.

15.4.4. The Poisson brackets

The Poisson brackets among the components &, of & € so0(3,1) (in the basis
above) are

{éa,ép}) = f;bfc-

These brackets are degenerate: There are functions (arising from the two invari-
ant inner products)

1
CUE) =bita+brts +bske. OO =5 (E+G+8-6-8-8)

that commute with every function of &,. They are constants of motion and are
therefore determined by the initial conditions.
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15.4.5. The phase space

In the case of the rigid body, the constraint L? = constant picks out a two dimen-
sional sphere. The dynamics of the rigid body takes places on this space: It is the
phase space.© In our case, we can take an element & € so(3, 1) and hold fixed two
quantities Cy, C; coming from the two invariant metrics:

The resulting four-dimensional manifold is the phase space of our system. Thus
we study a hamiltonian system with two degrees of freedom: The minimum needed
to have chaos. If we have one more conserved quantity (in addition to H, Cy, C»)
our system would be integrable.

The geometric shape of the phase space depends on the values of the constants
C; and C;. The simplest choice C; = 0 = C; corresponds to a kind of cone.

15.4.6. The hamiltonian and the equations of motion

The hamiltonian should be a quadratic function of the components of &. For
simplicity, we will choose this to be diagonal quadratic form (in the basis above)

6
> hatl.
a=1

The six parameters h,, along with the Poisson bracket relations

H(h) =

| =

{fasfb} = f;bfc

determine the equations of motion.

d

% = &85 (ha — h3) + &5&6 (hs — he)

d

% = &3&s5 (=h3 — hs) + £286 (ha + he) - - -

The - - - denote the permutations ] -2 -3 — 1,4 -5 — 6 — 4 as usual.

10More geometrically, S2 is a co-adjoint orbit of the rotation group with a standard symplectic structure
given by a construction of Kirillov. But we do not need this more abstract perspective.
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15.4.7. Commuting hamiltonians

Now we use a remarkable discovery!! of [38—40]. If a certain function of the
parameters h, is zero, the system is integrable. So the magnitude of this quantity
is a measure of the chaos in the system.

Theorem 92. IfK(h) = (hihy—h3he)(ha—hs)+--- = 0 the system is integrable

The original proof of [39,40] uses the idea of a Lax pair, a technique popular
in the field of integrable systems. We will describe a more direct proof, which may
be along the lines of [38]. This price for the directness is more calculations, which
can be done in Mathematica.

Proof. We can calculate the Poisson Brackets {H (%), H(h')} for two different
choices A, h’ of the parameters. The result is a cubic polynomial in the six variables
&4. By inspection, there are four conditions for it to vanish:

h]h'z—hzhi+-“=0
hy (hé - /’lg) - (h6 - h5)/’li + /’lshé - hﬁh; =0,---
The first equation is a single condition. The second condition its cyclic permu-
tations give the remaining ones.

A little algebra (again in Mathematica) shows that if there are six parameters
Y, such that

h— Ys—Ys Yo—Y4 Y4—-Ys Y4 Y5 Yg
T \n-B'rB-nrn-n v R Y

o (BX v vy v vy
L-Y3 ' h-Y Y- Y L Y
these conditions are satisfied, for any choice of Y’. Then there would be another

conserved quantity H(h’), making the system integrable.
Thus the question reduces to: ““ when is there such Y,”?

''They were studying a closely related system on so(4); a few tweaks of signs is all that is needed to
use there work for our purpose.
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We can rewrite the first set of these equations as a system of linear equations
forY

0 hi -hy 0 -1 1 Y]

—hy, 0 hy 1 0 -1 Y)

hs —h3 0 -1 1 0 Y; _o
hy 0 0 0 0 Yy

0 hs 0 0 1 0 Ys

0 0 he 0 O 1 Yo

So, the condition is that the matrix above must have zero determinant. This
determinant is

K(h) = (hihy — h3he)(hg — hs) + - - -

Which proves what we claimed. 0

15.4.8. Numerical examples

We still do not know if the system is chaotic when K # 0. It is hard to prove that
a system is chaotic; indeed there isn’t even a precise definition of what chaos is.
There is a quantity due to Kolmogorov and Sinai measuring the rate of entropy
production which comes close to quantifying chaos. Here we have a system where
such ideas can be tried out. For now, the test for chaos is,!2

“I know it when I see it.”

It is not difficult to solve the six ODEs for different choices &, and h,. We can
choose K, C1, C; and choose the remaining parameters randomly to generate many
examples.

By plotting these solutions,!3 it is obvious to the eye that the cases K = 0 (in
Blue in the diagram) and K = 3.1 (in Red) look very different, even with exactly
the same initial conditions.

12This is a quote of Justice Potter of the US Supreme Court. He was talking about something else.
13To visualize a curve in six dimensions is not easy. We have chosen to plot the projection to two
different planes.
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Exercise 93. Write a Mathematica program to (1) pick &, and h, at random
for agiven choice of K, Cy, C; (2) Solve the equations of motion numerically for
these choices (3) Plot the solutions in different projections. By generating many
examples this way, understand the difference between K = 0 and K # 0.

More work is needed to bring ideas from statistical physics to study this system
in detail: Markov Chain Monte Carlo looks like a promising idea to apply here.
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