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PREFACE

For over a hundred years, group theory has played an essential role in theoreti-

cal physics. Even before that it was known that the solution of many mechanical

systems (harmonic oscillator, Kepler problem) are possible because of symme-

tries. E. Noether showed that symmetries imply conservation laws in mechanics.

Groups were also useful in classifying periodic structures (crystals) and their X-ray

diffraction patterns.

Groups and their representation found its deepest uses in Quantum Theory.

Wigner and Weyl were the pioneers. Groups served as a powerful tool to clas-

sify and understand particles and their states in nuclear and high energy physics.

More fundamentally, interactions among elementary particles (electromagnetic

and strong forces) turn out to be a consequence of non-abelian gauge symmetries.

This idea has its roots in General Relativity, where Einstein found that general

covariance leads to gravitational interactions.

So you cannot understand modern theoretical physics without knowing some

group theory. The field is too broad for one person to know everything about every

group. Choices must be made.

My choice of topics is admittedly personal. I have tried to emphasize the con-

cepts (Lie theory, Peter-Weyl Theorem etc.) instead of techniques (listing of irre-

ducible representations, calculation of Casimir invariants etc.). There are already

excellent books that could train you in techniques. To say nothing of various online

resources (Wikipedia, Scholarpedia etc.) that give a quick summary. A good under-

standing can be obtained by studying a few representative cases in depth. Even if

you encounter different cases in your own research, the knowledge so obtained can

often be adapted.

There are also indications that future physicists will need symmetries that go

beyond groups. The most intriguing of these are “quantum groups”. So I have

vii
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included them. I have tried to avoid symmetries that theorists love, but which have

not found much experimental support.

I wish there was time to do more. Among the omissions I regret most are: Co-

adjoint orbits, Virasoro and Kac-Moody algebras and Harish-Chandra’s theory of

unitary representations of non-compact groups.

The book is not meant to be read linearly, cover to cover. Several sections can

be omitted in a first reading; they will make more sense when you return to them

afterwards. They are denoted by a star in the section heading. The later chapters

are more terse and technically involved. They can also be omitted in a first reading.

The more examples and exercises you work out the better your understanding

will be. Some of the exercises are solved in detail. But look at the solution only

after a serious attempt.

My own knowledge and appreciation of group theory is from my teacher,

A. P. Balachandran; augmented by later interactions with Mark Bowick, Feza

Gursey and Susumu Okubo. I owe a debt of gratitude also to Rakesh Tibrewala,

who read most of the book with great care. His comments were very helpful. Of

course, I own entirely any mistakes or confusions that remain.

Thanks also to Christopher B Davis and Rhaimie B Wahap of World Scientific

for their encouragement and patience through the slow process of writing the book.
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Chapter 1

SYMMETRY BEFORE PHYSICS

Symmetries play a central role in modern physics. Very few problems in dynamics

can be solved exactly; only those with a high degree of symmetry (such as rotation

invariance in the Kepler problem.) At a deeper level, symmetries determine the

laws of physics: For example, conservation of energy is a consequence of symme-

try under time translations and conservation of momentum is due to translation

invariance in space. Further, the standard model of elementary particles is deter-

mined to a large extent by gauge invariance; Einstein’s theory of gravity by general

covariance and the Euler equations of a fluid by the Lie algebra of incompressible

vector fields. Modern Physics can only be understood through symmetries.

It is useful to step away for a moment to understand how symmetries appeared

originally, even before physics

1.1. Symmetries in Art and Architecture

1.1.1. Cultural references to symmetries can be found long before physics

Here is an example, from a Buddhist manual on meditation, quoted in [1]:

In the glistening surface of each pearl

are reflected all the other pearls

In each reflection, again are reflected

all the infinitely many other pearls,

So that by this process, reflections

of reflections continue without end.

Highly symmetric geometric patterns can be found in the mosaics of many temples

and mosques, on the Taj Mahal as well as in many Cathedrals of Europe. We seek

symmetry everywhere in life, and beyond. There is symmetry even in a cemetery.

1
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1.2. Symmetries in Geometry

Perhaps the first systematic study of symmetry in geometry is by Greek mathe-

maticians; for example, Plato classified regular solids.

Each Platonic solid (regular solid) has a finite set of rotations as a symmetry.

The simplest is the tetrahedron, whose symmetry contains the permutation of its

four vertices. If you connect the centers of the faces of a Platonic solid, you get
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another one, called its dual. The tetrahedron is self-dual; the dual of a cube is an

octahedron. The icosahedron and the duodecahedron are dual to each other. Dual

solids have the same symmetry. The symmetry group of the icosahedron plays an

interesting role in the theory of the quintic equation: It is the group 𝐴5 of even

permutations of five elements. There are intriguing connections between algebra

and geometry all over this subject.

The vertices of each Platonic solid lie on a sphere; projecting radially from

the center, we can associate points on the sphere with the midpoints of the edges

and faces. Using the stereographic co-ordinates, we can identify the sphere with

the complex projective space CP1. These devices allow us to make concrete the

relation of the geometry of Platonic solids to algebra. To each Platonic solid, there

is a rational function 𝑓 : CP1 → CP1which vanishes at the vertices, is equal to 1

at the mid-points of the edges and has a pole at the center of the faces. The most

sophisticated case, the icosahedron, is worked out in Ref. [2].

1.2.1. A word of warning

Like the Sirens who devoured sailors in the Odyssey, beauty can lead us astray.

Many physicists and astronomers were led to false theories because of their irre-

sistible beauty.

Kepler originally thought he could explain the orbits of planets as circles

centered at the Sun; each planet (there were five known at the time) was associated

to a Platonic solid. Such ideas were not unusual among astrologers of that time.

Since his model did not agree with Tycho Brahe’s data, Kepler persevered and

produced another model in which the orbits are ellipses. This discipline in sticking

to the less symmetric, but empirically correct, model is what distinguished him

from other astrologers; and made Kepler an astronomer. We now know that there

are even higher degrees of symmetry underlying mechanics than Kepler could have

ever imagined (e.g., symplectic transformations).

Truth has its own fierce beauty which far surpasses that of fancy.

Another example is Kelvin, who thought elements in the periodic table were

explained by vortices in ether. The shape of the vortex of hydrogen is a simple

knot, that of helium is the trefoil knot and so on. The correct theory (based on

Quantum Mechanics and the Coulomb potential) is much weirder and far more

beautiful.

The success of the standard model in unifying electromagnetism and weak

interactions led physicists to a quest for a Grand Unified Theory in the 1970s.

Groups such as 𝑆𝑈 (5), 𝑆𝑂 (10) (and the exquisite, irresistible 𝐸8) seemed for

a while to be great candidates. They predicted that the proton should decay at a

certain rate. Experiments,which did not find these decays, have ruled these theories
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out.1 However it turns out, the right answer will have a fierce beauty of its own,

which may not be evident at first.

We resist the temptation to follow the theory of Platonic solids and such further

(e.g., Coxeter groups), as they do not lead to currently useful physics. Odysseus

listened to the Sirens, but saved himself by being chained to the mast of his ship.

He sealed the ears of his crew with wax so they would not be led astray.

1.3. Symmetries in Algebra

1.3.1. The basic mathematical idea is a group

We will give a precise axiomatic definition later. For now, a group describes the

transformations (symmetries) of some physical or geometrical object. For example

an equilateral triangle 𝑃𝑄𝑅 can be rotated around its center by 120 degrees to get

to an equivalent situation, changing only the labelling of the vertices to 𝑄𝑅𝑃 . If

we do it again we get 𝑅𝑃𝑄. A third iteration gets us back to the same triangle,

even labelled the same way. The set of these transformations is a group with three

elements: The identity 1 (which does nothing), an element 𝜎 : 𝑃𝑄𝑅 ↦→ 𝑄𝑅𝑃

which rotates by 120 degrees, an element 𝜎2 which rotates by 240 degrees. The

condition

𝜎3
= 1

expresses the fact that a rotation through 360 degrees is the same as the identity.

This group
{
1, 𝜎, 𝜎2

}
is called 𝑍3, the cyclic group of three elements. This is an

example of an abelian group, one in which the product of two elements does not

depend on the order of multiplication. Abel was a Norwegian mathematician who,

along with Galois, invented the idea of a group.

An equilateral triangle also has a symmetry under reflections along the line

orthogonal to a side and passing through the opposite vertex: e.g., 𝜏 : 𝑃𝑄𝑅 ↦→
𝑄𝑃𝑅. If we apply 𝜎 followed by 𝜏 we end up with 𝑃𝑄𝑅 ↦→ 𝑄𝑅𝑃 ↦→ 𝑅𝑄𝑃; i.e.,

𝜏𝜎 : 𝑃𝑄𝑅 ↦→ 𝑅𝑄𝑃. If we apply them in the opposite order𝑃𝑄𝑅 ↦→ 𝑄𝑃𝑅 ↦→ 𝑃𝑅𝑄

so that𝜎𝜏 : 𝑃𝑄𝑅 ↦→ 𝑃𝑅𝑄. Thus we see that𝜎𝜏 ≠ 𝜏𝜎; i.e., the group is not abelian.

You can see moreover that all six permutations of the vertices can be obtained

by some combination of 𝜎 and 𝜏: 𝑃𝑄𝑅,𝑄𝑅𝑃, 𝑅𝑃𝑄,𝑄𝑃𝑅, 𝑃𝑅𝑄, 𝑅𝑄𝑃. In other

words, 𝜎 and 𝜏 are generators of the permutation group 𝑆3 of a set of three objects.

In the next section we will see that the same group 𝑆3 appears in a totally

different context: The solution of a cubic equation.

1But discovered neutrinos emitted by a supernova, a completely different phenomenon.
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Exercise 1. Show that 𝜎𝜏 = 𝜏𝜎−1

1.3.2. Which polynomial equations can you solve algebraically?

Everyone knows that the quadratic equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

has the two solutions

𝑥 =
−𝑏 ±

√
𝑏2 − 4𝑎𝑐

2𝑎
.

In the middle ages, it was found that cubic and fourth degree equations can also

be solved in a similar way, in terms of cube roots and fourth roots. The formulas are

much more complicated though. But no one could find a solution for the general

fifth order equation (quintic) in terms of fifth roots, and similarly for higher order

equations. But special cases could be solved that way. Galois, continuing ideas of

Abel, showed that the general quintic cannot be solved this way: There are fifth

order equations that cannot be solved even if you could calculate fifth roots.

To understand the connection of symmetries to algebraic equations, let us

take a closer look at the solution of the quadratic. Let 𝛼, 𝛽 be the roots of 𝑎𝑥2 +
𝑏𝑥 + 𝑐 = 0:

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑎(𝑥 − 𝛼) (𝑥 − 𝛽)
By comparing the coefficients of the powers of 𝑥 we get

𝑏 = −𝑎(𝛼 + 𝛽), 𝑐 = 𝑎𝛼𝛽

This is the easy part: The hard part is to go in the other direction and determine

𝛼, 𝛽 in terms of 𝑎, 𝑏, 𝑐. Before we do that, notice that the coefficients 𝑏, 𝑐 are sym-

metric functions of 𝛼, 𝛽: If we interchange 𝛼 ↔ 𝛽 they do not change. Moreover,

any symmetric function of the roots can be written in terms of the coefficients.

This is the key point. Of particular interest is the discriminant

Δ = (𝛼 − 𝛽)2

This is a function of the roots that vanishes iff the roots coincide. Being

symmetric in 𝛼, 𝛽 we can express this in terms of the coefficients. It is not hard to

do this explicitly:

(𝛼 − 𝛽)2
= (𝛼 + 𝛽)2 − 4𝛼𝛽 =

𝑏2 − 4𝑎𝑐

𝑎2

So,

𝛼 − 𝛽 = ±
√
𝑏2 − 4𝑎𝑐

𝑎
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Since we already know 𝛼 + 𝛽 = − 𝑏
𝑎
, we have reduced the problem of solving a

quadratic to solving two linear equations. So, one way to understand the solution

of the quadratic is to focus on the symmetries of the equation. We were able to

reduce the nonlinear part of the problem to solving for a radical 𝑦2 = Δ.

Let us see if this generalizes to higher orders. The classical idea is to reduce

cubics (resp. quartics) to evaluating cube roots (resp. fourth roots) plus some

elementary operations of addition, multiplication and division.

1.3.3. Solving Cubics

Some cubic equations are easy to solve because they can be reduced to quadratic.

For example, 𝑥3 − 1 = 0 has an obvious solution 1. Since

𝑥3 − 1 = (𝑥 − 1) (𝑥2 + 𝑥 + 1)

the other two roots are given by the roots of the quadratic 𝑥2 + 𝑥 + 1 = 0. If we

define

𝜔 =
−1 +

√
3𝑖

2

the three roots of 𝑥3 − 1 = 0 are 𝜔0 = 1, 𝜔, 𝜔2. More generally, any equation of

the type

𝑥3 − 𝑠 = 0

has solutions in terms of the cube root of 𝑠:

𝑥 = 3
√
𝑠, 𝜔 3

√
𝑠, 𝜔2 3

√
𝑠

What about more general equations?

𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0

Clearly 𝑎 = 0 can be excluded, since that would be merely a quadratic. Then

we can divide throughout by 𝑎 and redefine 𝑏
𝑎

= −𝑠1 etc. to reduce the cubic

equation to

𝑥3 − 𝑠1𝑥2 + 𝑠2𝑥 − 𝑠3 = 0.

(The signs are chosen to make later formulas simpler.)

If the roots are 𝛼1, 𝛼2, 𝛼3 we must have

𝑥3 − 𝑠1𝑥2 + 𝑠2𝑥 − 𝑠3 = (𝑥 − 𝛼1) (𝑥 − 𝛼2) (𝑥 − 𝛼3)

Comparing coefficients

𝑠1 = 𝛼1 + 𝛼2 + 𝛼3, 𝑠2 = 𝛼1𝛼2 + 𝛼2𝛼3 + 𝛼3𝛼1, 𝑠3 = 𝛼1𝛼2𝛼3.
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Notice that these are symmetric under permutations of the roots. There are six

permutations of three objects labeled by 1, 2, 3. Of these,

123, 231, 312

involve an even number of pair-wise interchanges. (0 is an even number; so the

identity, which does nothing, is an even permutation.) The remaining are the odd

permutations

213, 132, 321

The composition of two even permutations is again even; so they form a

subgroup (i.e., a subset which contains all of the products and inverses of its

elements). The composition of two odd permutations is even; so they do not form

a subgroup. Define

𝜎 : 123 ↦→ 231, 𝜏 : 123 ↦→ 213

Clearly, 𝜎 is even and generates the even permutations (i.e., all other even

permutations are its powers). 𝜏 is odd. Moreover,

𝜎3
= 1, 𝜏2

= 1

We will now find combinations of roots that transform nicely under 𝜎 and 𝜏.

The key is a “discrete Fourier transform” (also called the “Lagrange resolvent” )

𝐴 = 𝛼1 + 𝜔𝛼2 + 𝜔2𝛼3

where

𝜔 = 𝑒
2𝜋𝑖

3

is a cube root of unity. Clearly,

𝜎 : 𝐴 ↦→ 𝛼2 + 𝜔𝛼3 + 𝜔2𝛼1 = 𝜔−1
(
𝛼1 + 𝜔𝛼2 + 𝜔2𝛼3

)
using 𝜔2 = 𝜔−1; i.e.,

𝜎 : 𝐴 → 𝜔−1𝐴

Since 𝜔3 = 1 we see that 𝐴3 is invariant under 𝜎. But acting with 𝜏 on 𝐴 gives

something new:

𝜏 : 𝐴 ↦→ 𝐵 ≡ 𝛼2 + 𝜔𝛼1 + 𝜔2𝛼3

Again 𝐵3 is invariant under 𝜎 . And 𝜏 : 𝐵 ↔ 𝐴 since 𝜏2 = 1.Thus

𝐶 = 𝐴3 + 𝐵3, 𝐷 = 𝐴3𝐵3

are invariant under both 𝜎 and 𝜏; therefore they are invariant under all permuta-

tions of roots. But that means that 𝐶, 𝐷 can be written in terms of the original

coefficients 𝑠1, 𝑠2, 𝑠3. This is the crucial point.
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It is good for your soul to work out 𝐶, 𝐷 in terms of 𝑠1, 𝑠2, 𝑠3 explicitly. If

you don’t care about your soul, you can make Mathematica do this work (use an

operation called Symmetric Reduction).

Exercise 2. Show that

𝐶 = 2𝑠31 − 9𝑠1𝑠2 + 27𝑠3, 𝐷 = 𝑠61 − 9𝑠41𝑠2 + 27𝑠21𝑠
2
2 − 27𝑠32

We have climbed to a point from which we see the solution to any cubic. From

the coefficients of the cubic, we find 𝐶 and 𝐷 . Then find 𝐴3 and 𝐵3 because they

are solutions of the quadratic

(𝑥 − 𝐴3) (𝑥 − 𝐵3) ≡ 𝑥2 − 𝐶𝑥 + 𝐷 = 0.

Taking cube roots of these solutions will give 𝐴 and 𝐵 . Once you know 𝐴 and

𝐵 we can find 𝛼1, 𝛼2, 𝛼3 by solving the linear system (i.e., inverting the discrete

Fourier transform)

𝑠1 = 𝛼1 + 𝛼2 + 𝛼3, 𝐴 = 𝛼1 + 𝜔𝛼2 + 𝜔2𝛼3, 𝐵 = 𝛼1 + 𝜔2𝛼2 + 𝜔𝛼3.

Exercise 3. Write a Mathematica (or python) program that implements this way

of solving a cubic.

Exercise 4. Express the discriminant Δ = (𝛼1 − 𝛼2)2(𝛼2 − 𝛼3)2(𝛼3 − 𝛼1)2 as a

polynomial in the coefficients 𝑠1, 𝑠2, 𝑠3 of the cubic.

Answer:

Δ = −4𝑠3𝑠
3
1 + 𝑠2

2𝑠
2
1 + 18𝑠2𝑠3𝑠1 − 4𝑠3

2 − 27𝑠2
3.

The lesson is that understanding the symmetries of an equation allows us to

develop a strategy to solve it. Or, to show that it cannot be solved by the methods

under consideration.

1.3.4. Higher order equations∗

A radical equation like 𝑥𝑛 = 𝑠 has a commutative symmetry group 𝑍𝑛 with 𝑛

elements (the group of cyclic permutations). The general 𝑛th order equation has

symmetry under the permutation group 𝑆𝑛 (which has 𝑛! elements). The reason

why cubics can be solved is that 𝑆3, although non-commutative, can be built out

of two commutative groups 𝑍3 and 𝑍2.

The precise statement is that 𝑍3 is a normal subgroup of 𝑆3 and that 1 → 𝑍3 →
𝑆3 → 𝑍2 is an exact sequence of group homomorphisms. Or equivalently that 𝑆3

is the extension of 𝑍3 by 𝑍2.
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The permutation group of four elements 𝑆4 also can be written as an iterated

extension of commutative groups. This explains why the quartic can also be solved

in general. The formulas are more complicated, but a “resolvent” (“discrete Fourier

transform”) allows us to reduce the general quartic to a system of linear equations

and taking fourth roots.

But the quintic is no longer solvable by such elementary methods. The permu-

tation group of five elements 𝑆5 can be written as an extension of the group of even

permutations 𝐴5 by 𝑍2. But 𝐴5 is a simple group: It cannot be decomposed as the

extension of any smaller group. (A better name for such groups would have been

“prime groups”. But we are stuck with the name.) This was the insight of Abel and

Galois, who are founders of this branch of mathematics: The theory of groups and

fields.

Of course, nowadays, we would solve polynomial equations numerically by an

iterative approximation method such as Newton–Raphson. But the “complexity

theory” of algebraic equations continues as a fascinating subject; e.g., work by

McMullen et al. and various conjectures by Smale. Group theory continues to play

an important role.

1.3.5. The Erlangen Program

Before they became standard tools in physics, groups became important in geom-

etry through a visionary research program of Felix Klein at Erlangen. It is obvious

that a sphere has symmetry under rotations. Also, a square lattice (points on the

plane separated by equal steps along each axis), has a symmetry under some trans-

lations and rotations. Klein saw a way to extend these ideas to non-Euclidean

geometries such as a hyperboloid. These led Lie, Noether, Poincare and others to

study deeper connections between groups and physics. It was not until the discov-

ery of relativity and quantum mechanics that the deep role that symmetry plays in

physics became clear. A classic text by Hermann Weyl was important in bridging

physics and mathematics. The book [1] gives much more detailed account of the

mathematical side of this story.

1.3.6. Galois Theory in other disciplines∗ (Speculative)

The essence of Klein’s idea is this: Each geometric object has a set of transforma-

tions which leave it invariant. For the plane, these are translations and rotations.

For the upper half-plane (which can be mapped invertibly to the hyperboloid), they

are the fractional transformations 𝑧 → 𝑎𝑧+𝑏
𝑐𝑧+𝑑 , for real 𝑎, 𝑏, 𝑐, 𝑑. Similarly, what we

mean by a problem being solvable is that a solution can be found by combining
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certain types of operations. For example, the classical definition of a solvable

algebraic equation allows for radicals plus the usual arithmetical operations of

addition, multiplication and division. Could there be a similar approach in other

disciplines?

• Lie’s motivation in developing the theory of Lie groups was to find a “Galois

theory” of ordinary differential equations. To this day, only a part of his vision

has been realized (e.g., Differential Galois Theory). The class of operations

allowed to solve a dynamical system is now much broader than in Lie’s day: We

must include systems than can be solved to reasonable accuracy by numerical

methods. In this sense, celestial mechanics is solvable (despite chaos) but not

fluid mechanics (because of turbulence). How to make this precise?

• McMullen et al., have extended Galois theory to include solution by iteration

(e.g., solvable numerically).Amazingly, the dividing line is at order six: Quintics

can also be solved by iteration of a rational function of one variable, but sextics

need such an iteration of a function of two variables! Smale has interesting

conjectures on further extensions of these ideas.

• Is there a “Galois theory” or “Erlangen program” of solvability of quantum sys-

tems? One approach might be to consider as the “Galois group” the fundamental

group of the Riemann surface of the energy spectrum, thought of as a function of

the coupling constant (analytically continued to complex values). Typically, one

expects an infinite number of square root branch points, which might accumu-

late. Bender and Wu have worked this out in detail for the anharmonic oscillator.

But a general theory eludes us.

• The Schrodinger equation of small atoms and molecules can be solved ab initio.

But large molecules and materials are beyond the ability of even the largest

computers. What is the precise measure of quantum complexity?

• Quantum groups were discovered while solving certain spin chains (Bethe, Yang

and Baxter). Do they also appear in more realistic systems?

• Tarski was inspired by the Erlangen program to consider a similar approach to

logic: Every logical system has some set of operations that are allowed, allowing

us to transform sentences without changing their truth value. This could lead to

a theory of Computational Complexity.

• What kind of groups underlie computer science problems of class 𝑃 (that can

be solved in Polynomial time)? Are they different from the groups of class 𝑁𝑃?
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Chapter 2

GROUPS AND THEIR REPRESENTATIONS

Once you understand the basic structure of a physical or mathematical theory, it is

useful to summarize the basic laws as axioms: Independent facts from which all

others can be derived. This was first achieved for plane geometry by Euclid. For

mechanics by Newton. There is always a period of experimentation and discovery

before a subject become mature enough to be axiomatized. Algebraic concepts we

study in this book were developed over the nineteenth century and formalized in

the early twentieth century. It is time we gave a mathematically precise definition

of a group.

Definition. A group is a set 𝐺 along with a binary operation 𝐺 × 𝐺 → 𝐺, which

obeys

• Associativity: (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐), ∀𝑎, 𝑏, 𝑐 ∈ 𝐺

• There is an identity element 𝑒 ∈ 𝐺 such that 𝑒𝑎 = 𝑎𝑒 = 𝑎

• For every 𝑎 ∈ 𝐺 there is an inverse such that 𝑎𝑎−1
= 𝑎−1𝑎 = 𝑒.

Usually, you should think of a group element as a transformation on some other

set of objects. For example, rotations of an equilateral triangle around its center.

Or the permutations of a deck of cards.

Definition. A subset of a group which contains all the products and inverses of its

elements is a subgroup.

2.1. Examples

Examples breathe life into an abstract theory. Group theory abounds in many

fascinating examples. Much of the following may not make sense in a first read-

ing, but I encourage the reader to look into each example and make as much

13
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sense of them as possible. On a later reading perhaps more of them will become

clear.

(1) The smallest group is the singleton set containing just one element. Its product

with itself is itself, and it is its own inverse. This is called the trivial group.

The empty set cannot be a group. (Why not?)

(2) The only group of two elements is 𝑍2 = {1, 𝜔|𝜔2 = 1}.

(3) The cyclic group of 𝑛 elements is 𝑍𝑛 = {1, 𝜔, 𝜔2, . . . , 𝜔𝑛−1 |𝜔𝑛 = 1}. The

multiplication law is𝜔𝑚𝜔𝑘 = 𝜔𝑚+𝑘 . The inverse of𝜔𝑚 is 𝜔𝑛−𝑚. It describes

cyclic permutations of a set of 𝑛 elements.

(4) The group multiplication law does not have to be commutative. The group

of quaternions has 8 elements 1, 𝑖, 𝑗 , 𝑘, −1,−𝑖,− 𝑗 ,−𝑘 satisfying 𝑖 𝑗 = 𝑘 =

− 𝑗𝑖, 𝑗 𝑘 = 𝑖 = −𝑘 𝑗, 𝑘𝑖 = 𝑗 = −𝑖𝑘, 𝑖2 = 𝑗2 = 𝑘2
= −1. Exercise: Find 2x2

matrices that satisfy these relations.

(5) The permutations on a set of 𝑛 elements is a group, also called the symmetric

group 𝑆𝑛. It has 𝑛! elements. Cyclic permutations are a subgroup. There

are volumes dedicated to the study of this group, and its representations.

Exercise: Show that any finite group is a subgroup of 𝑆𝑛 for some 𝑛 (Hint:

This is not as impressive as it sounds: Almost a tautology.)

(6) Any permutation can be written as a product of transpositions (pairwise per-

mutations). Even permutations (product of an even number of transpositions)

form a subgroup called the alternating group 𝐴𝑛 .

(7) The set of integers is a group under addition. But not under multiplication.

(Why not?)

(8) The set of rational numbers is a group under addition. Also, the set of non-zero

rational numbers is a group under multiplication.

(9) Similarly for real and complex numbers.

(10) Let Z/𝑛Z be the set of integers modulo some natural number 𝑛. This is an

additive group, isomorphic to the cyclic group 𝑍𝑛. It is not a group under

multiplication because for example, 0 does not have an inverse.

(11) The subset (Z/𝑛Z)× of elements of Z/𝑛Z which are co-prime to 𝑛 is a group

under multiplication as well. (That is, 𝑎𝑏 ≡ 1 mod 𝑛 has a solution iff 𝑎

is co-prime to 𝑛). The number of elements in this group is the Euler totient

function 𝜏(𝑛), a central fascination of number theorists. Exercises: Show

that if 𝑝 is a prime, all of the non-zero elements of Z/𝑝Z have inverses. So,

𝜏(𝑝) = 𝑝 − 1. What is 𝜏(10)?

(12) The set of 𝑛 × 𝑛 complex matrices of non-zero determinant is a group. It is

denoted by 𝐺𝐿𝑛 (𝐶) or 𝐺𝐿(𝑛, 𝐶). GL stands for “general linear”.



GROUPS AND THEIR REPRESENTATIONS 15

(13) Similarly, 𝐺𝐿𝑛 (𝑅) is the group of real matrices of non-zero determinant.

(14) Matrices of determinant one used to be called “special”. Thus 𝑆𝐿(𝑛, 𝐶) ⊂

𝐺𝐿(𝑛, 𝐶) is the subgroup of complex 𝑛 × 𝑛 matrices of determinant one.

Similarly for 𝑆𝐿(𝑛, 𝑅).

(15) The inverse of a matrix with integer entries also has integer entries, as long

as the determinant is one. (Prove this.) Of course the product of two matrices

with integer entries is integral as well. Thus, 𝑆𝐿(𝑛, 𝑍) is a group although

𝐺𝐿(𝑛, 𝑍) is not.

(16) For example, 𝑆𝐿(2, 𝑍) =
{(

𝑎 𝑏
𝑑 𝑑

)
| 𝑎𝑑 − 𝑏𝑐 = 1

}
is a group. It is called the

modular group and is important in the study of doubly periodic functions

(i.e., elliptic functions).

(17) A real matrix is orthogonal if its transpose is also its inverse: 𝑔𝑔𝑇 = 1. The

set of real orthogonal matrices is a group, called 𝑂 (𝑛).

(18) The determinant of 𝑔 ∈ 𝑂 (𝑛) has to be ±1. (Why?) The subset of orthogonal

matrices of determinant one is called 𝑆𝑂 (𝑛).We will see that it is the group

of rotations in R𝑛

(19) A complex matrix is said to be unitary if its inverse is its complex conjugate

transpose (hermitian conjugate): 𝑔𝑔† = 1. The set of unitary matrices 𝑈 (𝑛)

is a group. The subset of unitary matrices of determinant one is the group

𝑆𝑈 (𝑛). Special cases such as 𝑆𝑈 (2), 𝑆𝑈 (3) are at the foundation of particle

physics.

(20) There is a close relationship between 𝑆𝑈 (2) and 𝑆𝑂 (3). They are the same

except for a sign. We will see that this is important in understanding the spin

of an electron.

(21) The set of twists you can do to a Rubik’s cube is a group. Exercise: How

many elements does it have? (This is a lot harder than it seems.)

(22) There is a huge literature on applying symmetry groups to molecular and

crystal physics. This used to be the main application of groups to physics.

We won’t do much of that in this book, saving our energy for more modern

applications.

(23) Many viruses have symmetric shapes. It is not yet clear if this is important

in understanding their biology.

(24) The set of all smooth co-ordinate transformations (of non-zero Jacobian) is

a group. This is the invariance group of General Relativity, Einstein’s theory

of gravity.

(25) The set of smooth functions from space-time to 𝑆𝑈 (𝑛) is a group. The

invariance group (gauge group) of the standard model of elementary particle

physics is built out of this.
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(26) The set of smooth transformations on a manifold 𝑀 (with Jacobian equal to

one) is a group, which we will call 𝑆𝐷𝑖 𝑓 𝑓 (𝑀). When the dimension of 𝑀 is

two or three, this group is the configuration space of an incompressible fluid;

the Euler equations, which describe the flow of such a fluid, are equations for

geodesics on it.

2.1.1. A map from a group to another that preserves multiplication is

called a homomorphism. An isomorphism is a homomorphism

that is one-to-one and onto.

Thus, a homomorphism 𝑓 : 𝐺 → 𝐻 will satisfy

𝑓 (𝑔1𝑔2) = 𝑓 (𝑔1) 𝑓 (𝑔2)

The set of elements of 𝐺 that are mapped to the identity of 𝐻 is called the

kernel of this homomorphism. The kernel of any homomorphism is a subgroup.

If there is an isomorphism between two groups they have the same structure: At

some abstract level they are identical. A moment’s reflection will show you that

the kernel of an isomorphism is trivial.

2.1.2. An automorphism is a one-one and onto map 𝒇 : 𝑮 → 𝑮 that

preserves the multiplication

In a sense, an automorphism is a symmetry of the group itself. The most obvious

example is a conjugation. Pick some element ℎ ∈ 𝐺 and define

𝑓ℎ (𝑔) = ℎ𝑔ℎ
−1.

Then

𝑓ℎ (𝑔1) 𝑓ℎ (𝑔2) = ℎ𝑔1ℎ
−1ℎ𝑔2ℎ

−1
= ℎ𝑔1𝑔2ℎ

−1
= 𝑓ℎ (𝑔1𝑔2).

Such an automorphism is called an “inner automorphism” . Many groups also

have “outer automorphisms” that are not of this type.

2.1.2.1. Examples

(1) There is an isomorphism from the cyclic group of 𝑛 elements, 𝑍𝑛, to the group

of 𝑛th roots of unity: 𝜔 ↦→ 𝑒
2𝜋𝑖
𝑛 .

(2) The determinant is a homomorphism from 𝑂 (𝑛) → {1,−1}. Its kernel is

𝑆𝑂 (𝑛).
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(3) There is a homomorphism 𝑅 : 𝑆𝑈 (2) → 𝑆𝑂 (3) whose kernel is the subset

{1,−1} (where 1 stands for the identity matrix). We will study this one in more

detail later as it is important in quantum mechanics.

(4) Complex conjugation is an outer automorphism of the group 𝑆𝐿(2, 𝐶).

2.2. Representations

2.2.1. A homomorphism 𝒓 : 𝑮 → 𝑮𝑳(𝒏, 𝑪) is called a representation

Representations allow us to think of group elements in terms of matrices, which

are much more concrete objects, almost as familiar as numbers.

2.2.1.1. A unitary representation is a homomorphism to 𝑟 : 𝐺 → 𝑈 (𝑛)

An orthogonal representation is 𝑟 : 𝐺 → 𝑂 (𝑛) etc.

In quantum mechanics, symmetries are unitary representations. They are there-

fore the most important representations. In general the representations might be

in terms of infinite dimensional matrices. But we will mostly confine ourselves

to finite dimensional matrices as the theory is so much simpler, but still useful in

physics. Most representations we study will be unitary or orthogonal.

2.2.1.2. Example

(1) Any element of the permutation group 𝑆3 can be written as a product of a

cyclic permutation 𝜎 : 𝑃𝑄𝑅 → 𝑄𝑅𝑃 and a reflection 𝜏 : 𝑃𝑄𝑅 → 𝑄𝑃𝑅. We

say that 𝑆3 is generated by 𝜎, 𝜏. A representation in 𝑂 (3) is given by

𝜎 ↦→
���
�
0 1 0

0 0 1

1 0 0

	

�
, 𝜏 ↦→

���
�
0 1 0

1 0 0

0 0 1

	

�
2.2.1.3. Recall that the direct sum of two matrices is given by stacking

them as a bigger matrix 𝐴⊕𝐵 =

(
𝐴 0
0 𝐵

)
. This can be extended to

the direct sum of two representations 𝑟1 ⊕ 𝑟2 (𝑔) =
(
𝑟1 (𝑔) 0

0 𝑟2 (𝑔)

)
Clearly, the direct sum of unitary representations is also unitary. Physically, the

direct sum of representations describes two subsets of states of the same system,

that are not mixed into each other by the action of the symmetry group. For

example, rotations do not mix the 𝑝 states of hydrogen with the 𝑑 states. They
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belong to two separate direct summands in the representation of the rotation group

on the space of states of hydrogen. More on this later.

2.2.1.4. Conversely, if a representation can be decomposed as the sum

of two other representations (if every representation matrix is

the direct sum of two others) we say that the representation is

“completely reducible”

2.2.1.5. Two representations are equivalent if there is an invertible

matrix 𝑆 (independent of 𝑔) such that 𝑟1 (𝑔) = 𝑆𝑟2(𝑔)𝑆
−1,

∀𝑔 ∈ 𝐺

If 𝑆 is unitary we say that they are unitarily equivalent. Equivalent representations

only differ by a choice of basis: Not different in an essential way.

2.2.1.6. The direct product (also called tensor product) of two represen-

tations is defined in terms of the direct product of matrices in a

similar way

Physically the direct product describes a system that has two parts. For example,

the hydrogen atom has a proton and an electron. The representation of the rotation

group is the direct product of the representations on each constituent.

2.2.2. Group action

A group 𝐺 is said to act on a set 𝑋 if there is a map 𝐺 × 𝑋 → 𝑋 which respects

the group multiplication

𝑔1𝑔2(𝑥) = 𝑔1 (𝑔2(𝑥))

Given 𝑥 ∈ 𝑋 , the set of all the elements you can get from it by acting with

some 𝑔 is called its “orbit”.

The action is said to be transitive if there is a single orbit: Any element in 𝑋

can be taken to any other element by some 𝑔. More typically, the set of orbits𝐺\𝑋

contains many elements.

(1) Of course, a representation is the particular case of a group action, where 𝐺

acts on a vector space through matrices.

(2) Rotations around the origin act on R3. The orbit of the origin is itself. The

orbit of every other point is the sphere (centered at the origin) passing through

it. Thus, an orbit is determined by its radius. In other words, there is a one-one
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correspondencebetween the set of orbits 𝑆𝑂 (3)\R3 and the set of non-negative

real numbers.

(3) Another obvious example is the symmetric group 𝑆𝑛 acting on some set of 𝑛

elements by permutations.

(4) A group acts on itself by multiplication on the left. There is a single orbit,

which is the whole group.

(5) A subgroup 𝐻 ⊂ 𝐺 acts on 𝐺 by multiplication on the left. In this case, there

can be several distinct orbits. The set of orbits 𝐻\𝐺 is called the “left coset

space” of 𝐻 in 𝐺. (There is a similar story with right multiplication.) For

example, rotations around the third axis is a subgroup of 𝑆𝑂 (3). Since it only

affects the first two co-ordinates, this subgroup is isomorphic to 𝑆𝑂 (2). The

coset space 𝑆𝑂 (2)\𝑆𝑂 (3) is S2, the sphere (Prove this!).

(6) Words like “orbit” are a reminder that this whole theory originates in mechan-

ics. Specifically, the time evolution of a system is an action of the addi-

tive group of real numbers on its phase space. The simplest example is

the harmonic oscillator with hamiltonian 𝐻 =
1
2
𝑝2 + 1

2
𝜔2𝑞2. Its orbits are

ellipses:

𝑞(𝑡) = 𝐴 cos𝜔𝑡, 𝑝(𝑡) = −𝜔𝐴 sin𝜔𝑡

(7) The orbits of a chaotic dynamical system can be immensely complicated.

Your physical intuition can be misled if you spend too much time on exactly

solvable systems like the harmonic oscillator. In general, group actions are

deep, complicated things that describe all sorts of natural and mathematical

phenomena.

2.3. Quotient of Groups

Definition. A subgroup 𝐻 of 𝐺 is said to be normal if the left and right cosets are

equal.

That is, the sets 𝑔𝐻 and 𝐻𝑔 are the same for every 𝑔 ∈ 𝐺. Equivalently, for

every ℎ ∈ 𝐻 and 𝑔 ∈ 𝐺 there is an ℎ̃ ∈ 𝐻 (which may depend on 𝑔) such that

𝑔ℎ = ℎ̃(𝑔)𝑔

If 𝐺 is abelian every subgroup is normal. In general this is not the case. We

will denote a normal subgroup by 𝐻 ⊳ 𝐺.

The importance of this idea is that given 𝐻 ⊳ 𝐺 we can define a multiplication

of cosets which turns 𝐺/𝐻 into a group. If we take a representative of the right
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coset 𝑔𝐻 and another of 𝑔′𝐻 and multiply them, we can rewrite

𝑔ℎ𝑔′ℎ′ = 𝑔𝑔′ℎ̃(𝑔)ℎ′

which is an element of the coset 𝑔𝑔′𝐻. This product can be seen to be associative

and has an inverse; thus 𝐹 = 𝐺/𝐻 is itself a group. The map 𝑝 : 𝐺 → 𝐹 which

sends every 𝑔 ∈ 𝐺 to its right coset 𝑔𝐻 is a surjective group homomorphism. The

kernel is 𝐻, the coset of the identity.

Thus we can restate this situation as an “exact sequence” of group homomor-

phisms:

{1} → 𝐻
𝑖
→ 𝐺

𝑝
→ 𝐹 → {1}

Here, “exact” means that the image of each map is equal to the kernel of the

next one. The first map simply sends the only element in the trivial group to the

identity of 𝐻. The second, 𝑖 is simply the inclusion map of 𝐻 into 𝐺 as a subset.

The last map sends every element of 𝐹 to the only element of the trivial group.

Since the image of the first map must be the kernel of 𝑖, only the identity of

𝐻 is sent to the identity in 𝐺. Equivalently, 𝑖 is injective. The projection map 𝑝 is

surjective: Every element of 𝐹 comes from some element of 𝐺.

If we have such an exact sequence of groups, 𝐻 is a normal subgroup and

𝐹 = 𝐺/𝐻 .We say that 𝐺 is an extension of 𝐻 by 𝐹.

2.3.1. Cardinality of a Group and the Index of a subgroup

If𝐺 is a finite set the numberof elements of it #(𝐺) is called its order or cardinality.

The set of left cosets 𝐺/𝐻 and right cosets 𝐻\𝐺 are the same set when 𝐻 is a

normal subgroup of 𝐺. Even when 𝐻 is not normal, there will always be a 1-1

correspondence between𝐺/𝐻 and𝐻\𝐺. So the left and right cosets have the same

cardinality. It is called the index of 𝐻 w.r.t. 𝐺. A moments thought will tell you

that the cardinality of 𝐺 is the product of those of 𝐻 and 𝐺/𝐻:

#(𝐺) = #(𝐻) #(𝐺/𝐻).

So, the order of a subgroup 𝐻 is a divisor of the order of 𝐺. In particular, a

group of prime order has no proper1 subgroups!

The idea of cardinality even makes sense for some infinite groups; for example,

Z is a countable set, so has the same cardinality as any other countable set.

(Recall that there is a 1–1 correspondence between any two countable sets.) This

is usually denoted by the transfinite number ℵ0. The idea continues to make sense

1i.e.,The only subgroups are the identity or the whole group.
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for uncountably infinite sets, but is more tricky and we will avoid thinking of it

this way.

It is possible for a countably infinite group to have a subgroup of finite index.

For example 𝐺 = Z and 𝐻 = 2Z. Although each is infinite, 𝐺/𝐻 is isomorphic to

the group of two elements, {1,−1}. Thus, 𝐻 is an index two subgroup of 𝐺.

Exercise. Give an example of a group with no proper subgroup.

Answer: The group of cyclic permutations of prime order 𝑍𝑝 has no proper

subgroup.

Exercise. Show that the subgroup {1, 𝜏} of 𝑆3 is not normal. However the subgroup

𝐴3 =
{
1, 𝜎, 𝜎2

}
of 𝑆3 is normal. Determine the factor group𝐹 = 𝑆3/𝐴3. Construct

a homomorphism 𝑝 : 𝑆3 → 𝐹 whose kernel is precisely 𝐴3.

Solution: Recall that 𝑆3 can be described by its generators 𝜎, 𝜏 and relations as

𝑆3 = 〈𝜎, 𝜏 | 𝜎3
= 1 = 𝜏2, 𝜎𝜏 = 𝜏𝜎−1〉

Its elements are

𝑆3 = {1, 𝜎, 𝜎2, 𝜏, 𝜎𝜏, 𝜎2𝜏}

The subgroup {1, 𝜏} is not normal. The left coset of 𝜎 ∈ 𝑆3 is

𝜎 {1, 𝜏} = {𝜎, 𝜎𝜏}

while its right coset is

{1, 𝜏}𝜎 = {𝜎, 𝜏𝜎}

These are not the same because 𝜏𝜎 ≠ 𝜎𝜏, as we saw earlier.

But the subgroup 𝐴3 = {1, 𝜎, 𝜎2} of 𝑆3 generated by 𝜎 is indeed a normal

subgroup. The left coset of 𝜏 is

𝜏𝐴3 = {𝜏, 𝜏𝜎, 𝜏𝜎2}

while the right coset is

𝐴3𝜏 = {𝜏, 𝜎𝜏, 𝜎2𝜏}

As sets these are the same because, as we saw earlier,

𝜏𝜎 = 𝜎−1𝜏 = 𝜎2𝜏

and similarly

𝜏𝜎2
= 𝜎𝜏
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The homomorphism 𝑝 : 𝑆3 → 𝑍2 defined by

𝑝 : 𝜎 ↦→ 1, 𝑝 : 𝜏 → −1

has 𝐴3 as its kernel. So,

1 → 𝐴3 → 𝑆3 → 𝑍2 → 1

is an exact sequence: 𝑆3 is an extension of an abelian group 𝐴3 by another abelian

group 𝑍2.

We used this fact to solve the cubic.

Example. Some, but not all, of this can be generalized to arbitrary permutations.

Suppose 𝐺 = 𝑆𝑛 is the group of permutations of 𝑛 objects and 𝐻 is the subgroup

of even permutations 𝐴𝑛. Also, 𝐹 = {1,−1}. Then the map 𝑝 that sends every even

permutation to 1 and every odd permutation to −1 is a surjective homomorphism

with kernel 𝐴𝑛. You can verify that 𝐴𝑛 is indeed a normal subgroup: If 𝑔 is an even

element of 𝐺, its left and right cosets are both just 𝐴𝑛. If 𝑔 is an odd permutation,

its left as well as right cosets are both the set of all odd permutations.

The case 𝑛 = 4 is more intricate than 𝑛 = 3 but still understandable. Cyclic

permutations are no longer contained in 𝐴4, nor is it any more abelian. Yet, 𝐴4 has

an abelian normal subgroup 𝐾 consisting of two pairwise interchanges

(12) (34), (13) (24), (14) (23)

as well as the identity. (Here, (12) (34) stands for the interchangeof 1and 2 followed

by that of 3 and 4.)

In fact 𝐾 ⊳ 𝐴4; i.e., 𝐾 is a normal subgroup of 𝐴4. The quotient 𝐴4/𝐾 is

isomorphic to the cyclic group of three elements 𝑍3:

1 → 𝐾 → 𝐴4 → 𝑍3 → 1

Thus, 𝑆4 can be built as a succession of abelian extensions: First we get 𝐴4 as

an extension of 𝐾 by 𝑍3, and then 𝑆4 is an extension of 𝐴4 by 𝑍2. This can be used

to devise a method for solving the quartic.

When 𝑛 = 5 such ideas fail. 𝐴5 cannot any more be broken up into smaller

groups: It has no normal subgroups at all (other than the identity and itself). This

is why the quintic cannot be solved by algebraic methods.

2.3.2. Abelian Extensions, Solvable groups and Simple Groups

If 𝐻 ⊳ 𝐺 and 𝐹 = 𝐺/𝐻 is abelian, we say that 𝐺 is an abelian extension of 𝐻.

If a group can be obtained by iterating this construction (starting with an abelian

group), we say it is solvable. For example, 𝑆3 and 𝑆4 are solvable but not 𝑆5.
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A group that has no normal subgroups (other than the identity and itself) is

said to be simple. That is, it cannot be obtained as an extension of any smaller

group. For example, 𝐴5 is simple [5].

Simple groups are the fundamental building blocks of group theory. So, it is

interesting to find all the finite simple groups (i.e., classify them up to isomor-

phism). After many decades of work this project has been completed. Fascinating

as it is, the connections to physics are somewhat tangential. So, we do not pursue

this direction.

2.4. The Fundamental Group

An important application of group theory is to another branch of mathematics,

algebraic topology. This field has its roots in Poincare’s foundational work on

dynamical systems. But now topology is a thriving branch of pure mathematics

which has turned out to be useful in modern physics in various ways. We will

not digress to review the basic ideas of continuous maps between topological

spaces. There are several standard textbooks, e.g., [6]. We will be content with

summarizing the notion of the fundamental group of a topological space, as it has

several uses within the theory of Lie groups.

Once we know that 𝑋 is a topological space, it makes sense to talk of a

continuous map 𝛾 : [0, 1] → 𝑋 ; it defines a curve in 𝑋 . A closed curve 𝛾 in 𝑋 ,

based at a point 𝑥0 ∈ 𝑋 , is a curve starting and ending at 𝑥0:

𝛾(0) = 𝑥0 = 𝛾(1).

Given two closed curves 𝛾 and 𝛾̃ based at the same point, we can get a third

curve as their composition; that is, we go around 𝛾, (at twice the speed) and once

we return to 𝑥0 we go around 𝛾̃, again with twice the speed. Translated into a

formula, this is

𝛾̃ ◦ 𝛾(𝑡) =

{
𝛾(2𝑡) 0 ≤ 𝑡 ≤ 1

2

𝛾̃(2𝑡 − 1) 1
2
≤ 𝑡 ≤ 1

An interesting question is whether this can be turned into a group operation.

The identity would be the curve that simply stays at the base point 𝑥0; i.e., the

constant map:

𝑒(𝑡) = 𝑥0, 0 ≤ 𝑡 ≤ 1

A way to define the inverse would be to traverse the curve in reversed time:

𝛾−1(𝑡) = 𝛾(1 − 𝑡).
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The idea does not quite work because the composition 𝛾−1(𝑡) ◦ 𝛾(𝑡) is not the

constant map. But we can tweak the idea a bit and get a group out of the composition

of curves. There is an equivalence relation among curves (continuous deformation)

such that the composition above becomes a group operation on equivalence classes

of curves.

To define this precisely, suppose 𝛾 and 𝛾̃ are curves in a connected space 𝑋 ,

that start and end at the same point:

𝛾(0) = 𝛾̃(0), 𝛾(1) = ˜𝛾(1)

We say that 𝛾 can be continuously deformed to 𝛾̃ if there is a continuous

function of two variables

𝜙 : [0, 1] × [0, 1] → 𝑋

such that

𝜙(0, 𝑡) = 𝛾(𝑡), 𝜙(1, 𝑡) = 𝛾̃(𝑡).

In other words, there is a continuous function of two variables that interpolates

between 𝛾 and 𝛾̃. It is not hard to see that this is an equivalence relation.

The set of equivalence classes of closed curves based at 𝑥0 ∈ 𝑋 is denoted

by 𝜋1(𝑋, 𝑥0). It is possible to show[6] that the equivalence class [𝛾̃ ◦ 𝛾] depends

only on the equivalence classes [𝛾̃] and [𝛾]. And moreover that 𝛾′ ◦ (𝛾̃ ◦ 𝛾) is

deformable to (𝛾′◦ 𝛾̃) ◦𝛾. Furthermore, 𝛾−1(𝑡) ◦𝛾(𝑡) is deformable to the constant

map 𝑒(𝑡). Thus the set of equivalence classes 𝜋1(𝑋, 𝑥0) is a group. It is called the

fundamental group of 𝑋 based at 𝑥0.

A connected space 𝑋 (some would say path connected ) is one where there is

a continuous curve starting at any point 𝑥 ∈ 𝑋 to any other point 𝑦 ∈ 𝑋 . If 𝑋 is

connected, 𝜋1(𝑋, 𝑥0) is isomorphic to 𝜋1(𝑋, 𝑦0), the fundamental group based at

some other point 𝑦0 ∈ 𝑋 . (A continuous curve starting at 𝑥0 and ending at 𝑦0 can

be used to construct an isomorphism between the two fundamental groups.) So, in

this case, we can omit the base point and talk of the fundamental group 𝜋1(𝑋).

2.4.1. Examples

• Let C× = {𝑧 | 𝑧 ∈ C, 𝑧 ≠ 0} be the space of non-zero complex numbers. A

continuous closed curve in this space cannot pass through the origin. We can

pick any non-zero complex number as the base point 𝑧0. The space is connected

as there is always a continuous curve connecting any two non-zero points. Any

curve that does not contain the origin in its interior can be deformed to the

constant map; this equivalence class is the identity element in 𝜋1(C
×). But
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curves that surround the origin may not be deformable to each other. We can

associate a winding number to each continuously differentiable curve

𝑛 =
1

2𝜋𝑖

∫ 1

0

𝑑𝛾(𝑡)

𝛾(𝑡)

For example, the curves

𝛾𝑛 (𝑡) = 𝑒
2𝜋𝑖𝑛𝑡 , 0 ≤ 𝑡 ≤ 1, 𝑛 ∈ Z

wind around the origin 𝑛 times. This winding number is invariant under smooth

deformations: If 𝛾 and 𝛾̃ are boundary values of a function of two variables 𝜙,

a simple application of Stokes’ theorem of vector calculus shows that∫ 1

0

𝑑𝛾(𝑡)

𝛾(𝑡)
−

∫ 1

0

𝑑𝛾̃(𝑡)

𝛾̃(𝑡)
=

∫ 1

0

∫ 1

0

𝜕2𝜙

𝜕𝑠𝜕𝑡
𝑑𝑠𝑑𝑡 = 0

In fact any two curves of the same winding number can be deformed into each

other. And thus 𝜋1(C
×) = Z as groups; composition of curves corresponds to

adding their winding numbers. The class of curves that winds once around the

origin in a counter-clockwise direction is the generator of the group. Its inverse

is the class that winds once around in the clock-wise direction.

• If we remove two points from the complex plane, we get a space with a non-

abelian fundamental group.

𝑋 = {𝑧 | 𝑧 ∈ C, 𝑧 ≠ 𝐴, 𝐵}, 𝐴, 𝐵 ∈ C, 𝐴 ≠ 𝐵

This group 𝜋1(𝑋) is of some independent interest, so let us look into it in

a bit more detail. The continuous curves are curves in the plane that do not

pass through either 𝐴 or 𝐵. For example, here is a curve that winds around 𝐴

once:

𝛼(𝑡) = 𝐴 + 𝜖𝑒2𝜋𝑖𝑡 , 0 < 𝜖 < |𝐴 − 𝐵|

It is a circle centered at 𝐴whose radius is less than the distance from 𝐴 to 𝐵;

so the circle does not contain 𝐵 in its interior. Similarly there is a curve 𝛽 that

winds around 𝐵. Let 𝑎 be the equivalence class of curves deformable to 𝛼 and

similarly for 𝑏 and 𝛽. (It is important that the deformations are functions of two

variables 𝜙 : [0, 1] × [0, 1] → 𝑋 that never take the values 𝐴 or 𝐵). Again, we

have classes 𝑎𝑚 that wind around 𝐴 some integer 𝑚 times (and similarly 𝑏𝑛).

But, knowing the winding numbers 𝑚, 𝑛 around 𝐴 and 𝐵 no longer determines

a curve up to deformation. For example

𝑏−1𝑎−1𝑏𝑎



26 PHYSICS THROUGH SYMMETRIES

(which goes around 𝐴, then 𝐵, then around 𝐴 and then 𝐵 in the opposite

direction) is not deformable to a constant curve. In fact there are no relations at

all among the generators 𝑎 and 𝑏 (except those implied by the group properties,

such as associativity.) The fundamental group is 𝐹2, the Free group generated

by two elements 𝑎 and 𝑏. This group can be pictured as a tree graph rooted at

the identity and branching at every vertex into three copies of itself: Start at the

identity and a move to the left (right) by one step is 𝑎 (rep. 𝑎−1) and a move up

(down) by one step is 𝑏 (resp. 𝑏−1). In the next generation, we reduce the step

size to a half (so that the picture will fit in a plane); starting at 𝑎 we can get 𝑎2, 𝑏𝑎

or 𝑏−1𝑎. (Of course 𝑎−1𝑎 just returns to the identity.) We can similarly depict

𝑏2, 𝑎𝑏, 𝑎−1𝑏 and 𝑎−2, 𝑏𝑎−1, 𝑏−1𝑎−1 and 𝑏−2, 𝑎𝑏−1, 𝑎−1𝑏−1. The generation after

that, edges have length 1
22 and so on. The resulting tree graph is shown in the

figure

The reduction of lengths by a factor two at each generation is not an intrinsic

property of the Free Group: It is done so that the picture will fit on the plane. A more

natural way to draw this graph would be on a hyperboloid of constant curvature:

The edges of the graph will all have the same hyperbolic (Lobachewsky) distance.

Indeed, 𝐹2 is isomorphic to a subgroup of the isometry group 𝑆𝐿2(𝑅) of the

hyperboloid under the map

𝑎 ↦→

(
1 2

0 1

)
, 𝑏 ↦→

(
1 0

2 1

)
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2.4.2. Covering Spaces

If a group 𝐺 acts properly on a manifold 𝑋̃ , the space of orbits 𝑋 = 𝐺\𝑋̃ is again

a manifold. (We will call the space of orbits the quotient, even when 𝑋̃ is not a

group.) 2

We say that 𝑋̃ is a covering space of 𝑋 . The fundamental groups of 𝑋 and 𝑋̃

are related in an interesting way: There is an exact sequence

{1} → 𝜋1( 𝑋̃) → 𝜋1(𝑋) → 𝐺 → {1}

In other words, the fundamental group of 𝑋 is an extension of that of the

covering space by 𝐺.

If 𝑋̃ is connected and 𝜋1( 𝑋̃) is the trivial group, we say that 𝑋̃ is simply

connected. In this case the fundamental group of the quotient 𝐺\𝑋̃ is simply 𝐺.

We say then that 𝑋̃ is the universal cover of 𝑋 . Every manifold admits such a

description as the quotient of a simply connected space by a proper action. Let us

consider some examples.

• The group of integers 𝐺 = Z acts properly on the space of real numbers 𝑋̃ = R

by translation 𝑥 ↦→ 𝑥 + 𝑛. The quotient Z\R can be identified as the circle S1;

We just have to think of the equivalence class of 𝑥 ∈ 𝑋 as mapped to 𝑒2𝜋𝑖𝑥 ∈ S1.

It is not hard to see that R is simply connected. So, 𝜋1(S
1) = Z.

• We can extend this to an action of𝐺 = Z𝑑 on 𝑋̃ = R𝑑 by translation on each co-

ordinate component: 𝑥𝑖 ↦→ 𝑥𝑖 + 𝑛𝑖 , 𝑖 = 1, · · · 𝑑 . The quotient can be identified as

the product of 𝑑 circles, which is the torus T𝑑 of dimension 𝑑. Since Euclidean

space is simply connected, we get 𝜋1

(
T𝑑

)
= Z𝑑.

• The group 𝑆𝑈 (2) can be shown to be, as a manifold the three sphere S3. More

on this later.

• The universal covering space of the complex plane with two points removed can

be realized as the upper half plane. It will take us too far afield to describe the

proper action of the Free group 𝐹2 on the half plane that gives this covering in

detail. The main idea is to represent the Free group by 2 × 2 real matrices and

to use the fractional linear transformation 𝑧 ↦→ 𝑎𝑧+𝑏
𝑐𝑧+𝑑

.

2The property of manifolds that we are using is that they are Hausdorff: every pair of unequal points

have neighborhoods that do not overlap. A mnemonic is: the points can be “housed off” from each

other. Also, “properly” means that every 𝑥̃ ∈ 𝑋̃ has a neighborhood 𝑈̃ which has no overlap with 𝑔𝑈̃ ,

for every 𝑔 ∈ 𝐺 which is not the identity.

In particular, proper group actions cannot have fixed points; also the orbit of a point cannot converge

to some point. In such situations, the quotient 𝑋 may not have the Hausdorff property and so are not

manifolds: they are sometimes called “orbifolds”.
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2.5. Appendix: Vector Spaces

It is useful to have an axiomatic point of view on vectors and matrices as well. In

particular it is useful to know about tensors.

2.6. Appendix: Lightning Review of Quantum Mechanics

Good references are [7, 8, 9]. The summary below is not a substitute for a proper

course in quantum mechanics: It usually takes a year to learn the material contained

in this section. But it might be useful as a review.

2.6.1. The Postulates

Quantum theory is still not completely developed. Questions about measure-

ment and interpretation are still being worked out (e.g.,“weak measurement”).

Nevertheless we can say, after almost a century of experimental tests, many things

for certain about how quantum theory works. It is not too early to summarize them

as a set of postulates.

2.6.1.1. The states of a physical system are represented by vectors in a

complex Hilbert space

This means that we can take linear combinations

𝛼 | 𝜓〉 + 𝛽 | 𝜙〉

of two states | 𝜓〉 and | 𝜙〉 to get another state. The quantities 𝛼, 𝛽 are complex

numbers. There is a way to take the inner product (scalar product) of two states to

get a complex number, denoted by 〈𝜓 | 𝜙〉.

This inner product is linear in the second argument

〈𝜓 | 𝛼𝜙 + 𝛽𝜒〉 = 𝛼〈𝜓 | 𝜙〉 + 𝛽〈𝜓 | 𝜒〉

and anti-linear in the first entry

〈𝛼𝜓 + 𝛽𝜒 | 𝜙〉 = 𝛼∗〈𝜓 | 𝜙〉 + 𝛽∗〈𝜒 | 𝜙〉.

Remark 5. Be aware that mathematicians use the opposite convention: For them

it is the second entry in an inner product that is anti-linear. Mathematics and

physics are two neighboring cultures divided by a common language.



GROUPS AND THEIR REPRESENTATIONS 29

Moreover, the inner product of any vector with itself is positive; it is only zero

for the zero vector. Thus

| |𝜓 | |2 =< 𝜓 |𝜓 >

can be thought of as the square of the length of a vector.

Remark 6. Strictly speaking states are represented by rays (directions) in Hilbert

space. It is a fine point though.

A typical situation is that the state is a complex valued function of some real

variable (e.g., position), The inner product is then

〈𝜓 | 𝜓〉 =

∫
𝜓∗ (𝑥)𝜙(𝑥)𝑑𝑥.

Exercise 7. Verify that this integral has the properties of an inner product.

Or, the states may be represented by a column vector with complex components

𝜓 =

(
𝜓1

𝜓2

)
etc.

Exercise 8. Prove that

|〈𝜓 | 𝜙〉|2

| |𝜓 | |2 | |𝜙 | |2
≤ 1

for all non-zero states |𝜙 >, |𝜓 > . This is called the Cauchy–Schwarz inequality.

2.6.1.2. If a system is in state | 𝜙〉, the probability of finding it in another

state | 𝜓〉 is
| 〈𝜓 | |𝜙〉 |2

| |𝜓 | |2 | |𝜙 | |2
.

This is one of the confusing things about quantum mechanics, until you get used

to it. A classical analogue is the polarization of light. About half of a beam of

circularly polarized light will pass through a filter that allows only linearly polarized

light.

2.6.1.3. The observables of a physical system are hermitian linear oper-

ators on the states.

A linear operator (or matrix) acting on a state produces another state, such that

𝐿 (𝛼 | 𝜓〉 + 𝛽 | 𝜒〉) = 𝛼𝐿 | 𝜓〉 + 𝛽𝐿 | 𝜒〉.

hermitian operators satisfy in addition

〈𝜓 | 𝐿 | 𝜒〉 = 〈𝜒 | 𝐿 | 𝜓〉∗ .
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That is, the conjugate-transpose of a matrix elements is itself. If

𝐿 | 𝜓𝜆〉 = 𝜆 | 𝜓𝜆〉

for some complex number 𝜆 and non-zero vector | 𝜓𝜆〉, we say that | 𝜓𝜆〉 is an

eigenvector of 𝐿 with eigenvalue 𝜆. The most important property of a hermitian

operator is that it has real eigenvalues. Also, the eigenvectors | 𝜓𝜆〉 (we ignore

degeneracies for simplicity) form a basis.

That comes in handy because of the following:

2.6.1.4. The possible outcomes of measuring an observable are its

eigenvalues

But here is a word of warning: The product of two observables is not always an

observable. The point is that (𝐴𝐵)† = 𝐵†𝐴†. So, if two hermitian operators do

not commute, the product may not be hermitian.

Even if we know the state of a system, we may not be able to predict the

outcome of measuring an observable. The best we can do is to give probabilities.

With 𝜆, |𝜓𝜆 > defined as above,

2.6.1.5. If the system is in some state | 𝜙〉, the probability of getting the

outcome 𝜆 upon measuring 𝐿 is

|〈𝜓𝜆 | 𝜙〉|2

| |𝜓𝜆 | |2 | |𝜙 | |2
.

Recall that this is always less than one. Also, the fact that eigenvectors form a

basis implies that the probabilities add up to one.

2.6.1.6. There is a hermitian operator called the hamiltonian which

represents energy; the time dependence of a state is given by

𝑖ℏ
𝜕 | 𝜓(𝑡)〉

𝜕𝑡
= 𝐻 | 𝜓(𝑡)〉.

Thus if you know the state at some time, you can in principle predict what it

will be at some later time; if you know the exact hamiltonian and if it is simple

enough to make the equation solvable. An eigenstate | 𝜓𝐸 〉 of the hamiltonian

satisfies 𝐻 | 𝜓𝐸 〉 = 𝐸 | 𝜓𝐸 〉; it is a state of energy 𝐸 . These have a simple time

dependence:

| 𝜓𝐸 (𝑡)〉 = 𝑒
− 𝑖

ℏ
𝐸𝑡 | 𝜓𝐸 (0)〉.
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2.6.2. Example: Electron in a Magnetic Field

As an example, think of an electron in a magnetic field. It is bound to an atom (e.g.,

Sodium) and we ignore the change in its position: only the rotation of its spin. The

wave function has two components. The energy of an electron in a magnetic field

is proportional to the dot product of the spin and the magnetic field

𝐻 = 𝜇𝝈 · 𝑩 (2.6.1)

where

𝜎1 =

(
0 1

1 0

)
, 𝜎2 =

(
0 −𝑖

𝑖 0

)
, 𝜎3 =

(
1 0

0 −1

)

are the Pauli matrices.

Exercise. Find the eigenvalues and eigenfunctions of the hamiltonian (2.6.1). If

the initial state at time 𝑡 = 0 is

(
1

0

)
and the magnetic field is along the 𝑥−axis

𝑩 = (𝐵, 0, 0) what is the probability that a measurement of 𝜎3 at a time 𝑡 will yield

the value −1? This illustrates the phenomenon of oscillation of quantum states,

also important for neutrinos.

2.6.3. Symmetries and Conservation Laws

2.6.3.1. Symmetries are represented by unitary operators that commute

with the hamiltonian

Recall that the probability of finding a particle in state | 𝜓〉 in another state 𝜙 is

|〈𝜙 | 𝜓〉|2 (assuming that the state vectors are of length one.) If the symmetry is

represented by a linear transformation 𝐿 satisfying

〈𝐿𝜙 | 𝐿𝜓〉 = 〈𝜙 | 𝜓〉

these probabilities are preserved. Recalling the definition of the hermitian conju-

gate (adjoint)

< 𝐿𝜙 |𝜓 >=< 𝜙 |𝐿†𝜓 >

this conditions becomes

𝐿†𝐿 = 1

That is, 𝐿 is a unitary transformation. Most symmetries are of this type. (See

below for an exception.)
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Recall that a state of energy 𝐸 is an eigenstate of the hamiltonian.

𝐻𝜓 = 𝐸𝜓

A symmetry must take it to another state of the same energy:

𝐻 (𝐿𝜓) = 𝐸 (𝐿𝜓).

This is satisfied if

𝐻𝐿 = 𝐿𝐻.

That is, if the hamiltonian commutes with the symmetry operator. Thus, a symme-

try is represented by a unitary operator that commutes with the hamiltonian:

𝐿†𝐿 = 1, 𝐻𝐿 − 𝐿𝐻 = 0.

2.6.3.2. An exceptional case is time reversal, which is an anti-linear

operator

Θ(𝑎 | 𝜓〉 + 𝑏 | 𝜙〉) = 𝑎∗Θ | 𝜓〉 + 𝑏∗Θ | 𝜙〉.

We won’t have much more to say about this case for now; we will only consider

the case of linear operators for now.

2.6.3.3. An example is Parity

It reverses the sign of the co-ordinates of a particle

𝑃𝜓(𝒙) = 𝜓(−𝒙).

Clearly 𝑃2 = 1.

The Schrödinger equation for a free particle is invariant under this transforma-

tion

−
ℏ

2

2𝑚
∇2𝜓 = −𝑖ℏ

𝜕𝜓

𝜕𝑡
.

Another way of seeing that this is a symmetry is that the operator 𝑃 commutes

with the hamiltonian

𝐻 = −
ℏ

2

2𝑚
∇2, 𝑃𝐻 = 𝐻𝑃.

Thus, if 𝜓 is a state with energy 𝐸

𝐻𝜓 = 𝐸𝜓
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so will be 𝑃𝜓. Even with a potential parity continues to be a symmetry if

𝑉 (−𝒙) = 𝑉 (𝒙).

For example consider a particle in one dimension with a potential

𝐻 = −
ℏ

2

2𝑚
∇2 +𝑉, 𝑉 (𝑥) = 𝜆(𝑥2 − 𝑎2)2, 𝜆 > 0.

There are two minima at 𝑥 = ±𝑎. The eigenstates of energy can also be simultane-

ously eigenstates of parity because [𝐻, 𝑃] = 0. It turns out that the ground state is

of even parity

𝜓(−𝑥) = 𝜓(𝑥)

while the first excited state is of odd parity

𝜓(−𝑥) = −𝜓(𝑥).

2.6.3.4. Translation invariance leads to conservation of momentum

The translation by 𝑎 is represented by the operator

𝑇 (𝑎)𝜓(𝑥) = 𝜓(𝑥 + 𝑎).

A free particle on a line has hamiltonian

𝐻 = −
ℏ

2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉

with a constant potential. Thus whether we apply the hamiltonian before or after a

translation we get the same effect on a wavefunction:

𝐻𝑇 (𝑎) = 𝑇 (𝑎)𝐻.

For a particle moving in one dimension, an infinitesimal translation is represented

by the derivative operator:

𝜓(𝑥 + 𝑎) ≈ 𝜓(𝑥) + 𝑎
𝜕𝜓

𝜕𝑥
+ · · ·

Thus, if a system is invariant under translation, its hamiltonian must satisfy[
𝐻,

𝜕

𝜕𝑥

]
= 0.

The operator 𝜕
𝜕𝑥

is anti-Hermitian. The corresponding hermitian operator is −𝑖 𝜕
𝜕𝑥

.

If we multiply by ℏ we get the momentum operator

𝑝 = −𝑖ℏ
𝜕

𝜕𝑥
.
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Thus, translation invariance implies the conservation of the momentum:

[𝐻, 𝑝] = 0.

Similar arguments apply to each component of momentum of a free particle moving

in 𝑅3.

2.6.3.5. Rotation invariance implies conservation of angular momentum

The infinitesimal generators of rotation are

L = r × p, p = −𝑖ℏ
𝜕

𝜕r
.

They satisfy the relations

[𝐿1, 𝐿2] = 𝑖ℏ𝐿3, [𝐿2, 𝐿3] = 𝑖ℏ𝐿1, [𝐿3, 𝐿1] = 𝑖ℏ𝐿2.

2.6.3.6. A particle can have angular momentum even when its momen-

tum is zero

Total angular momentum J is the sum of the orbital angular momentum L = r× p

and an intrinsic angular momentum S:

J = L + S.

The components of 𝑺 commute with those of L: They are three matrices

S = (𝑆1, 𝑆2, 𝑆3) satisfying

[𝑆1, 𝑆2] = 𝑖ℏ𝑆3, [𝑆2, 𝑆3] = 𝑖ℏ𝑆1, [𝑆3, 𝑆1] = 𝑖ℏ𝑆2.

The simplest choice is S = 0. There are several such “spin zero” particles; e.g., the

alpha particle. The next simplest choice is

𝑆1 =
ℏ

2

(
0 1

1 0

)
, 𝑆2 =

ℏ

2

(
0 −𝑖

𝑖 0

)
, 𝑆3 =

ℏ

2

(
1 0

0 −1

)
.

These describe ‘spin half’ particles, since the maximum eigenvalue of a component

of spin is half of ℏ. An electron, a proton, a neutron are all examples of such

particles.

There are many spin one particles, such as the 𝜌 meson. In this case 𝑆1, 𝑆2, 𝑆3

are 3× 3 matrices. The photon has spin one, but is a special case because it moves

at the speed of light. (We need relativistic quantum mechanics for this.)

There are a set of particles called Δ that have spin 3
2
. Their spin is represented

by 4x4 matrices. There are particles with even higher spin but they tend to be

unstable.

We will return to rotations and angular momentum repeatedly. It is the basic

example around which the whole theory is built.



Chapter 3

LIE THEORY

Sophus Lie was a Norwegian mathematician who worked at the end of the

nineteenth century. His audacious quest (still unfinished) was a “Galois the-

ory” for ordinary differential equations. The established physics of the day

(mechanics) was based on such equations. The essential insight of mechan-

ics is that complicated dynamics (e.g., the solar system) can be understood

as a succession of infinitesimal steps, each of which is given by a simple

formula (i.e., vector field on phase space).

Lie showed that a complicated group of transformations can be built

from a knowledge of infinitesimals. The group law reduces to something

much simpler, a set of commutation relations (Lie algebra). Lie theory

bloomed in the twentieth century, as a branch of mathematics with myr-

iad applications to physics. The most fundamental physics of our day (the

standard model of elementary particles) is based on the Lie groups SU(2)

and SU(3).

3.1. Lie Algebras

3.1.1. A Lie algebra is a vector space along with a map [., .] :

L× L → L such that

[αa+ βb, c] = α[a, c] + β[b, c] linear

[a, b] = −[b, a] Anti− symmetry

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0 Jacobi identity

Here, α, β are real numbers. (We mostly think of real Lie algebras. But

there is a parallel theory where the scalars α, β are complex.) Note that

35
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the anti-symmetry implies that if [., .] is linear in the first entry, it will also

be linear in the second (i.e., it is bilinear). We call [., .] the Lie bracket or

commutator.

3.1.1.1. A homomorphism is a linear map among Lie algebras f :

L → L′ that preserves the commutator

f([a, b]) = [f(a), f(b)], a, b ∈ L, f(a), f(b) ∈ L′

3.1.1.2. An isomorphism is a homomorphism that is invertible

Often, it is useful to think of this explicitly as a one-one correspondence of

basis vectors that preserves the commutation relations.

3.1.1.3. An homomorphism to a Lie algebra of matrices is called

a representation. A representation is faithful if it is an

isomorphism

3.1.2. A subspace L′ ⊆ L which is closed under the Lie

bracket is a sub-algebra

3.1.3. The maximum number of linearly independent ele-

ments, whose Lie brackets with each other vanish, is

called the rank

3.1.4. Examples

(1) A basic example is the cross product in three-dimensional Euclidean

space. Recall that

a× b =

∣∣∣∣∣∣∣

i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣

The bilinearity and anti-symmetry are obvious; the Jacobi identity

can be verified through tedious calculations. Or you can use the fact

that any cross product is determined by the cross product of the basis

vectors through linearity, and verify the Jacobi identity on the basis

vectors using the cross products

i× j = k, j× k = i, k× i = j
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Under many different names, this Lie algebra appears everywhere in

physics. It is by far the most important example of a Lie algebra. It

has dimension three and rank one.

(2) The commutator of matrices is the other basic example:

[A,B] = AB −BA

Again, bilinearity and anti-symmetry are obvious. The Jacobi identity

follows from a simple calculation using the associativity of matrix mul-

tiplication. We see that this is the infinitesimal version of the group

GL(n). The dimension is n2: there are n2 independent matrix ele-

ments. The rank is n: the diagonal matrices commute with each other

and there are n linearly independent diagonal matrices.

(3) Various sub-algebras of the algebra of matrices provide the other

important examples. The product of anti-symmetric matrices need

not be either symmetric or anti-symmetric:

(AB)T = BTAT = BA.

But the commutator of anti-symmetric matrices is always anti-

symmetric:

[A,B]T = (AB −BA)T = BA−AB = −[A,B].

This Lie algebra is the infinitesimal version of the orthogonal group

O(n): Recall that an orthogonal matrix that is infinitesimally close

to the identity is of the form 1 + A with AT = −A. We call this Lie

algebra o(n). It has dimension n(n−1)
2 . The rank of o(n) is k if n = 2k

or if n = 2k + 1.

(4) Similarly, the commutator of anti-Hermitian matrices is anti-

Hermitian. This Lie algebra u(n) is the infinitesimal version of the

group of unitary matrices U(n). The dimension of u(n) is n2 and its

rank is n; as for su(n), the dimension is n2 − 1 and the rank is n− 1.

(5) The trace of a commutator is zero. (Prove this!) Thus, we have the

Lie algebra of traceless anti-Hermitian matrices su(n) which is the

infinitesimal version of the group SU(n) of unitary matrices of deter-

minant one. Recall that if a matrix is infinitesimally close to one,

det(1 +A) ≈ 1 + trA.

(6) The Lie algebra o(3) is in fact the same as (is isomorphic to) the cross

product on three-dimensional vectors. Any anti-symmetric matrix can
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be written as

A =

⎛
⎝

0 −a3 a2
a3 0 −a1
−a2 a1 0

⎞
⎠ = a1S1 + a2S2 + a3S3

for some vector a ∈ R
3. The matrices Si form a basis for o(3):

S1 =

⎛
⎜⎝
0 0 0

0 0 −1

0 1 0

⎞
⎟⎠, S2 =

⎛
⎜⎝

0 0 1

0 0 0

−1 0 0

⎞
⎟⎠, S3 =

⎛
⎝
0 −1 0

1 0 0

0 0 0

⎞
⎠

The commutation relations

[S1, S2] = S3, [S2, S3] = S1 [S3, S1] = S2

are isomorphic to those above under the correspondence i �→ S1, j �→
S2,k �→ S3. (i.e., the cross product and the commutator relations

among the basis vectors are the same under this correspondence.)

(7) Moreover, the Lie algebra su(2) is isomorphic to o(3). Any traceless

anti-Hermitian matrix can be written as a linear combination of Pauli

matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)

The correspondence S3 �→ − i
2σ3, S1 �→ − i

2σ1, S2 �→ − i
2σ2 gives

an isomorphism. This is fundamental to understanding the spin of an

electron.

(8) The Poisson bracket of classical mechanics was the first example of a

Lie algebra. Recall that observables of classical mechanics are func-

tions of positions and momenta. For a single degree of freedom (for

simplicity), the Poisson bracket is defined as

{A,B} =
∂A

∂q

∂B

∂p
− ∂A

∂p

∂B

∂q

Verifying the Jacobi identity for this is a good way to start an honest

day of work. For more than one degree of freedom, we sum over each

pair of conjugate variables:

{A,B} =
∑

i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
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(9) In particular, we have the canonical commutation relations (also called

the Heisenberg algebra)

{q, p} = c = −{p, q}, {p, c} = {q, c} = 0.

Here, c is the constant function, equal to 1 everywhere. This is an

example of a nilpotent Lie algebra: Repeated commutators vanish

eventually. In this case, double commutators vanish.

(10) The Poisson brackets of the components of angular momentum provide

yet another physically important realization of the Lie algebra o(3)

L = r× p

{L1, L2} = L3, {L2, L3} = L1, {L3, L1} = L2

This isomorphism arises because the canonical transformations gener-

ated by angular momentum are rotations. We can regard the earlier

examples in terms of matrices as representations of this Lie algebra of

the angular momentum components.

(11) A Lie algebra that is commutative is trivial: The bracket must vanish.

Thus, to be interesting, a Lie algebra must be non-abelian.

(12) The only Lie algebra of dimension one is the trivial algebra.

(13) The only non-abelian Lie algebra of dimension two can be written as

[e0, e+] = e+

by a choice of basis. (By the way, e+ is called that because it is anal-

ogous to the “raising” or “creation operator” of quantum mechanics.)

(14) Exercise: Find a representation for it in terms of 2× 2 matrices.

Answer: e0 �→
(

1
2 0

0 − 1
2

)
, e+ �→

(
0 1

0 0

)

(15) Another three-dimensional Lie algebra, which is not isomorphic to o(3)

or su(2), is called sl(2, R):

[e1, e2] = −e3, [e2, e3] = −e1, [e3, e1] = e2

The sign of the first two commutators is different from o(3).

(16) Exercise: Find an isomorphism of sl(2, R) with the space of traceless

real 2× 2 matrices.

(17) There are more non-trivial three-dimensional Lie algebras, such as

so(3) ≈ su(2), sl(2, R), and Heisenberg.

(18) Also, find a set of three functions of position and momentum with

Poisson brackets isomorphic to sl(2, R).

Hint: Think of p2−q2

4 , p
2+q2

4 , pq

2 .
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(19) In addition to matrix algebras such as su(n), so(n), there is also a finite

sequence of exceptional Lie algebras. Many physicists have tried hard

to explain elementary particles in terms of exceptional Lie algebras,

seduced by their mathematical beauty. So far, no luck.

3.2. Lie Groups

3.2.1. A Lie group is a group on which there is a co-ordinate

system such that the multiplication and inverse are

differentiable functions

In other words, a Lie group is a manifold along with a multiplication and

inverse which are differentiable functions.

If you don’t know what a manifold is, don’t worry about this. Lie himself

thought of Lie group as transformations which depend on some parameters

in a smooth way. Any abstract mathematical theory is best understood by

working out physically realized examples. The axiomatization always comes

later. Its main purpose is to serve as a firm foundation for the next level of

abstraction. By the end of this book, you will know many examples of Lie

groups.

3.2.1.1. A countable group like the set of integers, or the set of of

rationals, or a finite group like the permutation groups, are

not Lie: There is no way to differentiate group elements

But the idea of a Lie algebra makes sense even when the scalars underlying

the vector space form a finite or countable ring (like integers). There is a way

to construct a Lie algebra from a discrete group, using its “central series”.

The power of a mathematical idea can be measured by its utility in areas

far from its origins. Lie’s ideas on groups and algebras have applications in

practically every branch of mathematics and physics. They are among the

most powerful of mathematical ideas.

3.2.1.2. GL(n,R) is a Lie group

The matrix elements themselves provide a co-ordinate system. Just stay

away from matrices of zero determinant. (The condition det g �= 0 leaves

behind an open neighborhood of Rn2

.)
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3.2.1.3. U(n) is a Lie group

We have to solve the constraints defining the group

g† = g−1

The matrix elements themselves are no longer a co-ordinate system: We

need to solve these rather complicated nonlinear equations. The substitu-

tion

g = ea, a† = −a

allows us to solve them in a neighborhood of the identity.

Aside on Exponential Co-ordinates. The exponential of a matrix is defined

by an infinite series in the same way as the exponential of a number

ea = 1 + a+
a2

2!
+

a3

3!
+ · · ·

It satisfies the conditions

(ea)† = ea
†

, (ea)−1 = e−a.

The tricky part in using these “exponential co-ordinates” is that

eaeb �= ea+b

unless [a, b] = 0. There is a much more complicated formula that replaces

this. (We see it soon.)

If a† = −a, then ea is a unitary matrix. The matrix elements of the anti-

Hermitian matrix provide a co-ordinate system on U(n) in the neighbor-

hood of the identity. More precisely, define the norm of an anti-Hermitian

matrix by ||a|| =
√
tra†a. As long as ||a|| < π, the exponential function

is injective (i.e., ea completely defines a within the disc ||a|| < π). This

establishes a co-ordinate system around the origin. Next, we establish a

co-ordinate system around the roots of unity by setting g = e
2πi

n
keb, for

k = 0, 1, · · ·n − 1 again with ||b|| < π. It is possible to show (we omit the

details of the construction and the proof) these n co-ordinate systems cover

all over U(n):

Every unitary matrix can be written in the form g = e
2πi

n
keb for some

k = 0, 1 · · ·n − 1 and b† = −b with |b| < π. This formula can be thought

of as providing a co-ordinate system in U(n) in a neighborhood of e
2πi

n
k.
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Of course, most parts of U(n) are covered by more than one of these co-

ordinate systems: The change of variables from one system to the other is

differentiable. This is similar to the way that a polar co-ordinate system

cannot cover all of the plane: The origin and the line θ = 0 have to be

excluded. But two polar systems with different centers and axes can cover

all of the plane; in regions covered by both systems, we can differentially

change variables among them.

If a† = −a and tra = 0, then ea ∈ SU(n). The point is that det ea = etra.

This identity is obvious for matrices that can be diagonalized. (Prove it!)

More generally, it follows by continuity as the determinant, trace, and

exponential are all continuous functions; matrices that cannot be diagonal-

ized can be perturbed infinitesimally and made diagonalizable. This makes

SU(n) into a Lie group by similar arguments.

If aT = −a, and a has real elements, then ea ∈ SO(n). Recall that

anti-symmetric matrices have zero trace. Hence, det ea = etra = 1. It is not

possible to express parity as the exponential of an anti-symmetric matrix.

Lie groups don’t always have to be thought of in terms of matrices. As

long as the multiplication law can be written in terms of some co-ordinates,

we can verify associativity and look for an inverse.

Exercise 10. Let G = {(a, x) | a > 0, x ∈ R} be the half-plane. Define the

product (a, x)(b, y) = (ab, ay + x). Show that this is a group. (What is the

identity? What is (a, x)−1?) Find a representation for this group in terms

of 2 × 2 matrices. Calculate the commutator ghg−1h−1 for two arbitrary

elements of this group.

3.3. From Lie Groups to Lie Algebras

3.3.1. Every Lie group determines a Lie algebra.

More than one Lie group might lead to the same Lie algebra. For example,

we see later that SU(2) and SO(3) yield the same Lie algebra, although

they are not isomorphic as groups.

3.3.2. The set of elements infinitesimally close to the iden-

tity in a Lie group form a Lie algebra.

For matrix groups like GL(n,R), SU(n), SO(n) above, we put

g = eǫa, h = eǫb
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where ǫ is thought as small. Then, we expand in powers of ǫ:

eǫa ≈ 1 + ǫa+ ǫ2
a2

2
+O(a3)

g−1 = e−ǫa ≈ 1− ǫa+ ǫ2
a2

2
+O(a3)

gh ≈ 1 + ǫ(a+ b) + ǫ2
a2 + 2ab+ b2

2
+O(a3, b3)

g−1h−1 = 1− ǫ(a+ b) + ǫ2
a2 + 2ab+ b2

2
+O(a3, b3)

ghg−1h−1 = 1 + ǫ2[a, b] +O(a3, b3)

(Calculate each line out and verify this.) Thus, the lack of commutativity

of group multiplication taken to second order determines the commutator.

This commutator defines a Lie algebra associated to the Lie group.

Even if the group is not built out of matrices, we can calculate the

“group commutator” ghg−1h−1 in some co-ordinate system centered at the

identity. Then, expand it to the leading (i.e., second) order to extract the Lie

bracket.

Exercise 11. This continues Exercise (10) Find ghg−1h−1 to second order

in ǫ, where g = (1 + ǫα, ǫξ) and h = (1 + ǫβ, ǫη). Use this to find the Lie

algebra of the group. Find a representation in terms of 2× 2 matrices.

Solution: The identity element is (1, 0). The inverse is (a, x)−1 =

(a−1,−a−1x) and the commutator gg′g−1g′−1 = (1, ax−a′2x−x′+a2a′x′).

A representation is given by

(a, x) �→
(
a x

0 1

)

since
(
a x

0 1

)(
b y

0 1

)
=

(
ab ay + x

0 1

)

A calculation shows that

ghg−1h−1 = (1, 0) + ǫ2 (0, αη − βξ) + O(ǫ3)

This is the Lie algebra

[(α, ξ), (β, η)] = (0, αη − βξ)
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Defining1

e0 = (1, 0), e+ = (0, 1)

this corresponds to the Lie algebra (we saw it as an example in the section

on Lie algebras)

[e0, e+] = e+.

A representation of the Lie algebra is the infinitesimal version of the

group representation:

e0 �→
(
1 0

0 0

)
, e+ =

(
0 1

0 0

)
.

This Lie group and its Lie algebra do not seem to have a standard name

(may be it should).

3.3.3. The Lie algebra of U(n) is u(n), the set of anti-

Hermitian matrices; that of SU(n) is su(n), the

traceless anti-Hermitian matrices.

3.3.4. The Lie algebra of SO(n) is so(n) the set of anti-

symmetric matrices.

3.3.5. Structure constants

It is very useful to think of a Lie algebra in terms of a basisXi. An element is

expanded as a linear combination u = uiXi. (We sum over repeated indices

as often in geometry and algebra). If you know the commutator of every pair

of basis vectors, you can calculate the commutator of any element of the

Lie algebra. There must be a set of numbers called “structure constants”

such that

[Xi, Xj] = ckijXk

To be more precise, ckij are the components of a tensor in this basis. The

axioms of a Lie algebra become some identities satisfied by the structure

constants:

• ckij = −ckji anti-symmetry

• clijc
m
lk + cljkc

m
li + clkic

m
lj = 0 Jacobi identity

1Beware that (1, 0) as an element of the Lie algebra means something different from
(1, 0) as an element of the group. Hopefully, the meaning is clear from the context.
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Most physicists think of Lie algebras in terms of their commutation relations

of basis elements and the structure constants. Beware that “basis elements”

are called “generators” in the physics literature. “Generators” have a dif-

ferent meaning in mathematics; remember that σ and τ are generators of

the permutation group S3.

Exercise 12. Find a basis and the structure constants for the Lie algebra

in Exercise (11).

Solution: We saw that [e0, e+] = e+, so the non-zero structure constants

are

c+0+ = 1 = −c++0

3.4. From Lie Algebras to Lie Groups∗

This section can be omitted in a first reading. It will make more sense

later.

The passage from Lie groups to Lie algebras is a kind of differentiation.

The converse is a kind of non-commutative integration: You should expect

this to be much harder. The following material is just a guide to those who

want to venture further. The book by Hausner and Schwartz [3] Lie Groups

and Lie Algebras is quite good for this topic. A purely algebraic proof of

the BCH lemma is in Free Lie Algebras by Reuttenauer [4]. We do not need

the fearsome details of the formulas for most purposes: Only the first one

or two orders are sufficient usually. The purpose of this section is to show

that it is possible to get the group law from the Lie algebra.

3.4.1. The Lie bracket completely determines the group

multiplication

In the exponential co-ordinate system, the multiplication of group elements

follows from taking repeated commutators (in the corresponding Lie alge-

bra) and adding them up in a particular way. The key is a formula that

allows us to multiply the exponentials of matrices that do not commute.

3.4.2. The Baker–Campbell–Hausdorff formula

eaeb = e
a+

∫
1

0
dtψ

(
eâetb̂

)
b

(3.1)
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Here,

ψ(x) =
x log x

x− 1

Also, â is the linear operator defined by the commutator:

âb ≡ [a, b].

This is also called ada in mathematics books. So, â2b ≡ [a, [a, b]] ,â3b =

[a, [a, [a, b]]], etc. Indeed,

eâb = b+ [a, b] +
1

2!
[a, [a, b]] +

1

3!
[a, [a, [a, b]]] + · · ·

The function ψ is closely related to the generating function of Bernoulli

numbers:

ψ(ex) =
xex

ex − 1
=

∞∑

n=0

Bn

n!
xn

= 1 +
x

2
+

x2

12
− x4

720
+

x6

30240
+O(x8).

By expanding ψ and exp in power series, (3.1) becomes an explicit

formula for multiplication of exponentials.

The first few terms are

eaeb = ea+b+ 1
2
[a,b]+ 1

12
([a,[a,b]]+[b,[b,a])− 1

24
[b,[a,[a,b]]]+···

To prove this, we need a series of intermediate results. We start with

the following:

Lemma 13.

eabe−a ≡ eâb

Proof. Let b(t) = etabe−ta,b(0) = b. Then,

b(t+ ǫ) = e(t+ǫ)abe−(t+ǫ)a = eǫaetabe−tae−ǫa

≈ (1 + ǫa)b(t)(1− ǫa) ≈ b(t) + ǫ[a, b(t)]

up to terms second order in ǫ. Thus,

d

dt
b(t) = [a, b(t)] = âb(t).
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Regarding â as a linear operator on b, the solution is

b(t) = etâb.
�

We can now get a formula to differentiate the exponential of a function

valued in a Lie algebra. This is very useful in many quantum mechanic

calculations as well.

Lemma 14. Let a(t) be a function of a real variable, valued in the Lie

algebra. Then, with φ(z) = ez−1
z

= 1 + 1
2!z +

1
3!z

2 + · · · ,

e−a(t) d

dt
ea(t) = φ(−â(t))

da(t)

dt
.

Proof. Define g(s, t) = esa(t) . Then

A(s, t) ≡ g−1 ∂g

∂s
= a(t)

by the definition of the exponential. Define

B(s, t) ≡ g−1 ∂g

∂t
= e−sa(t) ∂e

sa(t)

∂t

We can verify the identity

∂B

∂s
− ∂A

∂t
+ [A,B] = 0

which now becomes

∂B

∂s
− ∂a(t)

∂t
+ [a(t), B] = 0

or

∂B

∂s
= −â(t)B + ȧ, B(0, t) = 0

The dot denotes differentiation w.r.t. t.

We can think of t as a constant and solve this as a power series in s:

B(s, t) = sȧ+
s2

2!
(−â(t))ȧ+ · · · s

n

n!

(
−â(t)

)n−1

ȧ+ · · ·

Putting s = 1 in this we get the result we want. �
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Lemma 15. Let eaetb = ec(t). Then,

e−c(t) d

dt
ec(t) = b

Proof. Just calculate

d

dt
ec(t) = ea

d

dt
etb = eaetbb = ec(t)b.

�

Now, we can prove the BCH formula (3.1):

Proof. Using the lemmas above,

φ(−ĉ(t))ċ = b

Now, the function ψ(z) = z log z

z−1 satisfies

ψ(z)φ(− log z) = 1

so that

dc

dt
= ψ(eĉ(t))b

If we integrate this differential equation (recall the boundary condition

c(0) = a) and evaluate it at t = 1, we get the result claimed. �

All this leads up to a fundamental idea of Lie theory: The product of expo-

nentials is determined by a series of repeated commutators. The exponen-

tial defines a co-ordinate system in the neighborhood of the identity of

the Lie group; the BCH formula gives the product in this co-ordinate sys-

tem. The co-ordinates may break down far away from the identity, but we

can establish additional co-ordinate charts based at a countable number

of other points on the group. (To fully understand this, you have to know

differential geometry beyond the scope of this book.) The most important

physical application is to spin which we discuss in detail later. We explain

the topology of SU(2) and SO(3) at that time. We merely state the result.

3.4.3. A Lie algebra determines a unique connected, simply

connected Lie group. Every connected Lie group with

this Lie algebra is a quotient of this simply connected

Lie group by a countable abelian normal sub-group.

Exercise 13. Starting with the Lie algebra commutation relations,

[e0, e+] = e+, reconstruct the group multiplication law for the two-

dimensional Lie group.



Chapter 4

ROTATIONS: SO(3) AND SU(2)

Our first lessons in geometry are on the plane. Euclid’s treatise on plane geometry

remains the model of all later works on geometry. Let us also begin by understand-

ing rotations in the plane. Then we will pass to “solid geometry”, the geometry of

three-dimensional Euclidean space.

4.1. SO(2)

Recall the relation between polar and cartesian co-ordinates on the plane

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃

If we rotate this point through an angle 𝜙 around the origin, 𝑟 remains

unchanged. But the angular co-ordinate changes to 𝜃 + 𝜙, giving a new point

𝑥′ = 𝑟 cos(𝜃 + 𝜙), 𝑦′ = 𝑟 sin(𝜃 + 𝜙)

Using the addition formula for sin and cos

𝑥′ = 𝑟 cos 𝜃 cos 𝜙 − 𝑟 sin 𝜃 sin 𝜙, 𝑦′ = 𝑟 cos 𝜃 sin 𝜙 + 𝑟 sin 𝜃 cos 𝜙

We can write this as (
𝑥′

𝑦′

)
=

(
cos 𝜙 − sin 𝜙

sin 𝜙 cos 𝜙

) (
𝑥

𝑦

)

In other words, the effect of a rotation can be represented as multiplication by

a 2 × 2 matrix. This matrix

𝑅(𝜙) =

(
cos 𝜙 − sin 𝜙

sin 𝜙 cos 𝜙

)

49
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has determinant one

det

(
cos 𝜙 − sin 𝜙

sin 𝜙 cos 𝜙

)
= cos2 𝜙 + sin2 𝜙 = 1

and is orthogonal:

𝑅(𝜙)𝑅(𝜙)𝑇 =

(
cos 𝜙 − sin 𝜙

sin 𝜙 cos 𝜙

) (
cos 𝜙 sin 𝜙

− sin 𝜙 cos 𝜙

)

=

(
cos2 𝜙 + sin2 𝜙 cos 𝜙 sin 𝜙 − cos 𝜙 sin 𝜙

cos 𝜙 sin 𝜙 − cos 𝜙 sin 𝜙 cos2 𝜙 + sin2 𝜙

)
=

(
1 0

0 1

)

The trig identities imply that

𝑅(𝜙′)𝑅(𝜙) = 𝑅(𝜙 + 𝜙′)

That is, the effect of a rotation through 𝜙 and then another rotation through

𝜙′ is a rotation through 𝜙 + 𝜙′. We must get used to this idea that rotations are

represented by orthogonal matrices of determinant one.

4.1.1. Meaning of orthogonality

Let us go in the other direction. Let 𝑀 =

(
𝑎 𝑏
𝑐 𝑑

)
be an orthogonal matrix. What

does it imply for its components?(
𝑎 𝑏

𝑐 𝑑

) (
𝑎 𝑐

𝑏 𝑑

)
=

(
𝑎2 + 𝑏2 𝑎𝑐 + 𝑏𝑑

𝑐𝑎 + 𝑑𝑏 𝑐2 + 𝑑2

)
=

(
1 0

0 1

)

For this to be equal to one, the columns
(
𝑎
𝑏

)
and

(
𝑐
𝑑

)
must be unit vectors

(using the diagonal entries). The off diagonal entries being zero implies that the dot

product of the column vectors is zero: They are orthogonal to each other. (Hence,

the name). Any unit vector is of the form(
𝑎

𝑏

)
=

(
cos 𝜙

sin 𝜙

)

for some angle 𝜙. The other column will be given by some other angle(
𝑐

𝑑

)
=

(
cos𝜓

sin 𝜓

)

To be orthogonal we must have

(𝑎 𝑏)

(
𝑐

𝑑

)
= 0 = cos 𝜙 cos𝜓 + sin 𝜙 sin𝜓
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That is

cos(𝜙 − 𝜓) = 0

there are two solutions to this

𝜙 − 𝜓 = ±
𝜋

2

Thus, the most general orthogonal matrix is of the form(
cos 𝜙 cos

(
± 𝜋

2
+ 𝜙

)
sin 𝜙 sin

(
± 𝜋

2
+ 𝜙

) ) =

(
cos 𝜙 − sin 𝜙

sin 𝜙 cos 𝜙

)
, or

(
cos 𝜙 sin 𝜙

sin 𝜙 − cos 𝜙

)

One of these is the rotation we found earlier. The other solution has determinant

minus one:

det

(
cos 𝜙 sin 𝜙

sin 𝜙 − cos 𝜙

)
= − cos2 𝜙 − sin2 𝜙 = −1

It is the product of a rotation and a reflection:(
cos 𝜙 sin 𝜙

sin 𝜙 − cos 𝜙

)
=

(
cos 𝜙 − sin 𝜙

sin 𝜙 cos 𝜙

) (
1 0

0 −1

)

The matrix
(
1 0
0 −1

)
reverses the sign of the 𝑦−co-ordinate: It is a reflection

around the 𝑥−axis.

In conclusion,

• Orthogonal matrices of determinant one are rotations.

• Orthogonal matrices of determinant minus one are a product of a reflection and

a rotation.

Note also that rotations in the plane commute, since 𝑅(𝜙′)𝑅(𝜙) depends only on

𝜙 + 𝜙′.

4.2. SO(3)

Much of what we said above generalizes to three dimensions. The main difference

is that rotations do not always commute.

The square of the length of a vector 𝒓 =

(
𝑥
𝑦
𝑧

)
can be written as

𝒓𝑇 𝒓 = 𝑥2 + 𝑦2 + 𝑧2
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What linear transformations r ↦→ 𝑀r will leave the length of a vector

unchanged?

(𝑀 𝒓)𝑇 (𝑀 𝒓) = 𝒓𝑇 𝑀𝑇 𝑀 𝒓 = 𝒓𝑇 𝒓

This is satisfied for all 𝑥, 𝑦, 𝑧 iff

𝑀𝑇 𝑀 = 1

That is, the matrix must be orthogonal. Again, this means that the columns of

𝑀 are orthogonal to each other; and that each of them have length one. In terms

of indices ∑
𝑗

𝑀 𝑗𝑖𝑀 𝑗 𝑘 = 𝛿𝑖𝑘

Expanding it out with 𝑖 = 1, 𝑘 = 2 for example

𝑀11𝑀12 + 𝑀21𝑀22 + 𝑀31𝑀32 = 0

This is the condition that

(
𝑀11

𝑀21

𝑀31

)
is orthogonal to

(
𝑀12

𝑀22

𝑀32

)
. Similarly for the other

choices of 𝑖, 𝑘.

Lemma. The determinant of an orthogonal matrix is either 1 or −1.

Proof. Take the determinant of the condition above and use det 𝑀 = det 𝑀𝑇 :

(det 𝑀)2 = 1 =⇒ det 𝑀 = ±1
�

Under a continuous change of the matrix elements, the determinant of an orthog-

onal matrix (which is a continuous function of the matrix elements, indeed a

polynomial) cannot change: It can only jump from one value to the other. We say

that the group of orthogonal matrices splits into two “connected components”. One

with determinant one and the other with determinant −1.

The orthogonal matrices of determinant 1 form a subgroup: The product still

has determinant one. It also contains the identity. This is the group 𝑆𝑂 (3). It is

simply the set of all rotations. For, any rotation is determined by an angle and an

axis of rotation. If we choose the third axis to lie along the axis, the rotation will

only change the first two axes. With this choice of co-ordinate system, a rotation

will be

𝑅3(𝜙3) =
���

cos 𝜙3 − sin 𝜙3 0

sin 𝜙3 cos 𝜙3 0

0 0 1

���
�
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This is an orthogonal matrix, as we saw last time; the extra row and column

does not change this fact. It also has determinant one. A rotation around the other

two axes will look like (by cyclically permuting co-ordinate axes)

𝑅1 =
���


1 0 0

0 cos 𝜙1 − sin 𝜙1

0 sin 𝜙1 cos 𝜙1

����
, 𝑅2(𝜙2) =

���



cos 𝜙2 0 sin 𝜙2

0 1 0

− sin 𝜙2 0 cos 𝜙2

����
,

They also have determinant one.

The most general rotation is determined by three independent angles: Two to

determine the axis of rotation (which is a unit vector) and another to determine

the angle of rotation. Alternatively, a general rotation is the product of the three

elementary rotations above. There are also other ways of parametrizing them. The

most popular are the Euler angles, which we will see later on.

The main point for now is that 𝑆𝑂 (3) is a three-dimensional Lie group; i.e., as

a manifold it is of dimension three. Which manifold is it? Turns out to be RP3. If

that means nothing to you yet, that is OK. We will return to this also in more detail

later.

4.2.1. Parity

It is conventional in particle physics to define the operation of parity as the reflection

of all three co-ordinates:

𝑃 :
���

𝑥

𝑦

𝑧

���
�
=
���

−𝑥

−𝑦

−𝑧

���
�
.

As a matrix, 𝑃 = −1, the negative of the identity matrix. Clearly, it is orthogo-

nal, 𝑃𝑇 𝑃 = 1 and has determinant minus one. Any orthogonal matrix of determi-

nant minus one is a product of parity and a rotation.

Exercise. Show that a left handed glove can be turned into a right handed one

by turning it inside out. (Best done with a latex glove; a good trick at a party of

geeks). Explain why.

It is possible to split the group of symmetries 𝑂 (3) of euclidean space as a

product of rotations and the cyclic group 𝑍2 generated by parity.

Exercise. Let 𝑆𝑂 (3) × 𝑍2 = {(𝑅, 𝜖) |𝑅 ∈ 𝑆𝑂 (3), 𝜖 = ±1}. This is a group under

pairwise multiplication. Show that

ℎ : 𝑂 (3) → 𝑆𝑂 (3) × 𝑍2, ℎ : 𝑀 ↦→ (𝑀 det 𝑀, det 𝑀)

is an isomorphism of 𝑂 (3) with 𝑆𝑂 (3) × 𝑍2.
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There is ample evidence that rotations are a symmetry of nature even at the

fundamental level of elementary particles. A consequence of rotation invariance

is conservation of angular momentum, which is verified every day in particle

accelerators.

So, everyone thought that Parity is a symmetry as well. A big surprise was

when it was discovered (in 1957) that reflections are not always symmetries!.1 The

culprit is an elusive particle known as a neutrino.

We will see that there is a natural, but subtle, way that particles of spin 1
2

(such

as neutrinos) can violate reflection symmetry. That nature takes advantage of this

subtle possibility is one of the remarkable things about the standard model of

elementary particles. To understand this we will have to dig deep into the structure

of the rotation group and its Lie algebra.

That said, parity violation remains a tiny effect. The vast majority of physical

systems preserve parity: Electromagnetic interactions (which govern chemistry),

strong interactions which govern nuclear reactions and gravity all preserve parity.

Only weak interactions (many of which involve the neutrinos) violate parity. So,

we will see how to implement parity in quantum systems.

4.2.2. The Lie Algebra 𝒐(3)

If the angles are infinitesimally small, the elementary rotations around the axes

become

𝑅1(𝜙1) ≈ 1 + 𝜙1𝑆1 + · · · , 𝑅2(𝜙2) ≈ 1 + 𝜙2𝑆2 + · · · 𝑅3(𝜙3) ≈ 1 + 𝜙3𝑆3 + · · ·

where

𝑆1 =
���


0 0 0

0 0 −1

0 1 0

���
�
, 𝑆2 =

���



0 0 1

0 0 0

−1 0 0

���
�
, 𝑆3 =

���


0 −1 0

1 0 0

0 0 0

���
�
.

These are anti-symmetric matrices such that

𝑅1(𝜙1) = 𝑒𝜙1𝑆1 , 𝑅2(𝜙2) = 𝑒𝜙2𝑆2 , 𝑅3(𝜙3) = 𝑒𝜙3𝑆3

This might be a good time to learn some basic facts about matrix exponentials.

Proposition. The exponential of an anti-symmetric matrix is orthogonal

1Even before this discovery, it was known that some chemical reactions in living things are not invariant

under reflections. There are some molecules which come in different shapes which are interchanged

by reflections: stereo-isomers. (Sucrose, common sugar, is an example). But this is not a violation

of reflection symmetry at a fundamental physical level. By accident, early life forms used one of the

possible orientations and we have inherited that preference; chemically, they have identical properties.
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Just note that
[
𝑒𝐴

]𝑇
= 𝑒𝐴

𝑇

= 𝑒−𝐴. Since 𝐴 commutes with −𝐴, we have[
𝑒𝐴

]𝑇
𝑒𝐴 = 𝑒−𝐴𝑒𝐴 = 𝑒−𝐴+𝐴 = 1

Proposition. det 𝑒𝐴 = 𝑒tr𝐴

Proof. This is obvious if the matrix is diagonal:

𝐴 =

�����



𝜆1 0 0 0

0 𝜆2 0 0

. . . .

0 0 . 𝜆𝑛

������
=⇒ 𝑒𝐴 =

�����



𝑒𝜆1 0 . 0

0 𝑒𝜆2 . 0

. . . .

0 0 . 𝑒𝜆𝑛

������
det 𝑒𝐴 = 𝑒𝜆1𝑒𝜆2 · · · 𝑒𝜆𝑛 = 𝑒𝜆1+𝜆2 · · ·𝜆𝑛 = 𝑒tr 𝐴

The determinant and trace are invariant under equivalence transformations,

det

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
𝑆

�����



𝜆1 0 0 0

0 𝜆2 0 0

. . . .

0 0 . 𝜆𝑛

�����
�
𝑆−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
= 𝑒𝜆1𝑒𝜆2 . . . 𝑒𝜆𝑛 ,

tr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
𝑆

�����


𝜆1 0 0 0

0 𝜆2 0 0

. . . .

0 0 . 𝜆𝑛

�����
�
𝑆−1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
= 𝜆1 + 𝜆2 + · · · + 𝜆𝑛

for any invertible matrix 𝑆. This extends the proof to any matrix that can be

diagonalized. That is, as long as there is an invertible (possibly complex) matrix

such that

𝐴 = 𝑆

�����



𝜆1 0 0 0

0 𝜆2 0 0

. . . .

0 0 . 𝜆𝑛

������
𝑆−1

the identity above is true. But then, the set of matrices that can be diagonalized is

dense in the vector space of square matrices: As long as the characteristic equation

det[𝐴 − 𝑧1] = 0 has distinct roots, the matrix is diagonalizable. (The exception

is when the discriminant of the characteristic equation vanishes. This is a subset

of co-dimension one, over complex numbers.) Since the determinant, trace and

exponential are continuous functions, once the identity holds on a dense subset it

will hold everywhere. �
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Conversely, any rotation 𝑅 ∈ 𝑆𝑂 (3) can be written as

𝑅 = 𝑒𝐴

for some anti-symmetric matrix. (Beware that there may be more than one such

matrix. For example, 𝑒2𝜋𝑆1 = 1). It is not difficult to see that there is a dense subset

of 𝑆𝑂 (3) of this form. That in fact every rotation can be expressed this way takes

some additional work,which does not add much to physical insight. So, we skip

the proof.

Proposition. The matrices 𝑆1, 𝑆2, 𝑆3 above form a basis in the vector space of

3 × 3 anti-symmetric matrices

We can simply write any anti-symmetric as a linear combination of the 𝑆𝑖 in a

unique way:

���

0 𝐴12 𝐴13

−𝐴12 0 𝐴23

−𝐴13 −𝐴23 0

���
�
= −𝐴23

���

0 0 0

0 0 −1

0 1 0

���
�
+ 𝐴13

���

0 0 1

0 0 0

−1 0 0

���
�
− 𝐴12

���

0 −1 0

1 0 0

0 0 0

���
�
.

Proposition. The vector space of 3 × 3 anti-symmetric matrices is a Lie algebra.

The commutation relations of the basis elements are

[𝑆1, 𝑆2] = 𝑆3, [𝑆2, 𝑆3] = 𝑆1 [𝑆3, 𝑆1] = 𝑆2 (4.2.1)

You can verify the commutators by calculating the matrix products directly.

These relations can also be written as

[𝑆 𝑗 , 𝑆𝑘] = 𝜖 𝑗 𝑘𝑙𝑆𝑙 (4.2.2)

The quantity 𝜖 𝑗 𝑘𝑙 (called the Levi–Civita tensor) is completely anti-symmetric

in its indices:

𝜖 𝑗 𝑘𝑙 = −𝜖𝑘 𝑗𝑙 = −𝜖𝑘𝑙𝑘

So, it vanishes if any pair of indices are equal. It is completely specified by the

case where the indices are all different and ordered in the standard way, in which

case it is defined to be unity.

𝜖123 = 1

You can check that (4.2.1) and (4.2.2) say the same thing. Thus, the structure

constants of the Lie algebra 𝑜(3) are the components of the Levi–Civita tensor.

Exercise. Show by direct calculation that (𝜃1𝑆1 + 𝜃2𝑆2 + 𝜃3𝑆3) 𝒓 = 𝜽 × 𝒓 where

𝜽 =

(
𝜃1

𝜃2

𝜃3

)
and 𝒓 =

(
𝑥
𝑦
𝑧

)
. Also, 𝜽 × 𝒓 is the change in 𝒓 due to an infinitesimal

rotation around an axis parallel to 𝜽 .
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We can summarize the relation of the Lie group 𝑆𝑂 (3) and Lie algebra 𝑜(3):

Proposition. There is a neighborhood of the identity of 𝑆𝑂 (3) in which 𝑅 =

𝑒 𝜃1𝑆1+𝜃2𝑆3+𝜃3𝑆3 for some vector 𝜽 = (𝜃1, 𝜃2, 𝜃3) of length |𝜽 | < 𝜋. The direction of

the vector 𝜽 determines the axis of rotation and its length is the angle of rotation.

As we approach the boundary of the ball, |𝜽 | → 𝜋, the uniqueness of this

representation breaks down. A rotation by 𝜋 around any axis is the same as a

rotation through−𝜋 around the same axis2. This means that 𝑆𝑂 (3) can be identified

with the solid disk of radius 𝜋 in three-dimensional space, with antipodal points at

the boundary identified. As a manifold 𝑆𝑂 (3) is the real projective space RP3.

Exercise. Show that 𝑆2
3
= −1 + 𝑃3 where 𝑃3 =

(
0 0 0
0 0 0
0 0 1

)
; hence that 𝑃3𝑆3 = 0, and

𝑆3
3 = −𝑆3, 𝑆5

3 = 𝑆3, 𝑆7
3 = −𝑆3, · · ·

𝑆4
3 = 1 − 𝑃3, 𝑆6

3 = −1 + 𝑃3, 𝑆8
3 = 1 − 𝑃3

This leads to

𝑒𝑎3𝑆3 = cos 𝑎3 + sin 𝑎3𝑆3 + (1 − cos 𝑎3)𝑃3.

More generally,

Exercise. Sow that (a · S)2
= −|a|2 + a ⊗ a where a ⊗ a =

(
𝑎2

1
𝑎1𝑎2 𝑎1𝑎3

𝑎1𝑎2 𝑎2
2

𝑎2𝑎3

𝑎1𝑎3 𝑎2𝑎3 𝑎2
3

)
and

hence,

𝑒a·S
= cos |a| + sin |a|

|a| â + 1

|a|2
(1 − cos |a|) a ⊗ a (4.2.3)

where â = a · S =

(
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

)
so that âb = a×b. Also, a ⊗ a b = a · b a. In

particular, if |a| = 𝜋, we have 𝑒a·S = 𝑒−a·S.

4.2.3. The Real Projective Space∗ RP𝒏 for 𝒏 ≥ 2

The unit sphere S𝑛 can be thought of the set of directions in R𝑛+1: We think of two

non-zero vectors as the same as long as they point in the same direction, dropping

the information in the length. Formally, we say that 𝑢 ∼ 𝑣 if there is a positive

2It is important that not all the points at the boundary of the disk of radius 𝜋 are identified with each

other: each such point is identified only with its antipode. Rotations around an angle 𝜋 around different

directions describe distinct elements of 𝑆𝑂 (3).
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number 𝜆 such that 𝑢 = 𝜆𝑣. The set of equivalence classes of non-zero vectors

under this relation is the sphere.

We can go further and allow 𝜆 to be negative; the resulting equivalence class

describes a ray passing through the origin. The set of such rays is the real projec-

tive space RP𝑛. Another point of view is that RP𝑛 is S𝑛 with anti-podal points

(which only differ by an overall sign in the co-ordinates) identified. For any

𝑛 ≥ 2, the sphere S𝑛 is the universal cover of RP𝑛; the fundamental group of RP𝑛

is 𝑍2.

It is easier to visualize this if 𝑛 = 2. A ray passing through the origin cuts

the sphere S2 at two points. If the ray cuts the sphere somewhere on the Northern

Hemisphere, it must also cut it at the anti-podal point in the Southern Hemisphere.

We can uniquely determine the ray knowing just the co-ordinate of the point in

the Northern Hemisphere. Points in the Northern Hemisphere are in 1–1 corre-

spondence with the interior of the unit Disk: Given (𝑥, 𝑦) with 𝑥2 + 𝑦2 < 1 we can

determine 𝑧 =
√

1 − (𝑥2 + 𝑦2) uniquely.

If the ray intersects the sphere at the Equator, its anti-podal point is also on

the Equator. So, we can think of RP2 as the Disk with the antipodal points on its

boundary (the Equator) identified.

This idea goes over to 𝑛 = 3 as well, even if harder to imagine.

The case of 𝑛 = 1 is different from those with 𝑛 ≥ 2. Identifying anti-podal

points on a circle will give another circle., of half the circumference.

4.3. 𝑺𝑼(2) and its Lie Algebra 𝒔𝒖(2)

This basic example occurs all over physics, especially in the quantum mechanics

of spin. We have alluded to it several times already. Still it is worth going over it

in some more detail. Let us begin with the Lie algeba.

4.3.1. Basis in 𝒔𝒖(2)

𝑠𝑢(2) =
{
𝑎 | 𝑎† = −𝑎, tr𝑎 = 0

}
is the vector space of traceless anti-Hermitian matrices. A typical element can be

written as 𝑎 =

(
𝑎11 𝑎12

−𝑎∗
12

−𝑎11

)
where 𝑎11 is purely imaginary and 𝑎12 is complex; so

it depends on three independent real parameters. It is not hard to see that

𝑠1 = − 𝑖

2

(
0 1

1 0

)
, 𝑠2 = − 𝑖

2

(
0 −𝑖

𝑖 0

)
, 𝑠3 = − 𝑖

2

(
1 0

0 −1

)
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form a basis:

𝑎 = 𝑎1𝑠1 + 𝑎2𝑠2 + 𝑎3𝑠3 =
−𝑖

2

(
𝑎3 𝑎1 − 𝑖𝑎2

𝑎1 + 𝑖𝑎2 −𝑎3

)
≡ a · s

It will be useful to define a = (𝑎1, 𝑎2, 𝑎3) and s = (𝑠1, 𝑠2, 𝑠3).
They satisfy the commutation relations

[𝑠1, 𝑠2] = 𝑠3, [𝑠2, 𝑠3] = 𝑠1, [𝑠3, 𝑠1] = 𝑠2

Thus, the correspondence 𝑠𝑖 ↦→ 𝑆𝑖 is an isomorphism between the Lie algebras

𝑠𝑢(2) and 𝑠𝑜(3). We can also say that 𝑠𝑖 provide a two dimensional faithful

representation of 𝑜(3). We saw that 𝑜(3) describes the effect of infinitesimal

rotations on vectors in R3.

Some identities (easily verified) satisfied by the spin matrices will come in

useful soon:

𝑠2
1 = −1

4
= 𝑠2

2 = 𝑠2
3

𝑠1𝑠2 + 𝑠2𝑠1 = 0 = 𝑠2𝑠3 + 𝑠3𝑠2 = 𝑠3𝑠1 + 𝑠1𝑠3

The quadratic identities above then become (again, easy to verify)

(a · s)2
= −1

4
|a|2

The scalar on the r.h.s. is to be thought as a multiple of the identity matrix.

Exercise. Show the more general identity

a · s b · s = −1

4
a · b + 1

2
(a × b) · s (4.3.1)

for any pair of vectors a, b. Therefore (using some vector identities)

a · s b · s − b · s a · s = (a × b) · s (4.3.2)

a · s b · s a · s = −1

2
a · b a · s + 1

4
|a|2b · s (4.3.3)

There is a sort of uniqueness to the choice of spin matrices.

Exercise. Show that any triple of 2 × 2 matrices 𝑠′
1
, 𝑠′

2
, 𝑠′

3
satisfying the relations

𝑠′1𝑠
′
1 = −

1

4
= 𝑠′2𝑠

′
2 = 𝑠′3𝑠

′
3 (4.3.4)

𝑠′1𝑠
′
2 + 𝑠′2𝑠

′
1 = 0 = 𝑠′2𝑠

′
3 + 𝑠′3𝑠

′
2 = 𝑠′3𝑠

′
1 + 𝑠′1𝑠

′
3 (4.3.5)
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are linear combinations of the above matrices:

𝑠′𝑖 = 𝑅 𝑗𝑖𝑠 𝑗

Moreover, the 3×3 matrix 𝑅 appearing here is an orthogonal matrix : 𝑅𝑇 𝑅 = 1.

Answer To see this, just note that

(a · s′)
2
= −

1

4
|a|2

for any vector a. On the other hand,

a · s′ = 𝑎𝑖𝑠
′
𝑖 = 𝑎𝑖𝑅 𝑗𝑖𝑠 𝑗 = a′.s, a′

= 𝑅a

Thus

(a · s′)
2
= (a′ · s)

2
= −

1

4
|a′|2

so that

|𝑅a|2 = |a|2

for any vector a; this means that 𝑅 is orthogonal.

4.3.2. 𝑺𝑼(2) is S3 as a manifold

𝑆𝑈 (2) is the set of all unitary matrices of determinant one:

𝑆𝑈 (2) =
{
𝑔 | 𝑔† = 𝑔−1, det 𝑔 = 1

}
Let us unpack this. Suppose

𝑔 =

(
𝑔11 𝑔12

𝑔21 𝑔22

)

The conditions 𝑔 can be expressed in terms of the matrix elements(
𝑔∗

11
𝑔∗

21

𝑔∗
12

𝑔∗
22

)
=

1

𝑔11𝑔22 − 𝑔12𝑔21

(
𝑔22 −𝑔12

−𝑔21 𝑔11

)
, 𝑔11𝑔22 − 𝑔12𝑔21 = 1

We can solve for 𝑔21 and 𝑔22 in terms of 𝑔11 and 𝑔22:

𝑔22 = 𝑔∗11, 𝑔21 = −𝑔∗12

The condition on the determinant becomes

|𝑔11 |
2 + |𝑔12 |

2
= 1
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Thus, elements of 𝑆𝑈 (2) are in 1 − 1 correspondence with pairs of complex

numbers (𝑔11, 𝑔12) ∈ C
2 satisfying the condition above. In terms of real parameters,

C2
= R4; and the condition that the sum of absolute values squared says that the

sum of the squares of the four real components is one. Thus, there is a 1 − 1

correspondence between 𝑆𝑈 (2) and the space of unit vectors in R4; that is, 𝑆𝑈 (2)

is S3 as a manifold.

This is very useful as it gives a way of picturing 𝑆𝑈 (2). And makes its topology

easy to understand. (The Lie groups 𝑆𝑈 (𝑛) for 𝑛 ≥ 3 are harder to describe as

manifolds: They are not spheres any more. But they are well understood anyway)

A co-ordinate system centered at the identity is given by the exponential map

𝑔 = 𝑒𝑎1𝑠1+𝑎2𝑠2+𝑎3𝑠3

The exponential is defined by an infinite series as usual

𝑔 = 1 + a · s +
1

2!
(a · s)2 +

1

3!
(a · s)3 + · · ·

Combine all the even terms and the odd terms:

𝑔 = 1 +
1

2!
(a · s)2 +

1

4!
(a · s)4 + · · ·

+ a · s

[
1 +

1

3!
(a · s)2 +

1

5!
(a · s)4 · · ·

]

We can simplify this using the identity (a · s)2
= − 1

4
|a|2 noted earlier:

𝑔 = 1 −
1

2!

(
|a|

2

)2

+
1

4!

(
|a|

2

)4

+ · · ·

+ a · s

[
1 −

1

3!

(
|a|

2

)2

+
1

5!

(
|a|

2

)4

· · ·

]

We recognize the series:

cos 𝑥 = 1 −
1

2!
𝑥2 +

1

4!
𝑥4 + · · ·

sin 𝑥

𝑥
= 1 −

1

3!
𝑥2 +

1

5!
𝑥4 + · · ·

So, we have

𝑔 = cos

(
|a|

2

)
+ 2

a · s

|a|
sin

(
|a|

2

)
.
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This gives us another way to understand the identification 𝑆𝑈 (2) ≈ S3. The

elements close to the identity are indeed described by a vector a of small length.

But all the vectors with |a| = 2𝜋 describe the same element, 𝑔 = −1: The sin term

(which is the only one that knows about the direction of a) vanishes. Thus, 𝑆𝑈 (2)
may be thought of as the disk of radius 2𝜋 in R3, but with all the points on the

boundary of the disk identified. This is another way of thinking of the sphere.

In particular, we can now see that 𝑆𝑈 (2) is connected and simply connected.

Any point 𝑒a·s is connected to the identity by the curve 𝑒𝑡a·s: For 𝑡 = 0 it is the

identity and at 𝑡 = 1 it is at 𝑒a·s. For example, the curve 𝑒2𝜋𝑡𝑠3 for 0 ≤ 𝑡 ≤ 1

connects the identity to −1.

An example of a closed curve is a circle of radius 𝑟 < 2𝜋 in the plane with

𝑎3 = 0:

a = 𝑟 (cos 𝜃, sin 𝜃, 0) .
It is not hard to see that this can be continuously deformed to a point (the

identity) by shrinking 𝑟 → 0.

4.4. The homomorphism 𝑹 : 𝑺𝑼(2) → 𝑺𝑶(3)

The natural way to think of 𝑆𝑈 (2) (its defining representation) is by its action

on C2.

𝑢 ↦→ 𝑔𝑢, 𝑔 ∈ 𝑆𝑈 (2), 𝑢 =

(
𝑢1

𝑢2

)
∈ C2.

This leads to an action of 𝑆𝑈 (2) on the vector space of 2 × 2 matrices:

𝑀 ↦→ 𝑔𝑀𝑔†.

If a matrix transforms this way under 𝑆𝑈 (2), then 𝑀𝑢 transforms the same

way as 𝑢:

𝑀𝑢 ↦→ 𝑔𝑀𝑔†𝑔𝑢 = 𝑔(𝑀𝑢)

Under this action, the trace of a matrix is unchanged:

tr
(
𝑔𝑀𝑔†

)
= tr

(
𝑔†𝑔𝑀

)
= tr𝑀.

Moreover,

𝑀† ↦→ 𝑔𝑀†𝑔†

so that the property of being anti-Hermitian is preserved by the action of 𝑆𝑈 (2).

Thus, the space of traceless anti-Hermitian matrices carries a representation of

𝑆𝑈 (2).
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This should not be surprising: This space is just the Lie algebra 𝑠𝑢(2); and

every Lie group has a representation on its Lie algebra (the adjoint representation).

But, we know that the Lie algebras of 𝑆𝑈 (2) and 𝑆𝑂 (3) are isomorphic. Explicitly,

there is a 1–1 correspondence between vectors b ∈ R3 and traceless anti-Hermitian

2 × 2 matrices:

b · s =
��


− 𝑖
2
𝑏3 − 𝑖

2
𝑏1 −

1
2
𝑏2

− 𝑖
2
𝑏1 +

1
2
𝑏2

𝑖
2
𝑏3

��
�

Now, recall that tr𝑀†𝑀 is the sum of the absolute squares of its matrix elements;

it is invariant under the 𝑆𝑈 (2) action:

tr𝑀†𝑀 ↦→ tr
[
𝑔𝑀†𝑔† 𝑔𝑀𝑔†

]
= tr𝑀†𝑀.

There is a simple relation between this “norm” of a traceless anti-Hermitian matrix

and the length of the corresponding vector in R3:

tr
[
(b · s)† (b · s)

]
=

1

2
|b|2.

Under the action of 𝑆𝑈 (2) this matrix transforms to 𝑔b · s𝑔†. There must be a

vector b′ such that

𝑔b · s𝑔† = b′ · s

From the relationship of the matrix norm to the length of vectors, b′ must have

the same length as b.

Now, this vector b′ must depend linearly on b; so there must be a matrix 𝑅(𝑔)

such that b′ = 𝑅(𝑔)b. That is,

𝑔(b · s)𝑔† = (𝑅(𝑔)b) · s (4.4.1)

Since 𝑅(𝑔)b and b have the same length, 𝑅(𝑔) must be an orthogonal matrix.

Recall that the determinant of an orthogonal matrix can only take values ±1. Now,

det 𝑅(𝑔) is a continuous function det 𝑅 : 𝑆𝑈 (2) → R. Since the only allowed

values are ±1 it has to be a constant. This constant has to be 1 because 𝑅(1) = 1.

Thus 𝑅(𝑔) ∈ 𝑆𝑂 (3).

By its definition we can see that it is a homomorphism

𝑅(𝑔1𝑔2) = 𝑅(𝑔1)𝑅(𝑔2).

But 𝑅 is not an isomorphism! For example, both 𝑔 and −𝑔 are mapped to the

same matrix 𝑅(𝑔) in 𝑆𝑂 (3): The lhs of (4.4.1) is unchanged by replacing 𝑔 by −𝑔.

So, at best this is a 2 to 1 map.

We can understand this more explicitly working out the formula for 𝑅(𝑔) in

exponential co-ordinates.
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4.4.1. 𝑹(𝒈) in Exponential Co-ordinates

Let is calculate:

𝑔 (b · s) 𝑔† =

{
cos

(
|a|

2

)
+ 2

a · s

|a|
sin

(
|a|

2

)}
b · s

{
cos

(
|a|

2

)
− 2

a · s

|a|
sin

(
|a|

2

)}

= cos2

(
|a|

2

)
b · s − sin2

(
|a|

2

)
2

a · s

|a|
(b · s)2

a · s

|a|

+ cos

(
|a|

2

)
sin

(
|a|

2

) {
2

a · s

|a|
b · s − b · s2

a · s

|a|

}

Now, we use the identities (4.3.1–4.3.3)

𝑔 (b · s) 𝑔† = cos2

(
|a|

2

)
b · s −

4

|a|2
sin2

(
|a|

2

) {
−

1

2
a · b a · s +

1

4
|a|2b · s

}

+ cos

(
|a|

2

)
sin

(
|a|

2

)
2

|a|
(a × b) · s

𝑔 (b · s) 𝑔† = cos |a| b · s +
sin |a|

|a|
(a × b) · s +

2

|a|
sin2

(
|a|

2

)
a · b a · s

By reading off the coefficient of s we get

𝑅(𝑔)b = cos |a| b +
sin |a|

|a|
a × b +

2

|a|
sin2

(
|a|

2

)
a · b a

By thinking of this as a linear operator acting on b,

𝑅(𝑔) = cos |a| +
sin |a|

|a|
â +

2

|a|
sin2

(
|a|

2

)
a ⊗ a

where â =

(
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

)
and a ⊗ a =

(
𝑎2

1
𝑎1𝑎2 𝑎1𝑎3

𝑎1𝑎2 𝑎2
2

𝑎2𝑎3

𝑎1𝑎3 𝑎2𝑎3 𝑎2
3

)
as defined earlier. That

is, they are matrices such that

âb = a×b, a ⊗ a b = a · b a

Using the trigonometric identity for sin2
(
|a |
2

)
we can rewrite this as

𝑅(𝑔) = cos |a| + sin |a|
|a| â + 1

|a|2
(1 − cos |a|) a ⊗ a
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Using the identities (4.2.3) of the matrices 𝑆1, 𝑆2, 𝑆3 we recognize this as

𝑅(𝑔) = 𝑒a·S.

Now, recall that 𝑆𝑂 (3) corresponds to the region |a| ≤ 𝜋; The points on the

boundary with |a| = 𝜋 are identified with their antipodes: 𝑒a·S = 𝑒−a·S when

|a| = 𝜋. This is why 𝑆𝑂 (3) ≡ RP3 as a manifold.

On the other hand, 𝑆𝑈 (2) corresponds to a region |a| ≤ 2𝜋 which is twice as

big. All the points with |a| = 2𝜋 correspond to the same element 𝑔 = −1 of 𝑆𝑈 (2).
That is, 𝑆𝑈 (2) ≡ S3 as a manifold.

For example, there is no identification of 𝑒a·s with 𝑒−a·s when |a| = 𝜋. Instead

𝑒a·s
= −2

a · s

|a| = −𝑒−a·s, |a| = 𝜋

The map 𝑅 : 𝑆𝑈 (2) → 𝑆𝑂 (3) is insensitive to a change of sign of 𝑔 :𝑅(𝑔) =
𝑅(−𝑔). From the explicit formulas, we can see that this is the only ambiguity: The

kernel of 𝑅 is precisely 𝑍2 = {1,−1} ⊂ 𝑆𝑈 (2) .

Exercise. Construct a curve which starts at some point 𝑔 ∈ 𝑆𝑈 (2) and ends at the

point −𝑔; its projection to 𝑆𝑂 (3) via 𝑅 should however, be a closed curve.

Solution: Pick a vector a of length 𝜋and define

𝛾(𝑡) = 𝑒𝑡a·s, −1 ≤ 𝑡 ≤ 1.

Its image under 𝑅 is

𝑅(𝛾(𝑡)) = cos[|𝑡a|] + sign(𝑡)
sin[|𝑡a|]

|a|
â +

|𝑡 |

|a|
(1 − cos[|𝑡a|]) a ⊗ a

Since |a| = 𝜋, the middle term vanishes at 𝑡 = ±1. The remaining terms are

insensitive to the sign of 𝑡. So 𝑅(𝛾(−1)) = 𝑅(𝛾(1)).

4.5. 𝑺𝑼(2) as a Group Extension of 𝑺𝑶(3)

This can be viewed as part of a larger theory of extensions of groups. We need a

bit of terminology from group theory.

Definition. The kernel of a group homomorphism 𝑓 : 𝐻 → 𝐺 is the set of

elements of 𝐻 that are mapped to the identity in 𝐺. The image of 𝑓 is the set of

elements of 𝐺 that are of the form 𝑓 (𝑔) for some 𝑔 ∈ 𝐻.

Thus, the kernel of the map 𝑅 : 𝑆𝑈 (2) → 𝑆𝑂 (3) of the last section is the

subset {1,−1}. The image of 𝑅 is the whole of 𝑆𝑂 (3).

Definition. A sequence of group homomorphisms 𝐺1

𝑓1
→ 𝐺2

𝑓2
→ 𝐺3

𝑓3
→ · · · is

exact if the image of each map is equal to the kernel of the next.
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For example, this means not only that 𝑓2 ( 𝑓1 (𝑔)) = 1,∀𝑔 ∈ 𝐺1 but also that

𝑓2(𝑥) = 1 =⇒ ∃𝑔 ∈ 𝐺1 such that 𝑥 = 𝑓1(𝑔).

Definition. 𝐺̂ is the extension of a group 𝐺 by another group 𝐻 if there is an exact

sequence of group homomorphisms

{1} → 𝐻
𝑖
→ 𝐺̂

Π

→ 𝐺 → {1}

Here, {1} denotes the trivial group containing just the identity. So, the image

of the first map is just the identity. Exactness means that the only element of 𝐻

mapped to the identity of 𝐺̂ by 𝑖 is the identity. This means that 𝑖(𝐻) is a subgroup

of 𝐺̂ which is isomorphic to 𝐻.

The last map just takes everything in 𝐺 to the identity; its kernel is all of 𝐺.

Exactness means that the image of Π must be the whole group: Every element of

𝐺 arises as 𝜋(𝑔) for some 𝑔 ∈ 𝐺̂. But some information may be “lost”:Π(𝑔) might

not determine 𝑔 itself.

Now we come to the essential part: 𝑖(𝐻) must be the kernel of Π. That is, the

elements of 𝐺̂ that are “killed off” by Π are precisely those that come from 𝐻. This

means that 𝐺 is a kind of “quotient” of 𝐺̂ by 𝐻. Certainly, if they are finite groups,

the number of elements in 𝐺̂ is the number of elements of 𝐺 times that of 𝐻.

In fact we can define two elements of 𝐺̂ to be equivalent if they project to the

same element of 𝐺:

𝑔̂1 ∼ 𝑔̂2 ⇐⇒ Π(𝑔̂1) = Π(𝑔̂2)

That is, these two elements of 𝐺̂ are equivalent if they only differ by multipli-

cation by some 𝑖(ℎ) for ℎ ∈ 𝐻

𝑔̂1 ∼ 𝑔̂2 ⇐⇒ ∃ℎ ∈ 𝐻such that 𝑔̂1 = 𝑖(ℎ)𝑔̂2

Then Π defines a 1-1 correspondence between such equivalence classes and

𝐺: We can think of 𝐺 as 𝐺̂ modulo this relation.

A rather obvious example of an extension is the product 𝐺 × 𝐻: The set of

pairs (𝑔, ℎ) with 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻 with the pairwise product

(𝑔, ℎ) (𝑔′, ℎ′) = (𝑔𝑔′, ℎℎ′).

This is the trivial extension. The interesting possibility is an extension that is

not a product.

The content of the last section is that 𝑆𝑈 (2) is a non-trivial extension of 𝑆𝑂 (3)

by 𝑍2

1 → 𝑍2
𝑖
→ 𝑆𝑈 (2)

𝑅
→ 𝑆𝑂 (3) → 1
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The map 𝑖 simply takes −1 to the negative of the identity matrix. These are

precisely the elements that are mapped to the identity by 𝑅. This is a non-trivial

extension: We cannot think of 𝑆𝑈 (2) as the product 𝑆𝑂 (3) × 𝑍2. (The latter would

instead be 𝑂 (3), the group of reflections and rotations.)

An even more basic example of a group extension is

1 → Z 𝑖→ R Π→ 𝑈 (1) → 1

𝑈 (1) is the set of complex numbers of unit magnitude (the same as 1×1 unitary

matrices); it is an abelian group under multiplication. Geometrically it is the unit

circle.

R and Z are the additive groups of real numbers and integers respectively. 𝑖 just

embeds integers into real numbers in the usual way. Π is the exponential

Π(𝑥) = 𝑒2𝜋𝑖𝑥

When 𝑥 is an integer this is equal to one. It is parametrized by an angle, which

is a real number modulo 2𝜋:

𝑈 (1) ≈ R/2𝜋Z.

4.5.1. The Universal Cover of 𝑺𝑶(3)

Another point of view is topological.U(1) is not simply connected: A closed curve

can wind around the circle many times and so cannot always be deformed to a

point. The universal covering space of the circle is R; the covering map is Π as

defined above.

In the same spirit, 𝑆𝑈 (2) ≈ S3 is simply connected. That is, any closed curve in

it can be deformed to a point. But 𝑆𝑂 (3) ≈ RP3 is not: The curve 𝑒 𝜃𝑆3 for 𝜃 varying

from −𝜋 to 𝜋 is closed. It starts and ends at the origin. But it is not deformable

to the identity continuously. The corresponding curve in 𝑆𝑈 (2) is 𝑒−
𝑖
2
𝜃𝜎3 . It is

not closed as it connects the antipodal points on the sphere. Topologically, S3 is a

covering space of 𝑆𝑂 (3). The map 𝑅 above is the covering map. The fundamental

group ofRP3 (the set of closed curves up to homotopyequivalence) is the group 𝑍2.

Thus, the relation of 𝑆𝑈 (2) is a kind of “twisted” product of 𝑍2 and 𝑆𝑂 (3)
both as a group and as a manifold. More precisely, 𝑆𝑂 (3) = 𝑆𝑈 (2)/𝑍2 where two

elements of 𝑆𝑈 (2)which only differ by a sign are considered equivalent. (For any

group extension the equivalence classes 𝐺̂/𝑖(𝐻) form a group.)

This is typical of other Lie groups. Given a Lie algebra, there is a unique simply

connected Lie group corresponding to it. The other Lie groups that share the same

Lie algebra differ from the simply connected one by “division” by some discrete
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subgroup. (The fundamental group of a Lie group is always abelian, so it is always

a discrete abelian subgroup.)

4.5.2. The gauge group of the standard model∗

Physicists tend to be sloppy about this fact that there are several Lie groups with

the same Lie algebra. For example, you will hear often that the gauge group of the

standard model is 𝑆𝑈 (3) × 𝑆𝑈 (2) ×𝑈 (1). This is true at the level of a Lie algebra.

As a group it is, to be precise[10], 𝑆 (𝑈 (3) ×𝑈 (2)). It has the same Lie algebra.

But differs from 𝑆𝑈 (3) × 𝑆𝑈 (2) ×𝑈 (1) by a discrete group 𝑍6. You may think this

is a hair-splitting difference that doesn’t matter physically. But it has an important

physical consequence: It explains why the electric charge of the electron and the

proton are equal in magnitude.

For a while there was hope for a Grand Unified Theory: 𝑆(𝑈 (3) × 𝑈 (2)) is

a natural subgroup of 𝑆𝑈 (5). Perhaps 𝑆𝑈 (5) is the true gauge group, which is

spontaneously broken to its subgroup 𝑆(𝑈 (3) ×𝑈 (2)) . This would mean there are

rare decays of the proton into leptons (an electron and some neutrino). Experiments

have ruled this out. Hope remains that the true gauge group is some even large

symmetry such as 𝑂 (10) or 𝐸8. But in the absence of experimental hints, such

endeavors remain speculative.

Exercise. Let 𝐺 ≡ 𝑆(𝑈 (3) × 𝑈 (2)) =

{(
𝑔3 0
0 𝑔2

)
| 𝑔3 ∈ 𝑈 (3), 𝑔2 ∈ 𝑈 (2), det

(𝑔3𝑔2) = 1
}

and 𝐺̂ ≡ 𝑆𝑈 (3) × 𝑆𝑈 (2) × 𝑈 (1) = {(𝑔̂3, 𝑔̂2, 𝑔̂1) | 𝑔̂3 ∈ 𝑆𝑈 (3),

𝑔̂2 ∈ 𝑆𝑈 (2), 𝑔̂1 ∈ 𝑈 (1)}. Show that these two groups have the same Lie algebra.

Find a group extension

1 → 𝑍6
𝑖
→ 𝐺̂

Π

→ 𝐺 → 1.



Chapter 5

ANGULAR MOMENTUM

5.1. Angular Momentum in Classical Mechanics

We make a digression into classical mechanics. Let us start with the classical

theory. Recall that position and momentum satisfy the Poisson bracket relations

{𝑟𝑖 , 𝑟 𝑗 } = 0 = {𝑝𝑖 , 𝑝 𝑗 }, {𝑝𝑖 , 𝑟 𝑗 } = 𝛿𝑖 𝑗

Here 𝛿𝑖 𝑗 =

{
1 𝑖 = 𝑗

0 𝑖 ≠ 𝑗
is the Kronecker symbol. These relations are invariant

under rotations. For example, if we change 𝑝𝑖 → 𝑅𝑖𝑘 𝑝𝑘 , 𝑟 𝑗 ↦→ 𝑅 𝑗𝑙𝑟𝑙 by an

orthogonal matrix 𝑅,

{𝑝𝑖 , 𝑟 𝑗 } ↦→ 𝑅𝑖𝑘𝑅 𝑗𝑙{𝑝𝑘 , 𝑟𝑙} = 𝑅𝑖𝑘𝑅 𝑗𝑙𝛿𝑘𝑙 = 𝑅𝑖𝑘𝑅 𝑗 𝑘 = 𝛿𝑖 𝑗

The last step follows from the definition of orthogonality. A basic principle

of classical mechanics is that an infinitesimal transformation which leaves the

canonical relations unchanged is generated by Poisson brackets with some function

(called the generator). For example, under an infinitesimal rotation through an agle

𝜙3 around the third axis the changes in 𝒓 and 𝒑 are given by 𝜙3𝑆3𝒓 and 𝜙3𝑆3 𝒑

respectively. There must be a quantity 𝐿3 such that

{𝐿3, 𝒓} = 𝑆3𝒓, {𝐿3, 𝒑} = 𝑆3 𝒑

That is,

{𝐿3, 𝑥} = −𝑦, {𝐿3, 𝑦} = 𝑥, {𝐿3, 𝑧} = 0

{𝐿3, 𝑝𝑥} = −𝑝𝑦 ,
{
𝐿3, 𝑝𝑦

}
= 𝑝𝑥 , {𝐿3, 𝑝𝑧} = 0

You can check that

𝐿3 = 𝑥𝑝𝑦 − 𝑦𝑝𝑥

69
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does the job. Similarly we will have

𝐿1 = 𝑦𝑝𝑧 − 𝑧𝑝𝑦 =⇒ {𝐿1, 𝒓} = 𝑆1𝒓, {𝐿1, 𝒑} = 𝑆1 𝒑

𝐿2 = 𝑧𝑝𝑥 − 𝑥𝑝𝑧 =⇒ {𝐿2, 𝒓} = 𝑆2𝒓, {𝐿2, 𝒑} = 𝑆2 𝒑

That is, they realize the 𝑜(3) Lie algebra in terms of Poisson brackets. The

change of any physical quantity 𝑓 under a rotation by an infinitesimally small

angle 𝝓 is the Poisson bracket {𝝓 · 𝑳, 𝑓 }. We can conclude that t𝑚𝑜𝑛𝑒𝑛𝑔𝑡he three

functions are the components of the cross product vector

𝑳 = 𝒓 × 𝒑

This is angular momentum. The components of angular momentum satisfy

{𝐿 𝑗 , 𝐿𝑘} = −𝜖 𝑗 𝑘𝑙𝐿𝑙

Proposition. Rotations are the canonical transformations generated by angular

momentum

Exercise. Show that 𝐿2 ≡ 𝐿2
1
+ 𝐿2

2
+ 𝐿2

3
has zero Poisson Brackets with the

components of angular momentum {𝐿2, 𝐿𝑘 } = 0

If rotations are the symmetry of a mechanical system, they will leave the

hamiltonian unchanged. For example, the hamiltonian of the Kepler problem

𝐻 =
𝒑2

2𝑚
− 𝑘

|𝒓 |
is clearly rotation invariant. Since angular momentum generates rotations, it follows

that

{𝑳, 𝐻} = 0

But the hamiltonian generates time translations: For any observable quantity,

𝑑𝑓

𝑑𝑡
= {𝐻, 𝑓 }

Proposition. If the hamiltonian is rotation invariant, angular momentum is con-

served: {𝑳, 𝐻} = 0 =⇒ 𝑑𝑳
𝑑𝑡

= 0

If 𝑳 ≠ 0, this has two important consequences for celestial mechanics:

• The orbit lies in the plane orthogonal to 𝑳. In this plane, choose a polar co-

ordinate system centered at the star and 𝑳 =

(
0
0
𝐿3

)
• Then 𝐿3 = 𝑟2 𝑑𝜃

𝑑𝑡
must be a constant. This is Kepler’s second law.
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5.2. Angular Momentum in Quantum Mechanics

This is part of any standard course on quantum mechanics. My favorites references

are [7, 9].

A real function on the phase space (representing a classical observable) goes

over to a hermitian operator in quantum mechanics. Poisson brackets of observables

become commutators of operators (apart from a factor of −𝑖ℏ). Thus, the position

and momentum operators satisfy Heisenberg relations[
𝑟𝑖 , 𝑟 𝑗

]
= 0 =

[
𝑝𝑖 , 𝑝 𝑗

]
,

[
𝑝𝑖 , 𝑟 𝑗

]
= −𝑖ℏ𝛿𝑖 𝑗

The usual (i.e., Schrodinger ) representation is to think of 𝑟𝑖 as the multiplication

operator and

𝑝𝑖 = −𝑖ℏ𝜕𝑖

as the derivative. In vector notation 𝒑 = −𝑖ℏ∇.

Angular momentum is also then an operator

𝑳 = −𝑖ℏ𝒓 × ∇

These operators satisfy the commutation relations[
𝐿 𝑗 , 𝐿𝑘

]
= 𝑖ℏ𝜖 𝑗 𝑘𝑙𝐿𝑙

Apart from the usual factor of −𝑖ℏ these are just the commutation relations of

the matrices 𝑆𝑖 we found earlier. If we had defined

𝑲 = 𝒓 × ∇

we would have obtained a representation of the Lie algebra 𝑜(3):[
𝐾 𝑗 , 𝐾𝑘

]
= 𝜖 𝑗 𝑘𝑙𝐾𝑙 .

While more natural mathematically, this is a bit awkward for physicists: 𝐾𝑖 are

now anti-Hermitian (unlike 𝐿𝑖 which are hermitian). Their eigenvalues are then

purely imaginary.

The ℏ is merely the factor that converts from the intrinsic units of quantum

mechanics (in which angular momentum is dimensionless) to those we got used to

in classical mechanics (in which angular momentum has units of 𝑀𝐿2𝑇−1, same

as ℏ). In many quantum calculations, it will be convenient to use “natural units”

with ℏ = 1 and convert to classical units at the end. This is easily done using

dimensional analysis. A little care is always needed to translate from physics to

mathematical jargon: A factor of −𝑖ℏ is part of this translation.
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Recall that a representation of a Lie algebra is said to be unitary if the matrices

are anti-Hermitian.

𝑲†
= −𝑲

The name is justified because the corresponding representation of the group (by

matrices such as 𝑒𝒂 ·𝑲 ) is by unitary matrices. Equivalently, the angular momentum

operators are hermitian.

In summary, Angular momentum operators form a unitary representation of

the 𝑜(3) Lie algebra.

It would be useful to have a classification of all such representations. More pre-

cisely, we need to find all the irreducible unitary representations up to equivalence.

But, before classifying anything we must work out a few examples.

5.2.1. Examples of representations

Every Lie algebra has a representation on itself, the adjoint

representation.

The commutator is itself a linear operator, so we can define

[𝑎, 𝑢] = 𝑎̂𝑢

The Jacobi identity can be written as

[𝑎, [𝑏, 𝑢]] − [𝑎, [𝑏, 𝑢]] = [𝑎, 𝑏], 𝑢]

That is

(𝑎𝑏̂ − 𝑏̂𝑎)𝑢 = 	[𝑎, 𝑏]𝑢
which means that 𝑎 ↦→ 𝑎 is a representation. Another way to think of this is in

terms of a basis and structure constants. Recall that

[𝑋𝑖 , 𝑋 𝑗 ] = 𝑐𝑘𝑖 𝑗𝑋𝑘 =⇒ 𝑐𝑙𝑖 𝑗𝑐
𝑚
𝑙𝑘 + 𝑐𝑙𝑗𝑘𝑐

𝑚
𝑙𝑖 + 𝑐𝑙𝑘𝑖𝑐

𝑚
𝑙 𝑗 = 0

Again, the Jacobi identity can be written as

𝐶𝑖𝐶𝑘 − 𝐶𝑘𝐶𝑖 = 𝑐𝑙
𝑖𝑘
𝐶𝑙

where the 𝐶𝑖 are matrices whose components are given by the structure constants

themselves

[𝐶𝑖]𝑙𝑗 = 𝑐𝑙𝑖 𝑗 .

If we work out the matrix elements in terms of the Levi–Civita tensor we

simply get back the matrices 𝑆 used to define 𝑜(3) earlier!
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So, the adjoint representation of 𝑜(3) this representation is three-dimensional.

We will find its place in the larger scheme once we classify representations; it turns

to have spin one.

There is a representation of 𝑜(3) in terms of Pauli Matrices. This is the next most

important representation

𝑆 𝑗 ↦→ − 𝑖

2
𝜎𝑗

By direct calculation you can can verify that[
− 𝑖

2
𝜎1,−

𝑖

2
𝜎2

]
= − 𝑖

2
𝜎3

(and cyclic permutations of this relation.)

Although this is a representation of the Lie algebra 𝑜(3), it does not give a

representation of the group 𝑂 (3). Recall that a rotation through an angle 2𝜋 is the

identity. For example,

𝑒2𝜋𝑆3 = 1

But there is a crucial sign difference in the representation:

𝑒2𝜋(− 𝑖
2
𝜎3) = 𝑒−𝑖 𝜋𝜎3 = −1.

We will see that a quirk of quantum mechanics still allows this as a repre-

sentation of the rotations. Quantum mechanics allows a “representation up to a

phase” or “projective representation”. The electron (the most common elementary

particle, responsible for chemical reactions and hence life) exists only because of

this apparently arcane technicality!

In the larger scheme below, we will see that this is the spin half representation

of the Lie algebra. This is the representation with the smallest dimension, two.

(If you exclude the trivial representation where 𝑆𝑖 are all mapped to 0). All the

other representations can be built out of this one by taking tensor products. So, it

is also called the fundamental representation. Not coincidentally, the fundamental

building blocks of matter (quarks and leptons) carry this representation.

5.3. Representations of 𝒔𝒐(3)

We now take up the task of classifying all the irreducible unitary representations

of the Lie algebra 𝑜(3) of rotations.
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5.3.1. Equivalent representations

Any time you classify things, you need a notion of equivalence. Is a set containing

two apples different from a set containing two oranges? It is, if you are making

apple sauce. Not if you are merely learning to count.

Suppose 𝐾𝑖 and 𝐾 ′
𝑖

are matrices satisfying the commutation relations of 𝑜(3).

[
𝐾 𝑗 , 𝐾𝑘

]
= 𝜖 𝑗 𝑘𝑙𝐾𝑙 ,

[
𝐾 ′
𝑗 , 𝐾

′
𝑘

]
= 𝜖 𝑗 𝑘𝑙𝐾

′
𝑙 .

We say they are equivalent representations if there is a matrix 𝑇 such that

𝐾 ′
𝑗 = 𝑇𝐾 𝑗𝑇

−1

This is fair, because 𝑇 is just a change of basis.

5.3.2. Reducible representations

The direct sum of two matrices (they could have different dimensions) is

𝐴 ⊕ 𝐵 =

(
𝐴 0

0 𝐵

)

That is, write the matrices as blocks along the diagonal and fill in the rest with

zeros. The rule for matrix multiplication gives

(
𝐴 0

0 𝐵

) (
𝐶 0

0 𝐷

)
=

(
𝐴𝐶 0

0 𝐵𝐷

)

It is now clear that if 𝐾𝑖and 𝐾 ′
𝑗

are two representations (may be of different

dimension) the direct sum 𝑀 𝑗 =

(
𝐾 𝑗 0
0 𝐾 ′

𝑗

)
is also a representation. For,

[ (
𝐾 𝑗 0

0 𝐾 ′
𝑗

)
,

(
𝐾𝑘 0

0 𝐾 ′
𝑘

)]
=
��
�
[
𝐾 𝑗 , 𝐾𝑘

]
0

0
[
𝐾 ′
𝑗
, 𝐾 ′

𝑘

]��
�

Such representations should be considered reducible: They can be split into

smaller pieces. Conversely, once we know the irreducible representations, we

can build all representations by taking direct sums. The irreducible represen-

tations are the basic building blocks, the elementary objects, of representation

theory.
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A more general situation (which does not arise for 𝑠𝑜(3) but does for some

other Lie algebras) is that the representation matrices might of the triangular form(
𝐴 𝐶

0 𝐵

)

where 𝐶 is a rectangular matrix. Then[(
𝐴 𝐶

0 𝐵

)
,

(
𝐴′ 𝐶 ′

0 𝐵′

)]
=

(
[𝐴, 𝐴′] 𝐴𝐶 ′ + 𝐶𝐵′ − 𝐴′𝐶 − 𝐶 ′𝐵

0 𝐵𝐵′

)

These are also to considered as reducible representations, since there are

smaller pieces 𝐴, 𝐵 that provide sub-representations. But in this case
(
𝐴 𝐶
0 𝐵

)
is

not the direct sum 𝐴 ⊕ 𝐵. If we need to distinguish between the two situations, we

will say that the representations which are direct sums are completely reducible.

If a representation is unitary (i.e., the representation matrices are anti-

Hermitian) it is not hard to see any reducible representation is completely reducible:

The hermitian conjugate of
(
𝐴 𝐶
0 𝐵

)
is

(
𝐴† 0

𝐶† 𝐵†

)
; so if it is anti-Hermitian, 𝐶 = 0.

For physical reasons we are mostly interested in unitary representations. In any

case, all the representations of 𝑠𝑜(3) are unitary; so any reducible representation

is completely reducible. So, the reducible representations we will encounter are

mostly completely reducible.

But here is a tricky point: A change of basis can obscure the fact that a rep-

resentation is reducible. The matrices may not look triangular (or block diagonal)

in all bases. So, we could say a representation is reducible, if there exists a basis

in which the representation matrices are of the upper triangular form (or even the

block diagonal form).

There is a basis-independent way of saying this. If a representation is reducible

(if such a basis exists), vectors of the form
(
𝑢
0

)
(with zero components on the part

acted upon by 𝐾 ′
𝑗 ) are mapped to

(
𝐾 𝑗𝑢

0

)
: This subspace is invariant. (Each vector

changes, but the space of all such vectors is unchanged.) So, here is the official

Definition. A representation is reducible if there is a proper (i.e., containing more

than the 0 vector but not as big as the whole space) invariant subspace. And if

there is no proper invariant subspace, the representation is irreducible.

So, our aim is to classify irreducible representations up to equivalence. A useful

tool in identifying a reducible representation is1

1Later we will study Schur’s Lemma as part of a deeper theory. We develop only what we need for

now.
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Lemma. (Schur) A representation 𝑆𝑖 ↦→ 𝑀𝑖 is irreducible iff the only matrices

that commute with all the 𝑀𝑖 are multiples of the identity

The point is that the projection to an invariant subspace
(
𝑢
0

)
is a matrix that

commutes with
(
𝐾 𝑗 0
0 𝐾 ′

𝑗

)
:

ot (
1 0

0 0

) (
𝐾 𝑗 0

0 𝐾 ′
𝑗

)
=

(
𝐾 𝑗 0

0 0

)
=

(
𝐾 𝑗 0

0 𝐾 ′
𝑗

) (
1 0

0 0

)

If there is a matrix 𝐶 that commutes with 𝑀𝑖 , its eigenspaces are invariant

subspaces. (Unless 𝐶 is a multiple of the identity, the only eigenspace is the whole

space; so there are no proper invariant subspaces.)

In particular this means for 𝑠𝑜(3) that

𝑀2
1 + 𝑀2

2 + 𝑀2
3

must be a multiple of the identity in an irreducible representation: The Lie algebra

commutation relations imply that[
𝑀2

1 + 𝑀2
2 + 𝑀2

3 , 𝑀𝑘

]
= 0.

5.3.3. Unitary equivalence

We can put a finer point on this. Recall that angular momentum must be a hermi-

tian matrix: It must be an observable of quantum mechanics. The representation

matrices 𝐾 𝑗 are related to angular momentum by

𝑱 = −𝑖ℏ𝑲

So the representation matrices must be anti-Hermitian, giving a unitary repre-

sentation.

When we say two unitary representations are equivalent,

𝐾 ′
𝑗 = 𝑇𝐾 𝑗𝑇

−1

the matrix 𝑇 must be required to be unitary.

𝑇−1
= 𝑇†.

That way, observables (hermitian matrices) are mapped to observables by

unitary transformations:

𝑱 ′ = 𝑇 𝑱𝑇†.

Thus we want to classify irreducible unitary representations of 𝑠𝑜(3) up to

unitary equivalence.
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5.3.4. Roots and Weights

It will be convenient to choose units such that ℏ = 1. The commutation relations

of angular momentum

[𝐽3, 𝐽1] = 𝑖𝐽2, [𝐽3, 𝐽2] = −𝑖𝐽1, [𝐽1, 𝐽2] = 𝑖𝐽3

are more conveniently written as[
𝐽3,

𝐽1 + 𝑖𝐽2√
2

]
=

𝐽1 + 𝑖𝐽2√
2

,

[
𝐽3,

𝐽1 − 𝑖𝐽2√
2

]
= − 𝐽1 − 𝑖𝐽2√

2
.

[
𝐽1 + 𝑖𝐽2√

2
,
𝐽1 − 𝑖𝐽2√

2

]
= 𝐽3

The factor of 1√
2

etc. are chosen so that we have the neat relations

[𝐽3, 𝐽+] = 𝐽+, [𝐽3, 𝐽−] = −𝐽−.

[𝐽+, 𝐽−] = 𝐽3

for

𝐽+ =
𝐽1 + 𝑖𝐽2√

2
, 𝐽− =

𝐽1 − 𝑖𝐽2√
2

.

Complex linear combinations as 𝐽± satisfying such “ladder” relations are called

roots : Cartan’s terminology in his classic work on Lie theory. The eigenvectors of

𝐽3 (see below) are called weights.

For a unitary representation of 𝑜(3),

𝐽
†
3
= 𝐽3

and

𝐽
†
+ = 𝐽−.

Now, suppose we have a eigenvector of 𝐽3

𝐽3 |𝑚 >= 𝑚 |𝑚 >

The eigenvalue will be a real number 𝑚. The eigenvectors |𝑚 > and |𝑚′ >

will be orthogonal when 𝑚 ≠ 𝑚′. We will also choose them to be have length one.

That is

< 𝑚 |𝑚′ >= 𝛿𝑚𝑚′

This still leaves an ambiguity of a phase: We can multiply each |𝑚 > by a

complex number of modulus one.
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Lemma.

𝐽3𝐽+ |𝑚 >= (𝑚 + 1)𝐽+ |𝑚 >, 𝐽3𝐽− |𝑚 >= (𝑚 − 1)𝐽+ |𝑚 >

Proof. For,

𝐽3𝐽+ |𝑚 > = [𝐽3, 𝐽+] |𝑚 > +𝐽+𝐽3 |𝑚 >

= 𝐽+ |𝑚 > +𝑚𝐽+ |𝑚 >= (𝑚 + 1) |𝐽+ |𝑚 >

and similarly for 𝐽−. �

The point is that 𝐽+ is a “raising operator” is a “positive root”: As long 𝐽+ |𝑚 >≠ 0,

it is an eigen-vector of 𝐽3 with eigenvalue 𝑚 + 1. (Similarly 𝐽− is a “lowering

operator”.) We just showed that eigenvalues of 𝐽3 are equally separated by one. We

will see next that this is a finite sequence: There is a largest and a smallest value

for 𝑚.

The key is the quantity (“Casimir operator”)

𝐽2
= 𝐽2

1 + 𝐽2
2 + 𝐽2

3

Being the sum of squares of hermitian matrices, this is a positive matrix. That

is, its expectation value in any state is positive:

< 𝑢 |𝐽2 |𝑢 > ≥ 0.

Lemma. In an irreducible representation, 𝐽2 is a multiple of the identity.

Proof. The commutation relations of 𝑜(3) require that
[
𝐽2, 𝐽𝑘

]
= 0. By Schur’s

Lemma this must be a multiple of the identity in an irreducible representation. �

It is useful to write this in terms of raising and lowering operators:

Lemma. 𝐽3(𝐽3 + 1) + 2𝐽−𝐽+ = 𝐽2 = 𝐽3(𝐽3 − 1) + 2𝐽+𝐽−

Proof. Let us calculate

𝐽−𝐽+ =
𝐽1 − 𝑖𝐽2√

2

𝐽1 + 𝑖𝐽2√
2

=
𝐽2

1
+ 𝐽2

2
+ 𝑖[𝐽1, 𝐽2]
2

=
𝐽2

1
+ 𝐽2

2
− 𝐽3

2

so that

𝐽2
3 + 𝐽3 + 2𝐽−𝐽+ = 𝐽2

3 + 𝐽3 + 𝐽2
1 + 𝐽2

2 − 𝐽3 = 𝐽2

The other identity follows in a similar way by considering 𝐽+𝐽− instead. �
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Now, 𝐽−𝐽+ is by itself a positive operator:

< 𝑢 |𝐽−𝐽+ |𝑢 >=| 𝐽+ |𝑢 > |2≥ 0.

So, we have2

𝐽3 (𝐽3 + 1) ≤ 𝐽2

or (
𝐽3 +

1

2

)2

≤ 𝐽2 + 1

4

So, 𝐽3 cannot have eigenvalues that are too large in magnitude; there must

be a smallest and a largest eigenvalue for 𝐽3. Let the largest eigenvalue (“highest

weight” ) be 𝑗:

𝐽3 | 𝑗 >= 𝑗 | 𝑗 >

It should be impossible to raise this by 𝐽+ since it is already the largest:

𝐽+ | 𝑗 >= 0

It follows that

𝐽2 | 𝑗 >= 𝑗 ( 𝑗 + 1) | 𝑗 >

By Schur’s lemma, 𝐽2 must be a multiple of the identity and so we now know

its value on all the states:

𝐽2 |𝑚 >= 𝑗 ( 𝑗 + 1) |𝑚 >

There is a state with the lowest weight:

𝐽− |𝑚min >= 0

Now,

𝐽2 |𝑚min >= [𝐽3 (𝐽3 − 1) + 2𝐽+𝐽−] |𝑚min >= 𝑚min(𝑚min − 1) |𝑚min >

gives

𝑗 ( 𝑗 + 1) = 𝑚min (𝑚min − 1)

2The meaning of an inequality 𝐴 < 𝐵 relating hermitian operators is that the expectation value in

𝑎𝑛𝑦 state 𝜓 satisfies 〈𝜓, 𝐴𝜓〉 ≤ 〈𝜓, 𝐵𝜓〉 .
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The solutions of this quadratic are 𝑚min = − 𝑗 , and 𝑚min = 𝑗 + 1 . The

second solution can’t be the right one, because 𝑚min is supposed to be the smallest

eigenvalue and 𝑗 + 1 is even bigger than the maximum 𝑗 .

So, 𝑚 ranges between 𝑗 and − 𝑗 , in steps of one:

𝑚 = 𝑗 , 𝑗 − 1, . . . ,− 𝑗

There are 2 𝑗 + 1 such distinct values. Since 2 𝑗 + 1 must a positive integer, we

conclude that the allowed values of 𝑗 are

𝑗 = 0,
1

2
, 1, . . .

For each choice 𝑗 there is one irreducible representation.

To complete the story, we need the matrix elements of 𝐽±. We already know

that 𝐽3 is the diagonal matrix

< 𝑚′ |𝐽3 |𝑚 >= 𝑚𝛿𝑚′𝑚.

And that

< 𝑚′ |𝐽+ |𝑚 > = 0, unless 𝑚′
= 𝑚 + 1

< 𝑚′|𝐽− |𝑚 > = 0, unless 𝑚′
= 𝑚 − 1

So, we just need the numbers

< 𝑚 + 1|𝐽+ |𝑚 >= 𝛼𝑚

Since 𝐽− = 𝐽
†
+,

< 𝑚 |𝐽− |𝑚 + 1 >= 𝛼∗
𝑚 =⇒ < 𝑚 − 1|𝐽− |𝑚 >= 𝛼∗

𝑚−1

Now,

< 𝑚 |𝐽2 |𝑚 >= 𝑗 ( 𝑗 + 1)

𝑗 ( 𝑗 + 1) =< 𝑚 |𝐽3(𝐽3 + 1) + 2𝐽−𝐽+ |𝑚 >

= 𝑚(𝑚 + 1) + 2 < 𝑚 |𝐽−𝐽+ |𝑚 >

= 𝑚(𝑚 + 1) + 2 < 𝑚 |𝐽− |𝑚 + 1 >< 𝑚 + 1|𝐽+ |𝑚 >

= 𝑚(𝑚 + 1) + 2|𝛼𝑚 |2

We have determined the magnitudes of the complex numbers

|𝛼𝑚 | =
1
√

2

√
𝑗 ( 𝑗 + 1) − 𝑚(𝑚 + 1)
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The phases can be chosen to be anything: These phases only affect the choice

of basis. We choose

𝛼𝑚 =
1
√

2

√
𝑗 ( 𝑗 + 1) − 𝑚(𝑚 + 1)

(The representation you get by another choice of phase is unitarily equivalent).

To conclude,

Theorem. Up to unitary equivalence there is exactly one irreducible representa-

tion of 𝑜(3) for each dimension 2 𝑗 + 1 = 1, 2, 3, . . . An orthonormal basis is |𝑚 >

for 𝑚 = 𝑗 , 𝑗 + 1, . . . ,− 𝑗 .

The representation matrices are

< 𝑚 |𝐽3 |𝑚 >= 𝑚𝛿𝑚′𝑚,

< 𝑚′ |𝐽+ |𝑚 >=
1
√

2

√
𝑗 ( 𝑗 + 1) − 𝑚(𝑚 + 1)𝛿(𝑚′

= 𝑚 + 1)

< 𝑚′ |𝐽− |𝑚 >=
1
√

2

√
𝑗 ( 𝑗 + 1) − 𝑚(𝑚 − 1)𝛿(𝑚′

= 𝑚 − 1)

Exercise. Verify by direct calculation that these matrices satisfy the commutation

relations of 𝑜(3)

We will denote this representation by 𝐷 𝑗 .

5.3.5. Examples

The Scalar

The smallest representation 𝐷0 is one dimensional with 2 𝑗+1 = 1. This is the trivial

representation where all the representation matrices are zero. This is the scalar

representation: Rotations are all represented by the identity. There are elementary

particles (such as the Higgs boson) which belong to this representation.

The spinor. The next smallest representation 𝐷
1
2 is two dimensional. 2 𝑗 + 1 =

2 =⇒ 𝑗 = 1
2
. The representation matrices are

𝐽3 =

(
1
2

0

0 − 1
2

)
, 𝐽− =

(
0 0

1√
2

0

)
, 𝐽+ =

(
0 1√

2

0 0

)

or, using 𝐽1 =
𝐽++𝐽−√

2
, 𝐽2 = −𝑖 𝐽+−𝐽−√

2

𝐽1 =

(
0 1

2
1
2

0

)
, 𝐽2 =

(
0 − 𝑖

2
𝑖
2

0

)
, 𝐽3 =

(
1
2

0

0 − 1
2

)



82 PHYSICS THROUGH SYMMETRIES

We recognize this as the representation in terms of Pauli matrices we found

earlier. The 2 dimensional complex vectors on which such matrices are called

spinors. Remember that this is a representation of the Lie algebra 𝑜(3) but not of

the group 𝑆𝑂 (3).

The vector. When 2 𝑗 + 1 = 3 and 𝑗 = 1 we get for the representation 𝐷1,

𝐽3 =
����
1 0 0

0 0 0

0 0 −1

���
�
, 𝐽− =

����
0 0 0

1 0 0

0 1 0

���
�
, 𝐽+ =

����
0 1 0

0 0 1

0 0 0

���
�

or

𝐽1 =

����
�

0 1√
2

0

1√
2

0 1√
2

0 1√
2

0

�����
, 𝐽2 =

����
�

0 − 𝑖√
2

0

𝑖√
2

0 − 𝑖√
2

0 𝑖√
2

0

�����
, 𝐽3 =

���
�
1 0 0

0 0 0

0 0 −1

���
�

Up to a unitary transformation these are proportional to the matrices represent-

ing infinitesimal rotations:

𝑖𝑇𝑆𝑘𝑇
−1

= 𝐽𝑘

where

𝑇 =

�����

− 1√
2

𝑖√
2

0

0 0 1

1√
2

𝑖√
2

0

����
�

Thus the 𝑗 = 1 representation is unitarily equivalent to the adjoint representa-

tion.

The 𝐷
3
2 representation. Just for fun, we list the four dimensional representation of

𝑜(3) with 𝑗 = 3
2
:

𝐽1 =

�������
�

0
√

3
2

0 0
√

3
2

0 1 0

0 1 0
√

3
2

0 0
√

3
2

0

��������
, 𝐽2 =

�������
�

0 − 𝑖
√

3
2

0 0

𝑖
√

3
2

0 −𝑖 0

0 𝑖 0 − 𝑖
√

3
2

0 0 𝑖
√

3
2

0

��������
,

𝐽3 =

�������

3
2

0 0 0

0 1
2

0 0

0 0 − 1
2

0

0 0 0 − 3
2

������
�
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Again, this is a representation of the Lie algebra 𝑜(3) but not of the group

𝑆𝑂 (3). This is true of any representation with half-integer 𝑗 .

5.4. Irreducible Representations of 𝑺𝑼(2)

To summarize, for every 𝑗 = 0, 1
2
, 1, . . . there is an irreducible representation 𝐷 𝑗

of the group 𝑆𝑈 (2). It has dimension

dim 𝐷 𝑗
= 2 𝑗 + 1.

If 𝑗 is an integer, 𝐷 𝑗 has kernel 𝑍2, so is really a representation of the smaller

group 𝑆𝑂 (3) = 𝑆𝑈 (2)/𝑍2. For half-integer 𝑗 it is a faithful (i.e., with trivial kernel)

representation of 𝑆𝑈 (2). The Casimir 𝐽2 takes value 𝑗 ( 𝑗 + 1) in 𝐷 𝑗 .

5.5. Spherical Harmonics

Armed with a knowledge of the irreducible representations of 𝑜(3) let us take a

second look at the angular momentum operator

𝑳 = −𝑖𝒓 × ∇

You can see that this is unchanged under the scale transformations𝒓 → 𝜆𝒓.

This suggests that 𝑳 only depends on the direction of 𝒓 and not on its magnitude.

Indeed, transforming to spherical polar co-ordinates

𝑥 = 𝑟 sin 𝜃 cos 𝜙, 𝑦 = 𝑟 sin 𝜃 sin 𝜙, 𝑧 = 𝑟 cos 𝜃, 0 < 𝜃 < 𝜋,

0 ≤ 𝜙 < 2𝜋, 0 < 𝑟

we can calculate that [7, 9]

𝐿3𝜓 = −𝑖 𝜕

𝜕𝜙

𝐿1𝜓 = 𝑖

(
sin 𝜙

𝜕𝜓

𝜕𝜃
+ cos 𝜙 cot 𝜃

𝜕𝜓

𝜕𝜙

)
, 𝐿2𝜓 = 𝑖

(
− cos 𝜙

𝜕𝜓

𝜕𝜃
+ sin 𝜙 cot 𝜃

𝜕𝜓

𝜕𝜙

)

Here 𝜓 is a complex-valued function on the sphere S2. Let 𝐶 (S2) be the vector

space of such functions. This representation of 𝑜(3) on 𝐶 (S2) is reducible. After

all,

𝐿2
= 𝐿2

1 + 𝐿2
2 + 𝐿2

3
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will commute with 𝐿𝑘 . In fact, 𝐿2, 𝐿3 provide a complete set of commuting

operators on 𝐶 (S2): Any function can be expressed as a linear combination of

their eigenstates.

The simultaneous eigenvalue problem becomes

𝐿2𝑌𝑙𝑚 = 𝑙 (𝑙 + 1)𝑌𝑙𝑚

𝐿3𝑌𝑙𝑚 = 𝑚𝑌𝑙𝑚

These partial differential equations appear in other disciplines (e.g., accoustics,

electromagnetism) as well. The solutions are the spherical harmonics. Explicit

solutions can be found by using recursion relations [7, 9]:

𝑌𝑙𝑚 = 𝑐𝑙𝑚𝑃
𝑚
𝑙 (cos 𝜃)𝑒𝑖𝑚𝜙

𝑐𝑙𝑚 are constants usually chosen so that the integral of |𝑌𝑙𝑚 |
2 over S2 is one. 𝑃𝑚

𝑙

are certain polynomials (“Associated Legendre polynomials”).

Even without the explicit formulas, we can see that 𝐶 (S2) contains one copy

each of the representations with integer angular momentum (i.e., odd dimension)

𝑙 = 0, 1, . . .

These representations are unitarily equivalent to the odd dimensional repre-

sentations found above.

It cannot contain the half-integral representations because a function of the

sphere must take the same value at 𝜙 = 0 and 𝜙 = 2𝜋; so 𝑚 must be an integer.

Exercise. Obtain the formula for 𝐿2, 𝐿± in terms of polar co-ordinates [7, 9]. Use

it to get a recursion relation for 𝑌𝑙𝑚 allowing you to determine it from 𝑌𝑙𝑙 (𝜃, 𝜙).

Determine 𝑌𝑙𝑙 by solving the equation for a highest weight vector, 𝐿+𝑌𝑙𝑙 = 0.

5.6. The Hydrogen Atom

Just as mechanics began with the solution of the Kepler problem,quantum mechan-

ics began with the solution of the hydrogen atom. Spherical symmetry plays a

crucial role in both problems. The hamiltonian is the sum of the kinetic energy of

a particle of mass 𝑚 and a potential energy which varies inversely with distance:

𝐻 =
1

2𝜇
𝒑2 −

𝑘

|𝒓 |

𝜇 is the mass of the electron, 𝑘 is (up to a constant that has to do with the

system of units you use) the product of the charges of the nucleus and the electron.
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Representing the canonical commutation relations by

𝒑 ↦→ −𝑖ℏ∇
the hamiltonian becomes a differential operator

𝐻̂ = − ℏ
2

2𝜇
∇2 − 𝑘

|𝒓 |
The problem is to find the eigenvalues and eigenstates of this operator. It

also has scattering states, corresponding to the continuous spectrum, which we

ignore for now. We are also ignoring several other small effects: The finite mass

of the nucleus, relativistic corrections, the spin of the electron, the hyperfine

splitting due to the magnetic moments of the electron and the nucleus, Quantum

Electrodynamics effects (such as Lamb Shift). Indeed, a history of quantum theory

can be based on the improving understanding of the hydrogen atom. The story is

more or less complete by now. We will stick to the simplest case in this section.

The first step towards the solution is to note that the angular momentum

𝑳 = 𝒓 × 𝒑

commutes with 𝐻̂. More precisely, {𝐻̂, 𝐿2, 𝐿3} form a set of commuting observ-

ables. From our earlier discussion, the simultaneous eigenstates of 𝐿2 and 𝐿3 are

the spherical harmonics, which determine how the states depend on the angles.

So, the eigenvalue problem for 𝐻̂ must reduce to solving some differential equation

in the radial variable 𝑟. This reduction is typical of the use of symmetry in physics.

We must express 𝐻̂ in terms of a radial operator and 𝐿2. Since the potential

energy is already known to be − 𝑘
𝑟
, we just need a formula for the Laplacian∇2 in

spherical polar co-ordinates [7, 9]

∇2
=

1

𝑟2

𝜕

𝜕𝑟
𝑟2 𝜕

𝜕𝑟
+ 1

𝑟2 sin2 𝜃

{(
sin 𝜃

𝜕

𝜕𝜃

)2

+ 𝜕2

𝜕𝜙2

}

leading to (in units with ℏ = 1)

𝐻̂𝜓 =
1

2𝜇

[
− 1

𝑟2

𝜕

𝜕𝑟

(
𝑟2 𝜕𝜓

𝜕𝑟

)
+ 1

𝑟2

(
𝐿2𝜓

)]
− 𝑘

𝑟

The angular derivatives occur only in the combination 𝐿2. We can assume that

the wave function is of the form

𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌𝑙𝑚(𝜃, 𝜙)
where 𝑌𝑙𝑚 are the simultaneous eigenstates of 𝐿2 and 𝐿3 we saw earlier. Then we

get the radial eigenvalue equation

1

2𝜇

[
− 1

𝑟2

𝑑

𝑑𝑟

(
𝑟2 𝑑𝑅

𝑑𝑟

)
+ 𝑙 (𝑙 + 1)

𝑟2
𝑅

]
− 𝑘

𝑟
= 𝐸𝑅
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The angular factors pull out of the radial derivatives and cancel out. This

ordinary differential equation is solved in every book on quantum mechanics

[7, 9]. Square integrable solutions occur when

𝐸 = −
𝜇𝑘2

2𝑛2
, 𝑛 = 1, 2, 3 · · ·

The label 𝑛 is called the “principal quantum number” in the jargon of atomic

physics.

The solutions are

𝑅𝑛𝑙 (𝑟) = 𝐶𝑛𝑙𝑟
𝑙𝑒−

𝑟
𝑛𝑎 𝐿2𝑙+1

𝑛−𝑙−1

(
2

𝑟

𝑛𝑎

)
where 𝐿𝑏𝑎 (𝑟) are the “associated Laguerre polynomials” [7, 9].

Here𝐶𝑛𝑙 is a constant, which is usually chosen so that eigenvectors have length

one. Also,

𝑎 =
ℏ

2

𝜇𝑘2

is a quantity with the dimensions of length (“Bohr radius”). 𝐿2𝑙+1
𝑛−𝑙−1

(𝑥) are some

polynomials of order 𝑛 − 𝑙 − 1 associated with LaGuerre. So, we have

𝑛 − 𝑙 − 1 ≥ 0

which leads to the range of allowed values of angular momentum:

𝑙 = 0, 1, . . . , 𝑛 − 1.

Of course, we already know that

𝑚 = 𝑙, 𝑙 − 1, . . . ,−𝑙

5.6.1. Numerical estimates

For completeness, let us recall the numerical values of the parameters involved[7,

9]. A convenient unit of energy in atomic physics is an electron volt 𝑒𝑉 . If we

choose 𝑐 = 1 in addition to ℏ = 1, the mass of an electron is, in energy units

𝜇 ≈ 0.511 × 106 𝑒𝑉.

𝑘 = 𝑒2 is best thought of in terms of the fine structure constant, because it is

dimensionless:

𝛼 ≡
𝑒2

ℏ𝑐
≈ 1

137
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So, in energy units

𝐸𝑛 = −
𝜇𝛼2

2𝑛2
≈ −13.6

𝑛2
𝑒𝑉

In particular, the smallest value of energy (ground state energy) is 𝐸1 ≈
−13.6eV. This is in excellent agreement with experiment. Agreement can be made

perfect by adding in various small effects we ignored.

5.7. Spin and 𝑺𝑼(2)

Originally, angular momentum arose as 𝑳 = 𝒓× 𝒑 i.e., orbital angular momentum.

It is zero when momentum is zero. Now we know that a system can have angular

momentum even when its momentum is zero. This is intrinsic angular momentum

or spin.

If we take the non-relativistic theory of the hydrogen atom above literally, the

ground state is unique and has zero angular momentum: 𝑛 = 1 =⇒ 𝑙 = 0.

But this was proven to be wrong experimentally by the Stern–Gerlach experiment.

(Originally done with Silver atoms; later, the effects were reproduced in hydrogen

as well.) The electron in the ground state of hydrogen has two possible states,

which respond differently to a magnetic field. Roughly half the atoms are found to

be in the state with angular momentum pointed along the magnetic field and the

other half have it pointed opposite.

This can be explained if the electron has an intrinsic angular momentum 1
2
ℏ.

The wave function is then a function 𝜓 : R3 → C2. The two components of the

wave function allow the Pauli matrices to act on it. The total angular momentum

is the sum of the orbital and intrinsic angular momenta:

𝑱 = 𝒓 × 𝒑 + 1

2
𝝈.

These provide a representation of the group 𝑆𝑈 (2) rather than 𝑆𝑂 (3).
A complete explanation of this needs the relativistic theory (the Dirac equation).

To the first approximation the effect of the spin is a doubling of the number of

allowed states of the electron. If there is a magnetic field there is an additional

contribution to the energy

𝐻mag = 𝑔𝝈 · 𝑩

This shifts the ground energy by ±𝑔 |𝑩|, removing the degeneracy. By passing

a beam of atoms through a magnetic field, we can separate them into two groups

depending on the eigenvalue of 𝝈 · 𝑩.
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Even in the absence of an external magnetic field, there is a magnetic field cre-

ated by the orbital motion of the electron around the atom (“spin-orbit coupling”).

This adds a term

𝐻𝑆𝑂 = 𝜖𝑳 · 𝝈

with a small coefficient 𝜖 that can be calculated in terms of the electron mass and

charge. This means that the orbital and spin angular momenta are not separately

conserved: Only their sum 𝑱 commutes with the Hamiltonian.

We saw that 𝐿3 has to be an integer multiple of ℏ because the wave function

has to return to its value after a rotation through 2𝜋. That is not necessary for spin;

it can be integer or half integer. The electron takes advantage of this: 1
2
ℏ𝜎3 takes

half integer values. For these particles, we get a faithful representation of 𝑆𝑈 (2)

instead of 𝑆𝑂 (3).

There are other elementary particles (the photon, 𝑊 boson) for which the spin

is an integer multiple of ℏ; for these we get a representation of 𝑆𝑂 (3).

The total angular momentum is the sum of various contributions: The spin of

the electrons, the orbital angular momentum of the electrons and the spin of the

nucleus. We will need to develop a theory of how to combine different sources of

angular momentum.



Chapter 6

ADDITION OF ANGULAR MOMENTUM

6.1. Direct Products

The direct product (also called the Tensor Product or Kronecker product) of two

matrices is defined as the matrix obtained by taking every possible product of their

components. Best to understand this by examples. The direct product of a vector

with two components with a vector of 3 components can be written as a 2×3 array

with six components:

(
𝑢1

𝑢2

)
⊗
���
�
𝑣1

𝑣2

𝑣3

���	
=

(
𝑢1𝑣1 𝑢1𝑣2 𝑢1𝑣3

𝑢2𝑣1 𝑢2𝑣2 𝑢2𝑣3

)

The direct product 𝐴 ⊗ 𝐵 of a 2 × 2 matrix 𝐴 with a 3 × 3 matrix 𝐵, acting on

𝑢 ⊗ 𝑣 is defined to be

(𝐴 ⊗ 𝐵) (𝑢 ⊗ 𝑣) = (𝐴𝑢) ⊗ (𝐵𝑢)

You can verify that this is a left multiplication of the array 𝑢 ⊗ 𝑣 above by 𝐴

and a right multiplication by 𝐵𝑇 .

(𝐴 ⊗ 𝐵) (𝑢 ⊗ 𝑣) = 𝐴
(
𝑢1𝑣1 𝑢1𝑣2 𝑢1𝑣3

𝑢2𝑣1 𝑢2𝑣2 𝑢2𝑣3

)
𝐵𝑇 (6.1.1)

The transpose on the right is needed for this to work out right. You can check

that with this definition,

(𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷

holds.

89
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For symbolic calculations (using Mathematica for example) it is more conve-

nient to rearrange (“flatten”) the array 𝑢 ⊗ 𝑣 into a vector with six components:

(
𝑢1

𝑢2

)
⊗
���
�
𝑣1

𝑣2

𝑣3

���	
=

����������

𝑢1𝑣1

𝑢1𝑣2

𝑢1𝑣3

𝑢2𝑣1

𝑢2𝑣2

𝑢2𝑣3

���������
	

Then 𝐴 ⊗ 𝐵 turns into a 6 × 6 matrix:

𝐴 ⊗ 𝐵 ≡
(
𝐴1,1 𝐴1,2

𝐴2,1 𝐴2,2

)
⊗
���
�
𝐵1,1 𝐵1,2 𝐵1,3

𝐵2,1 𝐵2,2 𝐵2,3

𝐵3,1 𝐵3,2 𝐵3,3

���	

=

���������
�

𝐴1,1𝐵1,1 𝐴1,1𝐵1,2 𝐴1,1𝐵1,3 𝐴1,2𝐵1,1 𝐴1,2𝐵1,2 𝐴1,2𝐵1,3

𝐴1,1𝐵2,1 𝐴1,1𝐵2,2 𝐴1,1𝐵2,3 𝐴1,2𝐵2,1 𝐴1,2𝐵2,2 𝐴1,2𝐵2,3

𝐴1,1𝐵3,1 𝐴1,1𝐵3,2 𝐴1,1𝐵3,3 𝐴1,2𝐵3,1 𝐴1,2𝐵3,2 𝐴1,2𝐵3,3

𝐴2,1𝐵1,1 𝐴2,1𝐵1,2 𝐴2,1𝐵1,3 𝐴2,2𝐵1,1 𝐴2,2𝐵1,2 𝐴2,2𝐵1,3

𝐴2,1𝐵2,1 𝐴2,1𝐵2,2 𝐴2,1𝐵2,3 𝐴2,2𝐵2,1 𝐴2,2𝐵2,2 𝐴2,2𝐵2,3

𝐴2,1𝐵3,1 𝐴2,1𝐵3,2 𝐴2,1𝐵3,3 𝐴2,2𝐵3,1 𝐴2,2𝐵3,2 𝐴2,2𝐵3,3

���������	
(6.1.2)

Exercise. Verify that two ways (6.1.1,6.1.2)of thinking about 𝐴 ⊗ 𝐵 above are

equivalent.

We will mostly use the “flattened” description of the Direct Product.

Exercise. Show that tr(𝐴 ⊗ 𝐵) = tr𝐴tr𝐵. Contrast with the formula tr(𝐴 ⊕ 𝐵) =
tr𝐴 + tr𝐵 which you should also prove.

It follows that the direct product of two representations 𝑅1, 𝑅2 of a group is another

representation:

𝑅(𝑔) = 𝑅1(𝑔) ⊗ 𝑅2(𝑔)

𝑅(𝑔𝑔′) = 𝑅1(𝑔𝑔′) ⊗ 𝑅2(𝑔𝑔′) = 𝑅1(𝑔)𝑅1(𝑔′) ⊗ 𝑅2(𝑔)𝑅2(𝑔′) = 𝑅(𝑔) ⊗ 𝑅(𝑔′)

Infinitesimally, we can also get a representation of a Lie algebra:

𝑔 = 1 + 𝜖𝑔 + O(𝜖)

𝑅(𝑔) = 1 + 𝜖𝑅(𝑔)+O(𝜖)

𝑅(𝑔) = 𝑅1(𝑔) ⊗ 1 + 1 ⊗ 𝑅2(𝑔)
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This is still called the direct product of Lie algebra representations. The physical

application is when each factor represents an independent degree of freedom of

the system, transforming under the group separately from each other. So physicists

would call it the additional of angular momenta.

Usually such direct products are reducible. Decomposing the direct product

as a sum of irreducible representations is a useful way of solving many physics

problems.

6.1.1. Hyperfine splitting of hydrogen

Let us consider a physical example [11, 12]. In the ground state of the hydrogen

atom, the orbital angular momentum of the electron is zero. Both the electron and

the proton carry spin half. So, the total angular momentum of the atom is the sum

of these spins. Let us ignore all other degrees of freedom for simplicity. The proton

and the electron each have two independent states; so the combined space of states

is four dimensional. We can describe them by four complex numbers

𝜓𝑎𝑏 𝑎 = 1, 2, 𝑏 = 1, 2

where the first index labels the electron spin state and the second the proton state.

Thus the electron and proton spin matrices are 𝝈 ⊗ 1 and 1 ⊗ 𝝈 respectively. The

total angular momentum is the sum

𝑱 =

1

2
𝝈 ⊗ 1 + 1 ⊗ 1

2
𝝈

It is possible “flatten” the array 𝜓𝑎𝑏 and think of it as a vector

(
𝜓11

𝜓12

𝜓21

𝜓22

)
. Operators

acting on it are then 4 × 4 matrices.

For example,

𝜎1 ⊗ 1

�����
�

𝜓11

𝜓12

𝜓21

𝜓22

�����
	
=

�����
�

𝜓21

𝜓22

𝜓11

𝜓12

�����
	
, 1 ⊗ 𝜎1

�����
�

𝜓11

𝜓12

𝜓21

𝜓22

�����
	
=

�����
�

𝜓12

𝜓11

𝜓22

𝜓21

�����
	

so that

𝜎1 ⊗ 1 =

������

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

�����
	
, 1 ⊗ 𝜎1 =

������

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

�����
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etc. leading to

𝐽1 =

�������
�

0 1
2

1
2

0

1
2

0 0 1
2

1
2

0 0 1
2

0 1
2

1
2

0

�������	
, 𝐽2 =

�������
�

0 − 𝑖
2

− 𝑖
2

0

𝑖
2

0 0 − 𝑖
2

𝑖
2

0 0 − 𝑖
2

0 𝑖
2

𝑖
2

0

�������	
, 𝐽3 =

������
�

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

������
	

Using this you can check that 𝑱 above is a representationof angular momentum,

in terms of 4 × 4 matrices. But it is a reducible representation.

As with any representation, 𝑱2
= 𝐽2

1
+ 𝐽2

2
+ 𝐽2

3
will commute with all the

components 𝐽𝑘 . By direct calculation we will get

𝐽2
=

�������

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

������
	

Since this is not a multiple of the identity, Schur’s lemma tells us that the

representation is reducible. The eigenvalues of 𝐽2 are 2 (repeated three times)

and 0. So there is a matrix 𝑇 such that

𝑇𝐽2𝑇−1
=

�����
�

2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 0

�����	
By solving the eigenvalaue problem we can find

𝑇 =

�������
�

1 0 0 0

0 1√
2

1√
2

0

0 0 0 1

0 − 1√
2

1√
2

0

�������
	

We now see that the representation provided by the matrices 𝐽1, 𝐽2, 𝐽3 is equiv-

alent to the direct sum of a representation with spin one and another with spin
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zero:

𝑇𝐽1𝑇
−1

=

��������

0 1√
2

0 0

1√
2

0 1√
2

0

0 1√
2

0 0

0 0 0 0

�������
	
, 𝑇𝐽2𝑇

−1
=

��������

0 − 𝑖√
2

0 0

𝑖√
2

0 − 𝑖√
2

0

0 𝑖√
2

0 0

0 0 0 0

�������
	
,

𝑇𝐽3𝑇
−1

=

������

1 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

�����
	

What does this imply for the hydrogen energy levels? All four of these states

have the same energy in the leading approximation. But both the electron and the

proton have magnetic moments, which are proportional to their spins. Classically,

the energy of a pair of magnets is the dot product of their moments. Quantum

mechanically, the components of the magnetic moments are matrices. Still the

energy is giving by taking the product of each of the three components and summing

over them:

𝐻1 = 𝜆𝜎𝑘 ⊗ 𝜎𝑘

The quantity 𝜆 is proportional to the product of the magnetic moments [12].

The matrix 𝑇 above will diagonalize this hamiltonian:

𝑇𝐻1𝑇
−1

= 𝜆

������

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

�����
	

The four originally degenerate states are now split into two groups: Three spin

one states with energy 𝜆 and a spin zero state with energy −3𝜆. It turns out that the

sign of 𝜆 is positive (taking into account the subtle effect of the overlap of atomic

wavefunction with the position of the proton [12]). Thus the spin zero state has

lower energy.

Transitions between these states will occur with emission or absorption of a

photon. Angular momentum would be conserved because the photon also has spin

one. The energy of the photon will be 4𝜆, which works out [12] to 5.87× 10−6𝑒𝑉 ;

i.e., a frequency of 1420MHz or a wavelength of 21.1cm. Experiments with

microwaves (masers) can measure this with great accuracy, providing precision

tests of quantum theory [11].

This is also a very important signal of atomic hydrogen in radio astronomy.
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6.1.2. Symmetric and anti-symmetric states

What is the meaning of the unitary transformation 𝑇 that diagonalizes 𝐽2? Let us

see its effect on a general vector

𝑇

��������

𝜓11

𝜓12

𝜓21

𝜓22

�������
	
=

���������

𝜓11

𝜓12+𝜓21√
2

𝜓22

𝜓12−𝜓21√
2

��������
	

The first three components on the r.h.s. are symmetric under the interchange

of indices; the last component is anti-symmetric. So, the symmetric combinations

have total spin 1 and the anti-symmetric state has total spin zero. The point is that

the subspace of symmetric (or anti-symmetric) states is invariant under rotations;

and that they cannot be reduced further.

6.1.3. Highest weight states

Since an irreducible representation of 𝑜(3) is uniquely determinedby its dimension

(not all Lie algebras have this property) we can write our result as

2 ⊗ 2 = 3 ⊕ 1

More often physicists like to label an irreducible representation in terms of the

maximal value of 𝐽3. Then we say that the product of two spin 1
2

representations

is the direct sum of a spin one and a spin zero representation. If we denote the

irreducible representation with highest weight 𝑗 by 𝐷 𝑗 , we would write this as

𝐷
1
2 ⊗ 𝐷 1

2 = 𝐷0 ⊕ 𝐷1

Thus, the maximum magnitude for angular momentum is the sum and the

minimum is the difference.

This is the simplest case of a more general result on the addition of angular

momentum.

6.2. General Case of Addition of Angular Momentum

Let us begin with the classical limit. Suppose we have a vector of magnitude 𝑗1

added to another vector of magnitude 𝑗2. What is the possible range of the lengths

of the sum of two such vectors?
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If they are parallel, the length will be 𝑗1 + 𝑗2; if anti-parallel, it will be | 𝑗2 −
𝑗1 |. All values in between can also occur, depending on the angle between the

two vectors. For angular momentum operators, not all lengths are allowed; in an

irreducible representation, 𝑱2 can only take values 𝑗 ( 𝑗 + 1) for positive integer

or half-integer 𝑗 . So, a first guess might be that the direct product of a spin

𝑗1 representation with a spin 𝑗2 representation will be a direct sum of spin 𝑗

representations with 𝑗 = 𝑗1 + 𝑗2, 𝑗1 + 𝑗2 − 1, . . . , | 𝑗2 − 𝑗1 | . There is a way to

check if that can be true: is the sum of the dimensions of all such irreducible

representations equal to (2 𝑗1 + 1) (2 𝑗2 + 1)?
We can calculate (choose 𝑗2 > 𝑗1 to be definite)

𝑗2+ 𝑗1∑
𝑗= | 𝑗2− 𝑗1 |

(2 𝑗 + 1) =
2 𝑗1∑
𝑘=0

(2[ 𝑗2 − 𝑗1 + 𝑘] + 1)

= (2[ 𝑗2 − 𝑗1] + 1) (2 𝑗1 + 1) + 2

2 𝑗1∑
𝑘=0

𝑘

= (2[ 𝑗2 − 𝑗1] + 1) (2 𝑗1 + 1) + 2
(2 𝑗1 + 1)2 𝑗1

2

= (2 𝑗1 + 1) {2[ 𝑗2 − 𝑗1] + 1 + 2 𝑗1} = (2 𝑗1 + 1) (2 𝑗2 + 1)

Thus, it is quite possible that 𝐷 𝑗1 ⊗ 𝐷 𝑗2 and
⊕ 𝑗1+ 𝑗2

𝑗= | 𝑗2− 𝑗1 | 𝐷
𝑗 are equivalent

representations. This does not prove that these are equivalent: The dimension does

not uniquely specify a representation of 𝑠𝑢(2), unless it is irreducible.

To really prove tequivalence, we need a more powerful tool, the character

function.

6.2.1. The character of an irreducible representation

Given a representation (reducible or not) R of 𝑆𝑈 (2) we can define its character

to be the function

𝜒𝑅 (𝑔) = tr𝑅(𝑔)

Note that, being a trace, the character is invariant under equivalence transfor-

mations; therefore equivalent representations have the same character.

A particular case is when 𝑔 = 𝑒
𝑖
2
𝜎3𝜙 ; indeed any 𝑔can be brought to this form

by a conjugation in the group, which leave the character invariant. The matrix

representing
𝜎3

2
in the representation 𝑅 is 𝐽3. Therefore,

𝜒𝑅 (𝜙) = tr𝑒𝑖𝐽3𝜙
=

∑
𝑚

𝑑 (𝑚)𝑒𝑖𝑚𝜙
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where 𝑑 (𝑚) are the number of eigenstates of 𝐽3 with eigenvalue 𝑚. We can think

of this as a generating function that keeps count of the degeneracies 𝑑 (𝑚). Clearly

the dimension of the representation is the particular case when 𝜙 = 0.

lim
𝜙→0

𝜒𝑅 (𝜙) = dim𝑅

For example, in the spin half representation, 𝐽3 is just
𝜎3

2
and

𝜒 1
2
(𝜙) = 𝑒𝑖

𝜙

2 + 𝑒− 𝑖
2
𝜙
= 2 cos

𝜙

2

Let us find the character of the irreducible representation 𝐷 𝑗 . The eigenvalues

of 𝐽3 are 𝑚 = 𝑗 , 𝑗 − 1, . . . ,− 𝑗 , each occurring with degeneracy one:

𝜒 𝑗 (𝜙) ≡ tr𝐷 𝑗
(
𝑒

𝑖
2
𝜎3𝜙

)
=

𝑗∑
𝑚=− 𝑗

𝑒𝑖𝑚𝜙

Remark 17. A word on notation for clarity: 𝐷 𝑗 (𝑔) is the matrix representing

𝑔 ∈ 𝑆𝑈 (2) in the representation of spin 𝑗 . So, 𝑔 is a 2 × 2 matrix while 𝐷 𝑗 (𝑔) is

a (2 𝑗 + 1) × (2 𝑗 + 1) matrix. When 𝑔 is diagonal, it is of the form 𝑒
𝑖
2
𝜎3𝜙 for some

angle 𝜙. The matrix 𝐷 𝑗
(
𝑒

𝑖
2
𝜎3𝜙

)
= 𝑒𝑖𝐽3𝜙 representing it can be found by replacing

𝑖𝜎3

2
by 𝐽3, which is also diagonal, with eigenvalues − 𝑗 ,− 𝑗 + 1, . . . , 𝑗 − 1, 𝑗 . Its

trace is the rhs above.

It is a little exercise in algebra and trigonometry to evaluate this geometric

series:

𝜒 𝑗 (𝜙) =
sin

(
[2 𝑗 + 1] 𝜙

2

)
sin

𝜙

2

This can be written in terms of the Chebyshev polynomial of the second kind.

𝜒 𝑗 (𝜙) =
sin

(
[2 𝑗 + 1] 𝜙

2

)
sin

𝜙

2

= 𝑈2 𝑗

(
cos

[
𝜙

2

])

As a check, L’Hospital rule gives

lim
𝜙→0

𝜒 𝑗 (𝜙) = 2 𝑗 + 1

which is the dimension of the representation (the trace of the identity).
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We can also recover the special case

𝜒 1
2
(𝜙) = sin 𝜙

sin
𝜙

2

= 2 cos
𝜙

2
.

Exercise. Show that
∑ 𝑗

𝑚=− 𝑗
𝑒𝑖𝑚𝜙

=

sin
(
[2 𝑗+1] 𝜙

2

)
sin

𝜙

2

for 𝑗 half integer.

Solution Set 𝑧 = 𝑒𝑖𝜙 .L. H. S. is the geometric series

𝑧 𝑗 + 𝑧 𝑗−1 + · · · 𝑧− 𝑗
= 𝑧− 𝑗

[
1 + 𝑧 + · · · 𝑧2 𝑗

]
= 𝑧− 𝑗 1 − 𝑧2 𝑗+1

1 − 𝑧 =

𝑧− 𝑗 − 𝑧 𝑗+1

1 − 𝑧

=

𝑧−( 𝑗+
1
2
) − 𝑧 𝑗+ 1

2

𝑧−
1
2 − 𝑧 1

2

=

𝑒−( 𝑗+
1
2
)𝑖𝜙 − 𝑒 ( 𝑗+ 1

2
)𝑖𝜙

𝑒−
1
2
𝑖𝜙 − 𝑒 1

2
𝑖𝜙

=

sin
([
𝑗 + 1

2

]
𝜙
)

sin
𝜙

2

which is the claimed answer.

6.2.2. Character of a reducible representation

The trace of a direct sum of matrices is the sum of traces. So, the character of a

reducible representation is the sum of the characters of its irreducible components,

weighted by the multiplicity. A reducible representation can be decomposed as a

direct sum over irreducible representations:

𝑅 =

⊕
𝑗=0, 1

2
,1, 3

2
,...

𝑁 𝑗𝐷
𝑗

𝑁 𝑗 is zero if 𝐷 𝑗 does not occur at all in the decomposition. It can be greater

than one if the same representation appears multiple times in the decomposition.

We will mostly consider finite dimensional representations, so only a finite number

of 𝑁 𝑗 will be non-zero and they are all finite.1

1Occasionally we will consider an infinite dimensional representation such as the space of functions

on 𝑆2. Its decomposition is

𝐶
(
S2

)
=

∞⊕
𝑙=0,1,2,...

𝐷𝑙

That is, each integer value of 𝑙 occurs exactly once; half integer values do not occur at all. (This is a

“multiplicity free” representation.)



98 PHYSICS THROUGH SYMMETRIES

For example, if 𝑁1 = 2, 𝑁 5
2
= 3 the matrix 𝑅(𝑔) would be 2 blocks of 𝐷1(𝑔) ,

followed by three copies of 𝐷
5
2 (𝑔) along the diagonal, with zeroes filling out the

rest. Altogether it will have dimension 2 × (2 × 1 + 1) + 3 × (2 × 5
2
+ 1) = 24:

𝑅(𝑔) =

���������
�

𝐷1(𝑔) 0 0 0 0

0 𝐷1(𝑔) 0 0 0

0 0 𝐷
5
2 (𝑔) 0 0

0 0 0 𝐷
5
2 (𝑔) 0

0 0 0 0 𝐷
5
2 (𝑔)

���������	
The character of such a representation is the sum of the traces of the matrices

along the block diagonals:

𝜒𝑅 (𝜙) =
∑

𝑗=0, 1
2
,1, 3

2
,...

𝑁 𝑗 𝜒 𝑗 (𝜙)

Since 𝜒 𝑗 (𝜙) is a ratio of sines, this is very much like a Fourier series. Indeed

the functions 𝜒 𝑗 satisfy orthogonality relations

∫ 4𝜋

0

𝜒 𝑗 (𝜙)𝜒𝑘 (𝜙) sin2 𝜙

2
𝑑𝜙 = 2𝜋𝛿 𝑗 𝑘

Since the sin2 𝜙

2
cancel with the sin

𝜙

2
factors in the denominator of 𝜒 𝑗 𝜒𝑘 , this

follows from the familiar orthogonality of the Fourier sine series. The meaning is

that inequivalent irreducible representations have orthogonal characters.

Remark 18. The factor sin2 𝜙

2
in the measure has a simple geometrical meaning:

It is proportional to the area of the set of all elements in 𝑆𝑈 (2) that can be brought

to the form 𝑒
𝑖
2
𝜎3𝜙 by a rotation of the axis itself. This is a 2-sphere, embedded

inside 𝑆𝑈 (2) ≈ S3. Its area can be calculated using the non-Euclideanmetric of S3.

Our proof of orthogonality does not use this fact,however.

The main point is that the character function uniquely determines the multi-

plicities, through its “Fourier” series:

𝑁 𝑗 =

∫
𝜒𝑅 (𝜙)𝜒 𝑗 (𝜙) sin2 𝜙

2

𝑑𝜙

2𝜋
.

So, to show that two finite dimensional representations are isomorphic, it is

enough to show that they have the same character. This also justifies the name

“character” for 𝜒𝑅 : It does characterize the representation.
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6.2.3. Decomposition of the direct product

Now, consider the character of the direct product representation

𝜒 𝑗1⊗ 𝑗2 (𝜙) = tr𝐷 𝑗1
(
𝑒

𝑖
2
𝜎3𝜙

)
⊗ 𝐷 𝑗2

(
𝑒

𝑖
2
𝜎3𝜙

)
The trace of a direct product is the product of its traces. So

𝜒 𝑗1⊗ 𝑗2 (𝜙) =
sin

(
[2 𝑗1 + 1] 𝜙

2

)
sin

𝜙

2

sin
(
[2 𝑗2 + 1] 𝜙

2

)
sin

𝜙

2

On the other hand, the trace of a direct sum of matrices is the sum of the traces.

So, the character of
⊕ 𝑗1+ 𝑗2

𝑗= | 𝑗2− 𝑗1 | 𝐷
𝑗 is

𝑗1+ 𝑗2∑
𝑗= | 𝑗2− 𝑗1 |

sin
(
[2 𝑗 + 1] 𝜙

2

)
sin

𝜙

2

Some trigonometry (or a line of Mathematica code) will allow you to prove

the identity

sin
(
[2 𝑗1 + 1] 𝜙

2

)
sin

𝜙

2

sin
(
[2 𝑗2 + 1] 𝜙

2

)
sin

𝜙

2

=

𝑗1+ 𝑗2∑
𝑗= | 𝑗2− 𝑗1 |

sin
(
[2 𝑗 + 1] 𝜙

2

)
sin

𝜙

2

showing the equality of characters of 𝐷 𝑗1 ⊗𝐷 𝑗2 and
⊕ 𝑗1+ 𝑗2

𝑗= | 𝑗2− 𝑗1 | 𝐷
𝑗 . We restate

this result:

Theorem. 𝐷 𝑗1 ⊗ 𝐷 𝑗2 ≈
⊕ 𝑗1+ 𝑗2

𝑗= | 𝑗2− 𝑗1 | 𝐷
𝑗

It is possible to go further and explicitly construct the unitary transformation

that relates the basis of 𝐷 𝑗1 ⊗ 𝐷 𝑗2

|𝑚1𝑚2 >, 𝑚1 = 𝑗1, . . . ,− 𝑗1, 𝑚2 = 𝑗2, . . . ,− 𝑗2

to the basis of 𝐷 𝑗 :

| 𝑗𝑚 >, 𝑗 = 𝑗1 + 𝑗2, 𝑗1 + 𝑗2 − 1, . . . , | 𝑗2 − 𝑗1 |, 𝑚 = 𝑗 , 𝑗 − 1, . . . ,− 𝑗

The matrix elements of this unitary transformation are called Clebsch–Gordon

coefficients [9]. They are useful in many detailed calculations involving atomic

and nuclear transitions. We worked this out for 𝑗1 =
1
2
= 𝑗2. The general case is (as

always) in the book by Landau and Lifshitz [9]. We won’t go down this particular

rabbit hole.
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6.3. The Power of Spinors∗

6.3.1. The symmetric powers of the 𝑫
1
2 representation gives all other

representations

In this sense the𝐷
1
2 or spin half representation is the “fundamental” representation.

This can be understood by repeatedly using the above reduction procedure:

𝐷
1
2 ⊗

(
𝐷

1
2 ⊗ 𝐷 1

2

)
= 𝐷

1
2 ⊗ 𝐷0 ⊕ 𝐷 1

2 ⊗ 𝐷1
= 2𝐷

1
2 ⊕ 𝐷0 ⊕ 𝐷 3

2

etc. But this cumbersome. There is a more direct approach, using polynomials.

6.3.2. A spinor is a pair of complex numbers carrying a representation

of 𝑺𝑼(2)

This is supposed to rhyme with vector.

𝑧 =

(
𝑧1

𝑧2

)

Under 𝑆𝑈 (2) a spinor transforms linearly:

𝑧 ↦→ 𝑔𝑧, 𝑔 ∈ 𝑆𝑈 (2)

6.3.3. The space of polynomials in a spinor carry a representation of

𝑺𝑼(2)

A polynomial of degree two in 𝑧 is

𝜓(𝑧) = 𝜓11(𝑧1)2 + 2𝜓12𝑧
1𝑧2 + 𝜓22 (𝑧2)2

It can also be written as

𝜓(𝑧) = 𝜓𝑎𝑏𝑧
𝑎𝑧𝑏

Since 𝑧𝑎 are complex numbers, 𝑧𝑎𝑧𝑏 = 𝑧𝑏𝑧𝑎 and so 𝜓𝑎𝑏 = 𝜓𝑏𝑎 is a symmetric

matrix. Under an SU(2) transformation

𝑧𝑎 ↦→ 𝑔𝑎𝑐 𝑧
𝑐

𝜓𝑎𝑏 ↦→ 𝜓𝑐𝑑𝑔
𝑐
𝑎𝑔

𝑑
𝑏

It is clear that the degree of a polynomial is unchanged under the 𝑆𝑈 (2) action:

The space of homogenous polynomials of degree two in 𝑧𝑎 carries a representation

of 𝑆𝑈 (2). (Homogenous means that all the terms in the polynomial have the same

degree.)
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More generally, the space of homogenous polynomials of order 𝑛 carries a

representation as well. It is useful to get an inner product on this space. The idea

is to multiply polynomials and integrate over 𝑧 , with a measure (weight) chosen

to make the integral converge:

〈𝜓, 𝜒〉 =
∫

𝜓∗ (𝑧)𝜒(𝑧)𝑒−𝑧†𝑧 𝑑𝑧𝑑𝑧
𝜋

Clearly 𝑧†𝑧 is invariant under 𝑔 since 𝑔†𝑔 = 1. The factor of 𝜋 is stuck in so

that the constant function equal to one has norm one. The constant function gives,

of course, the trivial representation.

Theorem. The inner product above is invariant under the action

𝑀 (𝑔)𝜓(𝑧) = 𝜓(𝑔−1𝑧)

of 𝑆𝑈 (2). That is, we have a unitary representation.

Proof. To verify that it is a representation, we calculate

𝑀 (𝑔1) [𝑀 (𝑔2)𝜓] (𝑧) = [𝑀 (𝑔2)𝜓] (𝑔−1
1 𝑧) = 𝜓(𝑔−1

2 𝑔−1
1 𝑧)

= 𝜓( [𝑔1𝑔2]−1𝑧) = [𝑀 (𝑔1)𝑀 (𝑔2)]𝜓(𝑧)

Now, you see why we needed to put 𝑔−1 in the definition of 𝑀 (𝑔). To prove

that the integral is invariant

〈𝑀 (𝑔)𝜓, 𝑀 (𝑔)𝜒〉 =
∫

𝜓∗ (𝑔−1𝑧)𝜒(𝑔−1𝑧)𝑒−𝑧†𝑧 𝑑𝑧𝑑𝑧
𝜋

we make a change of variables2 𝑧 ↦→ 𝑔𝑧 (and using the Jacobian for the transfor-

mation of the volume element 𝑑𝑧)

=

∫
𝜓∗ (𝑧)𝜒(𝑧)𝑒−𝑧†𝑔†𝑔𝑧 det 𝑔 det 𝑔†

𝑑𝑧𝑑𝑧

𝜋

and use 𝑔†𝑔 = 1 and det 𝑔 = 1. �

Exercise 4. Show that an orthonormal basis is given by the functions

|𝑛1, 𝑛2 >=
𝑧
𝑛1

1
𝑧
𝑛2

2√
𝑛1!𝑛2!

, 𝑛1 + 𝑛2 = 𝑛

Hint The integral factorizes into separate gaussian integrals in 𝑧1 and 𝑧2. Each

integral then is of the kind found in the theory of coherent states of the harmonic

oscillator [18].

2Remember that we are thinking of 𝑔 ∈ 𝑆𝑈 (2) as a 2 × 2 matrix.
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We can identify the representation by calculating its character. When 𝑔 =

𝑒−
𝑖
2
𝜎3𝜙

𝑔

(
𝑧1

𝑧2

)
=

(
𝑒−

𝑖
2
𝜙𝑧1

𝑒
𝑖
2
𝜙𝑧2

)

and

𝑀 (𝑔) |𝑛1, 𝑛2 >= 𝑒
− 𝑖

2
(𝑛1−𝑛2)𝜙 |𝑛1, 𝑛2 >

The character is the sum

𝑛∑
𝑛1=0

< 𝑛1, 𝑛 − 𝑛1 |𝑀 (𝑔) |𝑛1, 𝑛 − 𝑛1 >=

𝑛∑
𝑛1=0

𝑒−
𝑖
2 (2𝑛1−𝑛)𝜙

Summing this geometric series,

= 𝑒
𝑖
2
𝑛𝜙 1 − 𝑒−𝑖 (𝑛+1)𝜙

1 − 𝑒−𝑖𝜙 =

𝑒
𝑖
2
(𝑛+1)𝜙 − 𝑒− 𝑖

2
(𝑛+1)𝜙

𝑒
𝑖
2
𝜙 − 𝑒− 𝑖

2
𝜙

=

sin
[
(𝑛 + 1) 𝜙

2

]
sin

𝜙

2

which we recognize as the character of the spin 𝑛
2

representation.

Thus we conclude:

6.3.4. The homogenous polynomials of spinors degree 𝒏 form the irre-

ducible representation 𝑫 𝒋 with spin 𝒋 = 𝒏
2
.



Chapter 7

ISOSPIN AND STRANGENESS

7.1. The Atomic Nucleus

7.1.1. The positive charge of an atom is concentrated in a much smaller

region than its negative charge

The typical size of an atom (the range of its negative charge cloud) is about a Bohr

radius, ∼10−10 𝑚. The positive charge (as well as most of the mass) is contained in

a much smaller region (the nucleus) with a typical size of ∼10−15 𝑚. The latter size

is a femtometer or a Fermi, abbreviated to 𝑓 𝑚. This observation is the result of the

classical experiment of Rutherford, who scattered 𝛼 particles (nuclei of the Helium

atom) off Gold. Occasionally an alpha particle would get scattered through a wide

angle. This can only happen if some charge (as well as mass) is concentrated in a

very small region.

The Rutherford experiment disproved the popular atomic model of the time,

the “plum pudding model”: electrons embedded in a diffuse positive cloud. Scat-

tering experiments have been central to nuclear/particle physics ever since: Throw

particles against each other and see what comes out.

7.1.2. The atomic nucleus contains a positively charged particle (the pro-

ton) as well as an electrically neutral particle (the neutron)

The number of electrons in an atom is equal to the number of protons in its nucleus.

Since the electron is negatively charged, with the same magnitude of charge as the

proton, the atom is electrically neutral.

103
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7.1.3. The chemical properties of an atom depend only on the number of

electrons (the atomic number 𝒁)

Chemical reactions involve exchange of electrons: They have energies of about

an 𝑒𝑉 , which is roughly the binding energy of an electron in an atom. Nuclear

reactions need an energy of about an 𝑀𝑒𝑉 : About a million times more. This is

why chemical reactions cannot turn lead into gold, the original aim of alchemists.

Nuclear reactions can do this. But any dreams of getting rich this way are doomed

to failure: The cost of such a transmutation is prohibitive.

The atomic number is equal to the number of protons in the nucleus (since

the number of electrons and protons are equal). So, two nuclei with the same

number of protons but different numbers of neutrons will have identical chemical

properties. They are called isotopes . Neutrons and protons are particular cases of

a class of particles known as Baryons.

7.1.4. The sum of the number of protons plus the number of neutrons is

called the Baryon number (or atomic mass number)

So 𝐵 = 𝑁 + 𝑍 where 𝑁 is the number of neutrons in the nucleus. The mass of an

atomic nucleus is approximately 𝐵 in units of 𝐺𝑒𝑉 = 103𝑀𝑒𝑉 . This is because

to first approximation the masses of the proton and neutron are equal to about a

𝐺𝑒𝑉 . (We will be more precise soon).

Examples

• Hydrogen has atomic number one. The most abundant isotope has a nucleus

consisting of just one proton. The next most abundant (0.01%) is deuterium,

which has baryon number 2. There is also an isotope of baryon number 3

(tritium) which is unstable, with a half-life of 12.5 years.

• The abundant isotope of Helium has 𝑍 = 2, 𝐵 = 4. Its nucleus is the alpha

particle. Another stable isotope is 3𝐻𝑒 which is a product of tritium decay.

• Oxygen which has several (about 15) isotopes. But only three are stable. Almost

all the Oxygen in nature has 𝐵 = 16 .

𝑁 𝑍 Lifetime Natural Abundance

H 1 1 ∞ 1

𝐷 =2 𝐻 1 1 ∞ 10−4

𝑇 =3 𝐻 2 1 12.5 years 10−13

16𝑂 8 8 ∞ 0.998
17𝑂 9 8 ∞ 10−4

18𝑂 10 8 ∞ 10−3

19𝑂 11 8 26 s 0
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7.1.4.1. The proton has a mass of 𝑚𝑝 = 938 MeV and the neutron has

mass 𝑚𝑛 = 939.5MeV

Thus, the neutron is just a little bit heavier than the proton. Their masses are too

close to be mere coincidence.

7.1.5. The particles inside a nucleus are held together by the strong inter-

action

Without this force, the nucleus would disintegrate due to electric repulsion among

the protons. Neutrons are essential for this strong binding to happen. If there are

too few neutrons, the nucleus will fission or split up into smaller nuclei. The strong

interaction has a binding energy of a few MeV (large compared to atomic energies).

It has a range of 1 fm or 10−15m (small compared to an atom). That is, the force

decreases exponentially, with a decay constant of about 1 𝑓 𝑚. This is why all the

neutrons and protons don’t clump together and form one gigantic nucleus. The size

of a nucleus is roughly the same as the range of the strong interaction.

But if there are too many neutrons, some of then will decay by the beta

decay (See below). This fine balance between the neutron and proton is behind

many coincidences, which make our natural world (including life) possible. Some

people even try to explain the values of elementary particle masses based on this

(the anthropic principle.)

7.1.5.1. During beta decay, a neutron converts itself to a proton and an

electron

𝑛 → 𝑝 + 𝑒 + 𝜈̄

These decays were among the first nuclear reactions to be discovered. It was a

big step forward when J. J. Thompson discovered that “𝛽 radiation” consists of

negatively charged particles. We call these particles electrons now. Also produced

is an anti-neutrino 𝜈̄ which is often hard to detect because it is electrically neutral.

More on the neutrino later.

The condition for stability of a nucleus against beta decay is that 𝑀 (𝑁 − 1, 𝑍 +
1) − 𝑀 (𝑁, 𝑍) < 𝑚𝑛 + 𝑚𝑒 ≈ 938.58 Mev ≈ 1.01 u. Beta decay increases atomic

number by one unit and decreases the number of neutrons by one. But it leaves the

baryon number unchanged.

7.1.5.2. The binding energy of the deuteron is 2.2 MeV

The binding energy is the energy needed to break up a nucleus into its constituents.

In other words, it is the sum of the masses of the constituents minus its mass. So,
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the deuteron has mass 2.2 MeV smaller than the sum of the masses of a proton and

a neutron.

7.2. Isospin

Heisenberg introduced a new idea in the 1930s:

7.2.1. The neutron and proton are different states of the same particle,

the nucleon, with different values of a new quantum number called

isospin

Electromagnetism (charge and magnetic moment) and weak interactions respon-

sible for beta decay are small effects in comparison to the nuclear force. The 𝑛 − 𝑝
mass difference, is only about .2%. If we ignore these, the neutron and proton

really do look like different states of the same particle.

7.2.1.1. Since there are only two possible values for this new quantum

number labeling the neutron and the proton, it is analogous to

the spin of an electron.

Isospin means ‘like spin’ in pidgin greek.

7.2.2. Isospin is an approximate 𝑺𝑼(2) symmetry of nature

This is an “internal” symmetry. Although analogous to rotations, it does not

describe transformations in space-time. Some “internal space” carries this

symmetry.

7.2.3. The nucleon has spin half and isospin half

That is under the 𝑆𝑈 (2)×𝑆𝑈 (2)group of isospin and spin it transforms as𝐷
1
2 ⊗𝐷 1

2 .

The state of a nucleon at rest is a four component complex vector.

7.2.4. The nucleon is a fermion: A wavefunction of a collection of them

must be antisymmetric under pairwise exchange

So, for a pair of nucleons, the state is described by a 4×4 matrix. This matrix must

be anti-symmetric because of the exclusion principle, having thus 6 independent

states (if other degrees of freedom, like position, can be ignored). These can be

grouped into sets of three states each that are of spin 1 and isospin zero or isospin

one and spin zero.
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7.2.5. When a neutron and a proton combines into a deuteron, they form

an isospin 0 state

It turns out that the isospin 0 (hence spin one) state has lower energy. The details

of the nuclear force is a complicated subject, even harder than molecular physics

or chemistry. If it were not for important applications (nuclear energy, nuclear

explosions) physicists would not spend so much time studying them. The larger

the nucleus the more complicated its internal dynamics.

7.2.6. The𝜶 particle is a spin zero and isospin zero state; it can be thought

of as a bound state of four nucleons.

The 𝛼 particle is the nucleus of the abundant isotope of helium.

7.2.6.1. It has a large binding energy: 28.3 MeV, so is very stable

Whenever there are the right number of neutrons and protons to form an isospin

zero state, the binding energy is unusually large: these are called the ‘magic nuclei’

and they are usually the stable end products of fission and fusion reactions.

7.2.7. The electromagnetic interactions do not respect isospin symmetry

In fact, for nucleons, 𝑄 = 𝐼3 + 1
2

where 𝐼3 is isopin.

7.2.8. The weak interactions also do not respect isospin symmetry.

Nuclear beta decay treats the neutron and the proton differently

7.2.9. Thus isospin is a symmetry only of strong interactions, which are

responsible for the binding of nucleons into nuclei

A phenemenological formula of Weizsäcker for binding energy is found to be

surprisingly accurate:

𝐸 (𝑁, 𝑍) = 𝑎𝑣𝑜𝑙𝐵 − 𝑎𝑠𝑢𝑟 𝑓 𝑎𝑐𝑒𝐵
2
3 − 𝑎𝐶𝑜𝑢𝑙

𝑍 (𝑍 − 1)
𝐵1/3 − 𝑎𝑠𝑦𝑚

(𝑁 − 𝑍)2

𝐵
.

for some constants 𝑎. Here, 𝐵 = 𝑁 + 𝑍 is the baryon number; i.e., the total

number of nucleons.

The first term is proportional to the number of nucleons; the second to the

surface area, as the density of nuclear matter is roughly constant. The third is

the Coulomb repulsion and depends on the number of pairs of protons as well as

the inverse of the average distance between them.
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The last term is zero if you have equal numbers of neutrons and protons so that

we can form an isospin zero combination. It can be explained by the postulate that

the nuclear force is independent of isospin and spin states of the nucleons. This is

related to the 𝑆𝑈 (4) model of Wigner.

7.2.9.1. Iron with 𝑍 = 26, 𝑁 = 30 is one of the most tightly bound nuclei.

7.3. The Pi Meson

7.3.1. Yukawa suggested that the attractive force among nucleons is due

to exchange of a massive particle, of mass 𝝁 ∼ ℏ

𝒂𝒄
∼ 100 MeV

7.3.1.1. It is useful for conversions to note that ℏ ≈ 197MeV fm

For simplicity we will for now ignore the fact that there are two kinds of particles

(𝑛 and 𝑝) inside the nucleus. In the next section we will restore this doubling, using

isospin symmetry.

7.3.1.2. The Klein–Gordon equation with a point source has an

exponential decreasing static solution 𝜙 = 𝑔 𝑒
−𝜇𝑟

4𝜋𝑟
.

Here 𝑔 is a constant (Yukawa coupling constant) that measures the strength of

the field, analogous to electric charge for the Coulomb field. The Klein–Gordon

equation is a modification of the wave equation

[
𝜕2

𝜕𝑡2
− ∇2

]
𝜙 + 𝜇2𝜙 = 0

We are using units with ℏ = 𝑐 = 1. So 𝜇 has dimensions of mass, which is the

same as length−1.

The plane wave solutions 𝑒𝑖 [𝜔𝑡−𝒌 ·𝒙 ] describe particles of frequency 𝜔 =√
𝜇2 + 𝒌2. By de Broglie formula, ℏ𝒌 is the momentum and ℏ𝜔 is the energy.

Then we recognize this as the energy of a particle of mass 𝜇 in relativity. (The

wave equation is the special case 𝜇 = 0 which describes massless particles.)

There are also a static (time independent) spherically symmetric solution. In

polar co-ordinates, for a spherically symmetric function

∇2𝜙 =
1

𝑟

𝜕2

𝜕𝑟2
(𝑟𝜙)



ISOSPIN AND STRANGENESS 109

so the KG equation becomes, with

𝜙 =
1

𝑟
𝑅

𝑅′′ + 𝜇2𝑅 = 0

The solution that vanishes at infinity is the “Yukawa potential”

𝑅(𝑟) = 𝑘𝑒−𝜇𝑟 =⇒ 𝜙 =
𝑘

𝑟
𝑒−𝜇𝑟

Thus, a massive particle yields a potential that decays exponentially. Its range

is related inversely to the mass. Using the value ℏ ≈ 197MeV fm and the size of

the nucleus of about 1fm Yukawa predicted that there must be a particle of spin

zero and mass ∼100 MeV.

7.3.1.3. Similar to the photon which mediates the electromagnetic

interactions, except the photon is massless and the Coulomb

force has infinite range

The special case 𝜇 = 0 of the Yukawa potential is the Coulomb potential.

7.3.1.4. Yukawa suggested that the particle mediating the strong

interactions between nucleons is of spin zero

At that time no massive spin zero particle was known. Because its mass should be

in between that of the electron and the nucleon, it was called a meson (from the

Greek for “particle in between’). The modern scientific definition of the meson is

not related to its mass, but other properties. (See below).

7.3.2. This particle has since been discovered and is called the 𝝅 meson

It has a mass of about 140 MeV. There was some confusion about its discovery.

In fact another particle with a very close mass (105 MeV) was discovered first in

cosmic rays, called the muon. But the muon did not get absorbed by nuclei. It was

Robert Marshak who resolved the confusion: The muon is a lepton, a copy of the

electron only with a higher mass. It has no strong interactions with the nuclei. But

pions (which are created by cosmic ray collisions in the upper atmosphere) decay

quickly into the muons, which are detected at lower altitudes.

There is no fundamental reason why the 𝜋 and the 𝜇 have masses that are so

close. Coincidences happen sometimes. Occam’s razor is not always sharp.
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7.3.3. The pi meson has isospin one

Thus, there are three possible isospin states: There are actually three pi mesons,

with almost equal masses and electric charges ±1, 0.

𝝓 =
���
�
𝜋+

𝜋0

𝜋−

�		

For them the formula for electric charge is

𝑄 = 𝐼3.

There is no shift, unlike for the nucleons.

7.3.3.1. To be precise, the mass of the charged pions are a few percent

different from that of the neutral pion

But we ignore that for now. The strong interactions are caused by exchanges of

pions:

𝑛 → 𝑝 + 𝜋−, 𝑝 → 𝑛 + 𝜋+.

Because there may not be enough energy to create a free pion in a nucleus, the

pions are often virtual: They exist only for a time of order 1
𝜇
.

7.3.4. We do understand the origin of isospin symmetry: quarks

It turns out that the nucleons and pi mesons are both bound states of a more

fundamental unit of matter (quarks and anti-quarks). There happen to be two

quarks (called up and down ) which have almost equal mass. The neutron is 𝑢𝑢𝑑

and the proton is 𝑢𝑑𝑑 . This explains why they are so similar, yet slightly different.

The pi mesons are combinations of quarks and antiquarks; for example 𝜋+ is 𝑑𝑢.

More on the quark model later.

Why the 𝑢, 𝑑 quarks have masses that are so close is still unknown: The next

layer of the onion needs to be peeled to understand that.

7.4. Hadrons

In the 1930s it looked as though we were on the verge of a simple description of the

fundamental constituents of matter: The proton, the neutron, the pion, the electron

(and possibly the neutrino) along with the photon would make up all matter. In the
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1940s the muon was identified. (I. I. Rabi famously asked “Who ordered that?”)

Throughout 1940s, 1950s and 1960s experimentalists discovered a whole zoo of

strongly interacting particles.

7.4.1. Strongly interacting particles are collectively known as hadrons

Electrons, neutrinos etc. are leptons, not hadrons. Neutrons, protons and pions are

hadrons.

7.4.2. Hadrons of half integer spin are called baryons; those of integer

spin are called mesons

7.4.2.1. The baryon number 𝐵 is defined to be equal to 1 for the half

integer spin hadrons (baryons) and equal to zero for mesons

Anti-baryons have baryon number minus one. The baryon number used to be called

the “atomic mass number “ in nuclear physics: The Deuteron has 𝐵 = 2, the 𝛼

particle has 𝐵 = 4 and so on:

7.4.3. The nucleon 𝑵 =
(𝒑
𝒏

)
is the lightest baryon with a mass of about

940MeV

7.4.4. The pion 𝝅 =

(
𝝅+

𝝅0

𝝅−

)
is the lightest meson at about 140MeV

Now, we enter the zoo of hadrons.

7.4.5. There is a set of four baryons � =

(
�
++

�
+

�
0

�
−

)
of spin and isospin both

equal to 3
2

The mass of the Δ is about 1230 𝑀𝑒𝑉 . (Again, the mass depends on the charge

by a few percent which we ignore for now.)These decay into a nucleon and a pion.

The nucleon has 𝐼 = 1
2
, 𝐽 =

1
2

and the pion 𝐼 = 1, 𝐽 = 0 . The strong decay respects

both spin and isospin conservation. This restricts the possible decay probabilities.

7.4.6. There is a set of three spin one mesons 𝝆 =

(
𝝆+

𝝆0

𝝆−

)
of isospin 1

Their mass is ≈ 770 MeV: About two thirds of the mass of a nucleon. They decay

by strong interactions into pions.
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7.4.7. The charge of any hadrons is related to isospin by the relation

𝑄 = 𝐼3 +
𝐵

2
.

The shift of charge by a constant for the case of baryons (but not mesons) is

explained by the quark model (see below).

7.4.8. There are hadrons of spins 𝑱 = 0, 1
2
, 1, 3

2
, 2, . . .

7.4.8.1. If the spin is a half integer, so is the isospin

Again explained by the quark model.

7.4.8.2. As the spin grows the masses grow approximately

proportionately

The high mass hadrons are more and more unstable to decay to lower mass ones.

Such very unstable particles are called resonances. As the numbers of hadrons

grew into the hundreds, physicists accepted that there must be in principle an

infinite number of them.

7.4.9. String theory arose as an explanation for the infinitely rising

spectrum of hadrons

7.4.9.1. A string is a curved surface in space time whose action is

proportional to its area

A constant time cross-section of a string is an curve in space (which is the origin

of the name). The action being proportional to the area translates to an energy of

this cross-section proportional to the length: A kind of “rubber band” model.

7.4.9.2. Nambu and Goto showed that this implies that the masses of its

excited states are proportional to the angular momentum

The Nambu–Goto model only allowed integer spins. Theirs was a “bosonic string

theory”. But it turned out to be consistent only in 26 dimensions.

7.4.9.3. Supersymmetry was invented by Ramond to include fermions

The idea did not quite work: Superstring theory is consistent only in ten dimensions.

No one has yet found a string theory that works in four space time dimensions.
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Finding the correct string theory of hadrons remains an important theoretical

challenge.

7.4.9.4. The 10 dimensional version of superstring theory is a candidate

for a quantum theory of gravity

Sometimes a recipe that didn’t work for one dish is perfect for a completely different

one. Physics is a supremely rational subject. But the creative processes of discovery

in physics remains intuitive, irrational and circuitous.

7.5. Quarks

7.5.1. All of the hadrons are bound states of more elementary particles

known as quarks

This gives a very simple explanation for the proliferation of hadrons.

7.5.1.1. Quarks have spin 1
2

This is reasonable for an elementary particle: It is the smallest non-zero value of

spin allowed by quantum mechanics.

7.5.2. Each quark has an anti-quark of the same mass, spin and isospin,

but opposite charge

7.5.2.1. Mesons are bound states of quarks and anti-quarks

Which explains why they are bosons. Any bound state of an even number of

fermions is a boson.

7.5.2.2. Baryons contain three quarks

It must be an odd number since baryons are fermions. Since there are baryons of

spin 3
2

and even parity (so that the orbital angular momentum is even) we need

there to be three quarks in a baryon. It follows that

7.5.2.3. The baryon number of a quark is 1
3

Anti-quarks have 𝐵 = − 1
3
.
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7.5.3. There are a pair of quarks

(
𝒖

𝒅

)
forming an isospin 1

2
system.

This explains why spin and isospin are equal for the lowest lying baryons.

7.5.3.1. Their charges are given by 𝑄 = 𝐼3 + 𝐵
2

𝑄𝑢 =
2

3
, 𝑄𝑑 = −1

3
.

This then explains why this formula holds for all hadrons. Note that the piece

proportional to 𝐵 cancels out in mesons since anti-quarks have 𝐵 = − 1
3
.

7.5.3.2. Some group theory will allow us to get the spins and isospins of

the hadrons out of those of the quarks.

7.5.4. But there is a surprise: color

We will explain what color is soon.

We always push ideas to their limit. But always be prepared to test everything

experimentally, because great ideas are often wrong. And there are digressions

that were never anticipated (e.g., muon).

7.6. The Static Quark Model

7.6.1. A first approximation is to treat the hadrons as non-relativistic

bound states of quarks

So the different spin states have the same energy (spin-orbit coupling is a relativistic

correction). This gives an 𝑆𝑈 (4) symmetry: The four states of the quarks (spin up

and down, isospin up and down) all have the same energy in this approximation.

7.6.2. Quarks are fermions

Spin half particles should satisfy the exclusion principle.

7.6.3. But then how do we explain the �
++?

The Δ++ must be made of three 𝑢 quarks, to explain its electric charge. But it also

has spin 3
2
: The three 𝑢 quarks must be in a state symmetric under interchanges.

For example, in the state where Δ++ has 𝐽3 =
3
2
, all the 𝑢quarks in it must has spin

pointing in the same direction.
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But this violates the exclusion principle: Quarks are fermions. One idea to

resolve this contradiction was that quarks obeyed some exotic statistics that violates

the Pauli exclusion principle. That turned out to be the wrong direction. Another

possibility is that quarks have an extra degree of freedom, in addition to spin and

isospin.

7.6.4. Each quark comes in three colors

Thus there are three states for the up quark (not counting the spin states) and

three for the down quark.The word color is used in a figurative way here: This

quantum number has nothing at all to do with visible light: Nothing to do with

electromagnetism.

7.6.5. There is an SU(3) symmetry corresponding to rotations among the

color states

Quarks of different colors (but identical in every other way) have the same masses,

isospin, charges etc.

7.6.6. Baryons and Mesons are color neutral

Nucleons and mesons do not have this extra degree of freedom: We would have seen

this in nuclear physics. These states are invariant under the color SU(3) symmetry.

This means that color cannot be directly measured: It can be inferred indirectly

from properties of mesons and baryons.

7.6.7. The ground state of a three quark system must be a symmetric

combination of three fundamental representations of 𝑺𝑼(4)

The wave function of quarks in a baryon is completely antisymmetric in color:

That is the way to make it invariant under 𝑆𝑈 (3) symmetry of color (more on

𝑆𝑈 (3) later). The wave function of fermions is anti-symmetric overall. Thus, in

spin and isospin it must be symmetric. (We are assuming that the orbital angular

momentum is zero for the lowest lying states). Recall the in quantum mechanics,

symmetric combination usually arise when we combine bosons.

7.6.8. It is useful to consider the states of a meson and a baryon in the

static quark model with 𝑵𝒄 colors and 𝑵 𝒇 flavors

Quark model that originated in Nuclear Physics had just two kinds of quarks (𝑢, 𝑑 to

explain isospin). Later it had to be enlarged to allow for other kinds of quarks. The
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final number appears to be six 𝑢, 𝑑, 𝑠, 𝑐, 𝑡, 𝑏 . The first three 𝑢, 𝑑, 𝑠 have relatively

small masses so are treated together (see below). The jargon of particle physics is

to call this flavor (to contrast with color?).

The wavefunction of a 𝑞̄𝑞 system would depend on the color and flavor quantum

numbers of the quark and the antiquark. We can denote it by 𝜓
𝛽𝐵

𝛼𝐴
. Here 𝛼, 𝛽 are

the color indices and 𝐴, 𝐵 all the remaining quantum numbers (spin, isospin etc.).

So 𝛼 = 1, 2, · · · 𝑁𝑐 while 𝐴 = 1, 2, . . . , 2𝑁 𝑓 , because each flavor of quark has two

possible spin states.

In nature the color ranges over three possible values; 𝛼 = 1, 2, 3. Under a color

𝑆𝑈 (3) transformation the wave function of a quark transforms as 𝑞𝛼𝐵 ↦→ 𝑔𝛼
𝛽
𝑞𝛽𝐵

and that of an anti-quark as 𝑞𝛼𝐴 ↦→ 𝑔
∗𝛾
𝛼 𝑞𝛾𝐴. Then the 𝑞𝑞 state transforms as

𝜓
𝛽𝐵

𝛼𝐴
↦→ 𝑔

∗𝜇
𝛼 𝑔

𝛽
𝜈𝜓

𝜈𝐵
𝜇𝐴

But 𝑔
∗𝜇
𝛼 𝑔

𝛼
𝜈 = 𝛿

𝜇
𝜈 because 𝑔 is unitary. So, 𝜓𝛼𝐵

𝛼𝐴
is color invariant:

𝜓𝛼𝐵𝛼𝐴 ↦→ 𝛿
𝜇
𝜈𝜓

𝜈𝐵
𝜇𝐴 = 𝜓

𝜇𝐵

𝜇𝐴

This works even if the number of colors were some other number 𝑁𝑐 and the

color symmetry 𝑆𝑈 (𝑁𝑐). It is a useful exercise to consider what the world would

have been like with 𝑁𝑐 colors (According to G. ’t Hooft, even the limit 𝑁𝑐 → ∞
gives us much insight into strong interactions.) Baryons are symmetric under the

interchange of spin and flavor indices, even in a model with 𝑆𝑈 (𝑁𝑐) symmetry.

Exercise. Show that the condition det 𝑔 = 1 becomes, when written in terms of

indices,

𝜖𝛼1𝛼2 · · ·𝛼𝑁𝑐
𝑔
𝛼1

𝛽1
𝑔
𝛼2

𝛽2
· · · 𝑔𝛼𝑁𝑐

𝛽𝑁𝑐
= 𝜖𝛽1𝛽2 · · ·𝛽𝑛

where 𝜖𝛼1𝛼2 · · ·𝛼𝑁𝑐
is the completely anti-symmetric tensor with 𝜖12· · ·𝑁𝑐

= 1.

Solution It is enough to consider the case where 𝛽1 = 1, 𝛽2 = 2 . . .. We can

regard 𝛼 as a permutation of the set 1, 2, . . . , 𝑁𝑐and 𝜖𝛼1𝛼2 · · ·𝛼𝑁𝑐
= ±1 according

to whether 𝛼 is an even or and off permutation. The LHS is the sum over all such

permutations. This is one of the ways of calculating the determinant; so the above

condition is equivalent to det 𝑔 = 1.

The wavefunction of a system of 𝑁𝑐 quarks will depend on spin and fla-

vor :Ψ𝛼1𝐴1𝛼2𝐴2 · · ·𝛼𝑁𝑐 𝐴𝑁𝑐 . Quarks being fermions this has to be completely anti-

symmetric and the interchange of color, spin and flavor:

Ψ
𝛼1𝐴1𝛼2𝐴2 · · ·𝛼𝑁𝑐 𝐴𝑁𝑐 = −Ψ𝛼2𝐴2𝛼1𝐴1 · · ·𝛼𝑁𝑐 𝐴𝑁𝑐
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etc. To make a color invariant combination we can contract the color indices with

the anti-symmetric tensor

𝜖𝛼1𝛼2 · · ·𝛼𝑁𝑐
Ψ
𝛼1𝐴1𝛼2𝐴2 · · ·𝛼𝑁𝑐 𝐴𝑁𝑐 = 𝑆𝐴1𝐴2 · · ·𝐴𝑁𝑐

Thus the wavefunction of a baryon will be completely symmetric in the spin

and flavor indices.

7.6.8.1. If we ignore color, the baryon wavefunction behaves as though

the quarks are bosons

This is a cheap trick; by no means a fundamental theory of strong interactions.

Such a theory has been found: Quantum Chromo Dynamics (QCD); we are just

not ready to talk about it yet. The calculation of baryon properties from QCD is

a major undertaking that uses the most advanced computers available. What we

study here is an approximate picture of quark bound states, called the static quark

model. It ignores all the effects of interactions between quarks. It is still able to

explain some static properties of baryons.

Let us digress to recall some facts about symmetric states.

7.6.8.2. The number of independent states of a system of 𝑁 bosons, each

with 𝑀 states, is
𝑀 (𝑀+1) ·· · (𝑀+𝑁−1)

𝑁 !
=

(
𝑁 +𝑀 − 1

𝑀 − 1

)
There are many ways to establish this combinatorial formula.

To begin with, it holds for 𝑀 = 1. There is exactly one independent way of

occupying a single state with 𝑁 bosons : We put them all into that one available

state. More generally, suppose we put 𝑁1 bosons in state 1, 𝑁2 in state 2, and so on.

The number of independent states 𝑏𝑁 (𝑀) we seek is just the number of solutions

to the equation

𝑁 = 𝑁1 + 𝑁2 + · · · + 𝑁𝑀

where each 𝑁𝑖 = 0, 1, . . . . Thus the generating function is

∞∑
𝑁=0

𝑏𝑁 (𝑀)𝑥𝑁 =

∞∑
𝑁𝑖=0

𝑥𝑁1+𝑁2+···+𝑁𝑛

But

∞∑
𝑁𝑖=0

𝑥𝑁1+𝑁2+···+𝑁𝑛 =

∞∑
𝑁1=0

𝑥𝑁1

∞∑
𝑁2=0

𝑥𝑁2 · · ·
∞∑

𝑁𝑀=0

𝑥𝑁𝑀 =
1

(1 − 𝑥)𝑀
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since each factor is a geometric series. Expanding the r.h.s. as a binomial series

(1 − 𝑥)−𝑀 =

∞∑
𝑁=0

𝑀 (𝑀 + 1) · · · (𝑀 + 𝑁 − 1)
𝑁!

𝑥𝑁 =

∞∑
𝑁=0

(
𝑁 + 𝑀 − 1

𝑀 − 1

)
𝑥𝑁

we see the result.

7.6.9. The special case of two flavors and three colors is most useful

Since each flavor of quark has two spin states, 𝑀 = 4; and the number of quarks

in a baryon 𝑁 = 3, the number of colors.

So there are
4(4+1) (4+2)

3!
= 20 states for a baryon. These can be split into

𝐼 = 3
2
, 𝐽 =

3
2

and 𝐼 = 1
2
, 𝐽 =

1
2

states. The first are the Δ and the second set are the

nucleons. There are 4× 4 = 16 states for the Δ and 2× 2 = 4 states for the nucleon

which do add up to twenty.

7.6.9.1. ∗ With two flavors and an odd number 𝑁𝑐 of colors there would

have been baryons with 𝐼 = 𝐽 for 𝐼 = 1
2
, 3

2
, . . . ,

𝑁𝑐

2

Exercise. Show that

∑
𝐼= 1

2
, 3

2
,...,

𝑁𝑐
2

(2𝐼 + 1)2
=

(𝑁𝑐 + 1) (𝑁𝑐 + 2) (𝑁𝑐 + 3)
3!

=

(
𝑁𝑐 + 3

3

)

7.6.10. The states of a bosonic system can be represented as polynomials

in complex variables

Given a symmetric tenor 𝑆𝐴1𝐴2 · · ·𝐴𝑁 we can construct a polynomial of degree 𝑁

in complex variables 𝑧𝐴, 𝐴 = 1, . . . , 𝑀:

𝑆𝐴1𝐴2 · · ·𝐴𝑁 𝑧𝐴1
· · · 𝑧𝐴𝑁

Conversely, the coefficients of a homogenous degree 𝑁 polynomial can be

arranged into a symmetric tensor. The symmetry follows from the fact that the

components of the 𝑧𝐴 commute.

The degree 𝑁 of the polynomial is the number of bosons; the number of

independent variables 𝑀 is the number of states available to each boson. Thus 1

is the empty state (vacuum) 𝑧𝐴 𝐴 = 1, . . . , 𝑀 are the one particles, and so on.

There are
𝑀 (𝑀+1)

2
independent components in a symmetric tensor of rand two.

Another way of understanding this is that there are
𝑀 (𝑀+1)

2
independent quadratic

homogenous polynomials in 𝑀 variables. More generally suppose the first variable
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𝑧1 appears 𝑛1 times, the second one appears 𝑛2times and so on. Then a basis for

polynomials of order 𝑁 is

𝑧
𝑛1

1√
𝑛1!

𝑧
𝑛2

2√
𝑛2!

· · ·
𝑧
𝑛𝑀
𝑀√
𝑛𝑀 !

, 𝑛1 + 𝑛2 · · · 𝑛𝑀 = 𝑁 (7.6.1)

The factorials in the denominator are put in to make sure that this is a state of

length one.

This is the coherent state description of a harmonic oscillator; the connection

to bosonic states is important also in quantum optics (Klauder and Sudarshan). It

is part of a general technique known as second quantization.See the next chapter

for a more detailed discussion.

A more convenient description often is:

7.6.11. The inner product on the space of polynomials can be expressed

as a gaussian integral

| |𝜓 | |2 =

∫
|𝜓(𝑧) |2𝑒−𝑧̄𝐴𝑧𝐴 𝑑

𝑀 𝑧𝑑𝑀 𝑧

𝜋𝑀

For the basis above, the integral will split into separate integrals over each

variable 𝑧1, 𝑧2, . . .. Each of them can then be calculated by transforming to polar

co-ordinates.

Exercise 19. Show that the states (7.6.1) is orthonormal in this inner product

7.6.12. For a fundamental spin half particle the magnetic moment is the

Bohr magneton 𝒆ℏ
2𝒎

This is a consequence of the Dirac equation (which we will study in more detail

later) minimally coupled to the electromagnetic field.

Here 𝑒 is the electric charge of the particle and 𝑚 is its mass. For example the

magnetic moment of the electron is measured to be

𝜇𝑒 = −9.2847646917(29) × 10−24𝐽𝑇−1.

For comparison, its Bohr magneton is determined by knowing the mass:

𝑒ℏ

2𝑚𝑒
= 9.2740100657(29) × 10−24𝐽𝑇−1
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The negative sign of 𝜇𝑒 is because the electron is negatively charged. Similarly

for the muon

𝜇𝜇 = −4.49044830(10) × 10−26𝐽𝑇−1

and its magneton is
(
recalling that the mass ratio is

𝑚𝑒

𝑚𝜇
=

1
206.768

)
𝑒ℏ

2𝑚𝜇

=
𝑚𝑒

𝑚𝜇

𝑒ℏ

2𝑚𝑒
= 4.48523 × 10−26𝐽𝑇−1

The tiny discrepancy can be explained as due to radiative corrections in Quan-

tum Electrodynamics.

But this does not work for the proton or neutron.

7.6.13. The proton and the neutron have anomalous magnetic moments

The neutron is electrically neutral, so if it were an elementary particle, it would

not have any magnetic moment at all! Instead it has a magnetic moment oriented

opposite to its spin (i.e., negative).

For example, 𝜇𝑝 = 1.41060679545(60) × 10−26𝐽𝑇−1 and 𝜇𝑛 =

−9.6623653(23) × 10−27𝐽𝑇−1. The nucleon’s Bohr magneton 𝑒ℏ
2𝑚𝑝

=

5.0507837393(16) × 10−27𝐽𝑇−1. (These values are from the NIST data base.)

So 𝜇𝑛 ≈ 2.8 𝑒ℏ
2𝑚𝑝

and 𝜇𝑛 ≈ −1.9 𝑒ℏ
2𝑚𝑝

.

7.6.13.1. The magnetic moments of the proton and neutron are roughly

3 and −2 times the nuclear magneton

The magnetic moments were among the first indications that the neutron and proton

were not elementary particles.

7.6.14. The static quark model explains the anomalous magnetic

moments of the nucleons

In this model the quarks are elementary particles and the neutron and proton are

bound states of them. The accuracy is about 10%. This is remarkable, because the

static model ignores the binding mechanism or any relativistic effect.

We now present a calculation of the nucleon magnetic moment in the static

quark moment.It is easiest conceptually to do this calculation for an arbitrary odd

number of colors 𝑁𝑐 ; we can put 𝑁𝑐 = 3 towards the end. So the baryon number

of a quark is 1
𝑁𝑐

. Neglecting the binding energy and kinetic energy as well as

spin/isospin dependence,
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7.6.14.1. In the static quark model, the mass of the quark is

approximately 1
𝑁𝑐

of the nucleon mass

If we denote by 𝜏3 the Pauli matrix of isospin,

7.6.14.2. The charge of a quark is 𝑄 = 𝑒
[
𝐵
2
+ 𝐼3

]
= 𝑒

[
1

2𝑁𝑐
+ 𝜏3

2

]
This formula will give the right answer when 𝑁𝑐 = 3: for the up quark,𝑄 =

2
3

and

for the down quark 𝑄 = − 1
3

.

For each quark (𝑎 runs over 1, 2 · · · 𝑁𝑐 since there are 𝑁𝑐 quarks in the baryon)

the component of magnetic moment along some direction (say third) is

𝜇𝑎 =
𝑒ℏ
2𝑚
𝑁𝑐

[
1

2𝑁𝑐
+ 𝜏3𝑎

2

]
𝜎3𝑎 =

𝑒ℏ

4𝑚
{𝜎3𝑎 + 𝑁𝑐𝜏3𝑎𝜎3𝑎} .

Here 1
2
𝜎3𝑎 is the spin of the 𝑎th quark. We are treating the quarks as funda-

mental particles and using the Dirac prediction for its magnetic moment.

We must sum over all the quarks in a baryon to get its magnetic moment

𝜇 =
𝑒ℏ

4𝑚

𝑁𝑐∑
𝑎=1

{𝜎3𝑎 + 𝑁𝑐𝜏3𝑎𝜎3𝑎}

The first term is independent of isospin and the second depends on isospin.

𝜇 =
𝑒ℏ

4𝑚
(𝜇0 + 𝑁𝑐𝜇1) , 𝜇0 =

∑
𝑎

𝜎3𝑎 = 𝐽3, 𝜇1 =

𝑁∑
𝑎=1

𝜏3𝑎𝜎3𝑎

We need the matrix elements for the neutron and the proton. The static quark

model ignores all degrees of freedom (such as position) except spin, isospin and

color of the quarks. The baryon state must be invariant under color, so must be

completely anti-symmetric in color. Quarks being fermions, this means in spin and

isospin the state must be symmetric. It is as if the static quarks (devoid of color)

are bosons with four independent states (two for spin and two for isospin). We can

conveniently think of the four variables as the elements of a 2 × 2 matrix. Under

isospin and spin this matrix transforms as

𝑧 ↦→ 𝑔𝑧ℎ† 𝑔, ℎ ∈ 𝑆𝑈 (2)

The left action is isospin and the right action is spin (say). Now, we can express

the spin and isospin operators as differential operators acting on these polynomials.

Since spin acts on the right

𝑧
𝜎3↦→ 𝑧

(
1 0

0 −1

)
=

(
𝑧11 −𝑧12

𝑧21 −𝑧22

)
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Also under the action of isospin and spin (acting on the left and right

respectively)

𝑧
𝜏3𝜎3↦→

(
1 0

0 −1

)
𝑧

(
1 0

0 −1

)
=

(
𝑧11 −𝑧12

−𝑧21 𝑧22

)

7.6.14.3. The states of the baryon are in one-one correspondence

with 𝑁𝑐 th degree polynomials in four complex variables

𝑧11, 𝑧12, 𝑧21, 𝑧22

The norm of a polynomial is given by a gaussian integral of the last section:

| |𝜓 | |2 =

∫
|𝜓(𝑧) |2𝑒−tr 𝑧†𝑧 𝑑

4𝑧

𝜋2

In our current notation, an orthonormal basis is

𝑧
𝑛11

11√
𝑛11!

𝑧
𝑛12

12√
𝑛12!

𝑧
𝑛21

21√
𝑛21!

𝑧
𝑛22

22√
𝑛22!

(7.6.2)

with

𝑛11 + 𝑛12 + 𝑛21 + 𝑛22 = 𝑁𝑐 .

The matrices
∑
𝑎 𝜎3𝑎 and

∑𝑁
𝑎=1 𝜏3𝑎𝜎3𝑎 can be written as differential operators

acting on the polynomials:

𝜇0 = 𝑧11
𝜕

𝜕𝑧11

+ 𝑧21
𝜕

𝜕𝑧21

− 𝑧12
𝜕

𝜕𝑧12

− 𝑧22
𝜕

𝜕𝑧22

𝜇1 = 𝑧11
𝜕

𝜕𝑧11

+ 𝑧22
𝜕

𝜕𝑧22

− 𝑧12
𝜕

𝜕𝑧12

− 𝑧21
𝜕

𝜕𝑧21

7.6.14.4. The polynomials that describe the nucleon states are 𝑧(det 𝑧)𝑘
where 𝑁𝑐 = 2𝑘 + 1

Under isospin and spin, the four nucleon states transform with 𝐼 = 𝐽 =
1
2
. That is,

they transform just like the four matrix elements of 𝑧. But, the nucleon contains 𝑁𝑐

quarks, so the states must be polynomials of order 𝑁𝑐 . We need to multiply 𝑧 by

some polynomial of degree 𝑁𝑐 − 1 that is invariant under spin and isospin to get

the nucleon states. When 𝑁𝑐 = 2𝑘 + 1 is odd, that polynomial is (det 𝑧)𝑘 : Recall

that det 𝑧 is a quadratic polynomial in its matrix elements.

The magnetic moment operator 𝜇 commutes with 𝐽3 (spin) and 𝐼3 (isospin).

So, we look at the effect of 𝜇 on eigenstates of these operators.
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The spin up states of the proton and the neutron are1

|𝑝〉 = 𝑧11 (det 𝑧)𝑘

|𝑛〉 = 𝑧21 (det 𝑧)𝑘

It is important to note that neither the proton nor the neutron is an eigenstate of

𝜇; what we call the magnetic moment of the proton or neutron is the expectation

value of 𝜇 in these states. For example, 𝜇 can take a nucleon to some other baryon

state; for example, it can mix | 𝑝〉 with | Δ+〉 or | 𝑛〉 with | Δ0〉. These lead to

electromagnetic decays such as Δ+ → 𝑝𝛾 or Δ0 → 𝑛𝛾. We could use the static

quark model to also predict these “transition magnetic moments”. But it will take

us too far afield.

To get just the magnetic moments of the nucleons we need the matrix elements

〈𝑝 | 𝜇 | 𝑝〉, 〈𝑛 | 𝜇 | 𝑛〉 since 〈𝑝 | 𝜇 | 𝑛〉 = 0; (Recall that 𝜇 commutes with 𝐼3).

Also the norms 〈𝑝 | 𝑝〉 and 〈𝑛 | 𝑛〉, which are the same.

7.6.14.5. Calculation of the expectation values of 𝜇 when 𝑁𝑐 = 3

To proceed further it is convenient to specialize to the physically relevant value2

𝑁𝑐 = 3 . Since 𝑘 = 1

|𝑝〉 = 𝑧11 det 𝑧 = 𝑧11 (𝑧11𝑧22 − 𝑧12𝑧21) = 𝑧2
11𝑧22 − 𝑧11𝑧12𝑧21

|𝑛〉 = 𝑧21 det 𝑧 = 𝑧21 (𝑧11𝑧22 − 𝑧12𝑧21) = 𝑧21𝑧11𝑧22 − 𝑧12𝑧
2
21

Since we know the orthonormal basis (7.6.2) we can find the norms of these

states:

〈𝑝 | 𝑝〉 = 2 + 1 = 3, 〈𝑛 | 𝑛〉 = 1 + 2 = 3

Also

𝜇0 | 𝑝〉 =| 𝑝〉, 𝜇0 | 𝑛〉 =| 𝑛〉
and

𝜇1 | 𝑝〉 = 𝑧11 (𝑧12𝑧21 + 3𝑧11𝑧22), 𝜇1 | 𝑛〉 = 𝑧21 (3𝑧12𝑧21 + 𝑧11𝑧22)
Thus,

〈𝑝 | 𝜇1 | 𝑝〉 = (−1 + 3 × 2) = 5

〈𝑛 | 𝜇1 | 𝑛〉 = (−3 × 2 + 1) = −5

1Note that these states are nor normalized to have length one.
2It is of some interest to calculate the magnetic moments in the static quark model for arbitrary 𝑁𝑐 for

comparison with other models for nucleons such as the Skyrme model. But it is a bit harder. Could be

an interesting research project for an enterprising student.
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Since 〈𝑝 | 𝑝〉 = 3 = 〈𝑛 | 𝑛〉 we get the expectation values

〈𝑝 | 𝜇0 | 𝑝〉
〈𝑝 | 𝑝〉 = 1 =

〈𝑛 | 𝜇0 | 𝑛〉
〈𝑛 | 𝑛〉

〈𝑝 | 𝜇1 | 𝑝〉
〈𝑝 | 𝑝〉 =

5

3
,

〈𝑛 | 𝜇1 | 𝑛〉
〈𝑛 | 𝑛〉 = −5

3

Using 𝜇 =
𝑒ℏ
4𝑚

(𝜇0 + 3𝜇1) when 𝑁𝑐 = 3 we get

〈𝑝 | 𝜇 | 𝑝〉
〈𝑝 | 𝑝〉 =

𝑒ℏ

4𝑚
(1 + 5) = 3

𝑒ℏ

2𝑚

〈𝑛 | 𝜇 | 𝑛〉
〈𝑛 | 𝑛〉 =

𝑒ℏ

4𝑚
(1 − 5) = −2

𝑒ℏ

2𝑚

This agrees with experiment to about 10%.

7.6.14.6. The agreement with observation is remarkable, considering

we have completely ignored all interactions among quarks

You can also check directly that 〈𝑝 | 𝜇 | 𝑛〉 = 0.

7.7. K mesons

7.7.1. 𝑲± are pseudo-scalar, isospin 1
2

particles of mass 494 Mev that only

decay by weak interactions

They were called “strange particles” when they were discovered. What was strange

about them is that they were unusually long lived (10−8𝑠): Suggesting that they

carry a new quantum number that is approximately conserved. This number was

called “strangeness” (Gell–Mann). They are each other’s anti-particles. 𝐾+ was

assigned strangeness 𝑆 = +1 and therefore 𝐾− would have 𝑆 = −1. Unlike 𝜋± the

𝐾± form an isospin 1
2

doublet.

7.7.2. 𝑲0, 𝑲0 is another pair of pseudo-scalar, isospin 1
2

particles of mass

498 MeV that are also stable under strong interactions

𝐾0 has 𝐼3 = − 1
2
, 𝑆 = 1 and 𝐾0has 𝐼3 =

1
2
, 𝑆 = −1 .The charges of all the 𝐾-mesons

can be fit by changing the formula for electric charge (Gell–Mann–Nishĳima)

𝑄 = 𝐼3 +
𝐵 + 𝑆

2
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7.7.3. The new quantum number is accounted for by a new kind quark,

the strange quark

By a twist of fate, the strange quark has 𝑆 = −1 and the strange anti-quark has

𝑆 = +1. It has baryon number 1
3

like the 𝑢 and 𝑑 quarks. From the above formula

we see that its electric charge is − 1
3
. That is the same charge as the 𝑑 quark. Thus

we have the constituents of the Kaons:

𝐾+
= 𝑠𝑢, 𝐾−

= 𝑢̄𝑠, 𝐾0
= 𝑠𝑑 𝐾0 = 𝑑𝑠

7.7.4. There is also a neutral pseudoscalar meson that has strangeness

zero and isospin zero

𝜂0
= 𝑠𝑠

with a mass ≈548 MeV. It decays mostly into 2𝛾 which can be thought of as the

strange quark and anti-quark annihilating each other. A more accurate description

of the 𝜂0 includes mixing with 𝑢̄𝑢 and 𝑑𝑑.

7.7.5. The 𝒔 quark is heavier than the 𝒖 and 𝒅 quarks

This explains why particles that contain it are a few hundred MeV heavier than

corresponding particles made from 𝑢 and 𝑑 quarks alone. For example, 𝑚𝐾 + −
𝑚𝜋+ ≈ 350 MeV. Recall that the 𝑑 quark is slightly heavier (by a few MeV) than

the 𝑢 quark to explain the neutron-proton mass difference. For strong interactions,

the three quarks behave the same way. If we also ignore their mass differences, the

isospin symmetry is enlarged to a symmetry that rotates three quarks into each

other. Since these transformations can involve complex matrices, the symmetry

must involve 3×3 complex matrices. One natural choice is to generalize the 𝑆𝑈 (2)
of isospin to 𝑆𝑈 (3). This is not the only possibility: there several Lie groups with

two commuting quantum numbers that could be 𝐼3 and 𝑆. But 𝑆𝑈 (3) is a reasonable

guess and it worked.

7.7.6. The 8 pseudo-scalar mesons 𝝅±, 𝝅0, 𝑲±, 𝑲0, 𝑲0,𝜼0 form a

representation of 𝑺𝑼(3)

Analogous to the way the pions form a three-dimensional representation of 𝑆𝑈 (2).

7.8. 𝑺𝑼(3)

Recall the definition of the Lie algebra 𝑠𝑢(𝑛):
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7.8.1. The space of traceless hermitian 𝒏 × 𝒏 matrices is called 𝒔𝒖(𝒏)

We use lower case letters the Lie algebra and upper case letters for the group.

7.8.2. The number of linearly independent elements of 𝒔𝒖(𝒏) is 𝒏2 − 1

A hermitian matrix has 𝑛2 independent components: There are 𝑛 real entries along

the diagonal and
𝑛(𝑛−1)

2
complex numbers above the diagonal. The entries below

the diagonal are not independent because they are just complex conjugates of the

ones above, so the total is 𝑛 + 2
𝑛(𝑛−1)

2
= 𝑛2. Since an anti-Hermitian matrix is

simply 𝑖 times a hermitian one, its number of independent components is also 𝑛2.

This is called the dimension of 𝑢(𝑛).
The condition of being traceless imposes one condition among the diagonal

entries, so the number of independent components of 𝑠𝑢(𝑛) is 𝑛2 −1. In particular,

7.8.2.1. The dimension of 𝑠𝑢(3) is 8

7.8.3. The Gell–Mann matrices provide a basis for 𝒔𝒖(3)

𝐴 = 𝑎1
𝜆1

2
+ 𝑎2

𝜆2

2
+ 𝑎3

𝜆3

2
+ 𝑎4

𝜆4

2
+ 𝑎5

𝜆5

2
+ 𝑎6

𝜆6

2
+ 𝑎7

𝜆7

2
+ 𝑎8

𝜆8

2

𝜆1 =
���
�
0 1 0

1 0 0

0 0 0

�		

, 𝜆2 =

���
�
0 −𝑖 0

𝑖 0 0

0 0 0

�		

, 𝜆3 =

���
�
1 0 0

0 −1 0

0 0 0

�		

𝜆4 =

����
0 0 1

0 0 0

1 0 0

�		


, 𝜆5 =

����
0 0 −𝑖
0 0 0

𝑖 0 0

�		



𝜆6 =
���
�
0 0 0

0 0 1

0 1 0

�		

, 𝜆7 =

���
�
0 0 0

0 0 −𝑖
0 𝑖 0

�		

𝜆8 =

1
√

3

����
1 0 0

0 1 0

0 0 −2

�		



These are normalized such that

tr 𝜆𝛼𝜆𝛽 = 2𝛿𝛼𝛽

in imitation of the Pauli matrices.



ISOSPIN AND STRANGENESS 127

7.8.3.1. 𝜆3 and 𝜆8 are diagonal. They are related to isospin and

strangeness of quarks

Exercise 20. Derive the commutation relations of 𝑠𝑢(3) in the Gell–Mann basis.

That is, write the commutators
[
𝜆𝛼

2
,
𝜆𝛽
2

]
= 𝑖 𝑓𝛼𝛽𝛾

𝜆𝛾
2

as linear combinations of the

Gell–Mann matrices. Decompose the 8 dimensional space 𝑠𝑢(3) into irreducible

representations of 𝑆𝑈 (2).

Partial Solution

Using the normalization of the trace above, we get

𝑓𝛼𝛽𝛾 = −𝑖tr
([
𝜆𝛼

2
,
𝜆𝛽

2

]
𝜆𝛾

)

Obviously this is anti-symmetric in 𝛼, 𝛽. It is also anti-symmetric in 𝛽 and 𝛾

since:

tr
( [
𝜆𝛼, 𝜆𝛽

]
𝜆𝛾

)
+ tr

([
𝜆𝛼, 𝜆𝛾

]
𝜆𝛽

)
=

(usingtr𝐴𝐵 = tr𝐵𝐴)

tr
([
𝜆𝛼, 𝜆𝛽

]
𝜆𝛾

)
+ tr

(
𝜆𝛽

[
𝜆𝛼, 𝜆𝛾

] )
(using [𝐴, 𝐵𝐶] = [𝐴, 𝐵]𝐶 + 𝐵[𝐴, 𝐶])

= tr
( [
𝜆𝛼, 𝜆𝛽𝜆𝛾

] )
= 0

since tr[𝐴, 𝐵] = 0.

Thus 𝑓𝛼𝛽𝛾 is completely anti-symmetric. So it is enough to calculate it when

𝛼 < 𝛽 < 𝛾: All other components are either zero or are given by a signed

permutation.

7.9. Gell–Mann–Okubo Formula

7.9.1. The most obvious consequence of the strange quark is that there is

a spin 3
2

baryon 𝒔𝒔𝒔

This is analogous to 𝑑𝑑𝑑 = Δ−− and so should be negatively charged. It is called

the Ω−. The spin is 3
2

because the quark is a fermion and its wavefunction is

anti-symmetric in color. Same argument as for 𝑢𝑢𝑢 or 𝑑𝑑𝑑. Obviously, Ω− should

not carry isospin and has strangeness −3.
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7.9.2. Next there should be an isospin 1
2

pair 𝒔𝒔𝒖 and 𝒔𝒔𝒅 of charges zero

and −1 respectively

These are called Ξ∗0,Ξ∗−. They have strangeness 𝑆 = −2. The star is to distinguish

it from another similar particle of spin 1
2

; which coincidentally is called Ξ.

7.9.3. There is an isospin 1 triplet 𝒔𝒖𝒖, 𝒔𝒖𝒅, 𝒔𝒅𝒅 of charges 1, 0,−1 .

These are called Σ∗+,Σ∗0,Σ∗−.

7.9.4. Along with the original quartet
�	

�
++

�
+

�
0

�
−

��

=
�	

𝒖𝒖𝒖

𝒖𝒖𝒅

𝒖𝒅𝒅

𝒅𝒅𝒅

��

we get a set of ten

spin 3
2

baryons.

To a good approximation we can think of the 𝑢 and 𝑑 quarks as having the same

mass, but the 𝑠 quark is heavier so that 𝑆𝑈 (3) is broken down to its isospin

subgroup.If we ignore the breakdown of isospin (a smaller effect), Δ are all of the

same mass. The threeΣ∗, would have somewhat larger mass, thenΞ∗andΩ−. larger

still. The static quarks model would say that each time we add replace a u or d

quark by an s quark we are increasing the mass of a particle by some fixed amount:

The 𝑠− 𝑢 mass difference. Thus we get a particular case of the Gell–Mann–Okubo

mass relations

𝑚Σ∗ − 𝑚Δ = 𝑚Ξ∗ − 𝑚Σ = 𝑚Ω− − 𝑚Ξ∗

At the time that this relation was discovered (by deeper group theoretic argu-

ments rather than the static quark model) it was known that (all masses are in

MeV)

𝑚Δ = 1230, 𝑚Σ∗ = 1385, 𝑚Ξ∗ = 1530

but the Ω− had not been seen yet. Thus, the first equality is a post-diction that

could be verified

𝑚Σ∗ − 𝑚Δ = 155 ≈ 145 = 𝑚Ξ∗ − 𝑚Σ∗

And there is a prediction of the mass of the Ω−:

𝑚Ω− ≈ 1675

The discovery of the Ω− with a mass of 1672MeV at Brookhaven was spectac-

ular confirmation of the Gell–Mann–Okubo relations.
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7.9.5. Together they form the 10 dimensional representation of 𝑺𝑼(3)

The quarks belong to the fundamental representation of dimension three of 𝑆𝑈 (3).
There are three quarks in each baryon. The anti-symmetry in color implies

that the wavefunction must be symmetric in spin and “flavor” 𝑆𝑈 (3). The spin 3
2

baryons are completely symmetric in spin, so are also completely symmetric in

flavor. The completely symmetric third rank tensor representation of 𝑆𝑈 (3) is of

dimension 10.

7.9.6. Another way of thinking of this is in terms of an even more

approximate 𝑺𝑼(6) symmetry

The static quark model with three quarks will have 𝑆𝑈 (6) symmetry: Not only

do the 𝑢, 𝑑, 𝑠 quarks all have the same mass, we treat there spin up or down

states as having the same energy: Altogether there are six states for the quarks

with the same energy. After removing color, the wavefunction of a baryon is in

the completely symmetric third rank tensor representation of 𝑆𝑈 (6). This is of

dimension
6(6+1) (6+2)

3!
= 56.

When we reduce with respect to spin and flavor 𝑆𝑈 (2) × 𝑆𝑈 (3) ⊂ 𝑆𝑈 (6) we

can first identify a spin 3
2

representation which is completely symmetric in flavor

(as seen above). The number of independent states of the third rank symmetric

tensor in dimension three is
3(3+1) (3+2)

3!
= 10. So, altogether these account for

4 × 10 = 40 of the states.

7.9.7. The spin 1
2

Baryons form the eight-dimensional

representation of 𝑺𝑼(3)

There remains 16 states of spin 1
2
. Spin alone accounts for a factor of 2 1

2
+ 1 = 2.

Therefore these states must belong to an 8 dimensional representation of 𝑆𝑈 (3).
Of these 8 , we can identify 𝑛 = 𝑢𝑑𝑑 and 𝑝 = 𝑢𝑢𝑑 as the states without any strange

quark. There are three particles of strangeness −1 containing one strange quark:

Σ
−
= 𝑑𝑑𝑠, Σ

0
= 𝑢𝑑𝑠, Σ

−
= 𝑢𝑢𝑠

Here the 𝑢𝑑 quarks are combined so as to produce 𝐼 = 1, 𝐼3 = 0. There is

another combination 𝑢𝑑𝑠 that has 𝐼 = 0, 𝐼3 = 0 called the Λ baryon. Finally, there

are the doubly strange baryons

Ξ
−
= 𝑠𝑠𝑑, Ξ

0
= 𝑠𝑠𝑢
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7.9.8. The spin zero fields form also the eight dimensional (adjoint)

representation of 𝑺𝑼(3)

It is a coincidence of 𝑆𝑈 (3) that the mesons and the spin 1
2

baryons transform the

same way.



Chapter 8

BOSONS AND FERMIONS

Many physical systems are made of a large number of copies of identical

particles. The electrons inside a metal or a white dwarf star, particles of

light (photons) inside a resonant cavity or the cosmos, the atoms in liquid

Helium are all examples. This idea is surprisingly versatile: Vibrations of a

solid can be thought of as a collection of particles of sound (phonons); the

electrostatic field of a charged particle can be resolved as a superposition

of photons.

Let us begin by considering free particles, so that the total energy is the

sum of the energies of each of them. The simplest situation is that there

is just one state available with energy1 �ω. If there are n free particles

occupying this state, the total energy is n�ω. The empty state with n = 0

has the lowest possible energy (is the “ground state”) and is sometimes

called the “vacuum”. The number n of particles in the state is called the

“occupation number”.

If there are many energy levels, �ωk for some range of values of k, each

of them will have some occupation number nk and the total energy will be

E = �ω1n1 + �ω2n2 + · · · =
∑

k

�ωknk.

The single particle energies �ωk are often determined by solving an

eigenvalue problem for a differential operator with appropriate boundary

conditions. For now we don’t need to know these details.

At first, it was thought that n can be any number n = 0, 1, 2, 3, . . . . This

is true for photons, the quantum many body system originally studied by

1Recall that � has units of Joule*secs. So ω has units of frequency. The physical meaning
of this frequency will become clear later.

131
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Bose. Many other particles (phonons,He4 atoms, pi mesons,W,Z particles,

the Higgs particle etc.) are also of this type. Such particles are now called

bosons. It turns out that any particle whose angular momentum is an inte-

ger multiple of � is a boson. This relation with angular momentum is not at

all obvious and is one of the deepest theorems (“spin-statistics theorem”)

of Field Theory. But we do not go into that here.

Electrons are not bosons. The Exclusion Principle, which Pauli deduced

by looking at atomic energy levels, says that each atomic energy level can

be occupied by at most one electron. That is, either n = 0 or n = 1.

Now, we know that this is related to the fact that electrons have half-

integer angular momentum: The minimum is �

2 . In fact all particles with half

integer angular momentum satisfy the exclusion principle: The other half of

the Spin-Statistics theorem. Such particles are called fermions. Electrons,

protons, neutrons, muons, quarks, neutrinos etc. are examples.

To summarize, there are two kinds of particles. Those with integer angu-

lar momentum are bosons and those with half -integer angular momentum

are fermions. For Fermions, the occupation numbers can be nk = 0, 1 and

for bosons, nk = 0, 1, 2, . . . .

If the particles interact with each other (are not free) the energies do not

just add. Determining the energies of such interacting many body systems

are among the hardest problems in physics. Many of the most interesting

phenomena (scattering, superconductivity, symmetry breaking) arise this

way. We will return to some of this later.

8.1. Partition Function

Counting is hard. It is harder than calculus or linear algebra. So we can

often use ideas from these disciplines to help with counting. This is the

mathematical field of combinatorics.

Suppose we want to know the degeneracy d(E) of a state of a free

bosonic system with energy E. That is, how many ways can we choose nk

such that E =
∑

k �ωknk. (Suppose that ωk are already known.) A function

helps with this counting, called the “Partition Function”.

Z(β) =
∑

E

d(E)e−βE

We can think of e−βE

Z(β) as the probability that energy is equal to E.

The quantity β actually has a physical meaning: β = 1
kBT

where T is the
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absolute temperature and kB is Bolzmann’s constant. When T > 0, the

states of high energy are less likely. (There are some situations where the

temperature is negative and the opposite is true.) Usually d(E) grows with

E like a power of E and the most important contributions to Z(β) come

from the value of E where the summand has a maximum: The two factors

pull in opposite directions.

Exercise 21. Show that the mean value of energy is 〈E〉 = − ∂
∂β

logZ(β).

What is its variance?

Once we know this function, we can can extract d(E) by various tricks

(e.g., Fourier analysis). It is a very efficient way of packing the information

in d(E). In the simplest case with just one frequency ω

d(E) = 1, E = n�ω

ZB(β) =

∞
∑

n=0

e−βn�ω =
1

1− e−�ωβ

Just the geometric series. For fermions,

ZF (β) = 1 + e−�ωβ.

When there are many frequencies, we can still write

ZB(β) =

∞
∑

n1=0

∞
∑

n2=0

· · · e−β[n1�ω1+n2�ω2+··· ]

This summand factorizes:

ZB(β) =

∞
∑

n1=0

∞
∑

n2=0

· · · e−βn1�ω1e−βn2�ω2 · · ·

Each factor depends only one of the occupation numbers

ZB(β) =

∞
∑

n1=0

e−βn1�ω1

∞
∑

n2=0

e−βn2�ω2 · · ·

and so each one can be evaluated a geometric series

ZB(β) =
1

1− e−�ω1β

1

1− e−�ω2β
· · ·
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In more compact notation

ZB(β) =
∏

k

1

1− e−β�ωk

Similarly for fermions

ZF (β) =
∏

k

[

1 + e−β�ωk
]

Exercise 22. A more subtle partition function also keeps track of the

total number of particles N =
∑

k nk, not just the total energy Z(β, µ) =
∑

E,N d(E,N)e−βE−µN . Show that

ZB(β, µ) =
∏

k

1

1− e−β�ωk−µ
, ZF (β, µ) =

∏

k

[

1 + e−β�ωk−µ
]

Any sensible person seeing such a product will convert into a sum by

taking logarithms.

logZB(β) = −
∑

k

log
[

1− e−β�ωk
]

logZF (β) =
∑

k

log
[

1 + e−β�ωk
]

Often the sum over k can be converted to an integral, when there are

many frequencies closely packed together. We will see examples later.

Exercise 23. This has little physical meaning, but makes a connection to

the most famous function in Number Theory. Suppose ωk = log pk where

pk = 2, 3, 5, 7 · · · are the prime numbers. What is the Bosonic partition

function?

Solution

Z(β) =
∞
∑

nk=0

e−β
∑

k
nk log pk

= Π∞
k=0

( ∞
∑

nk=0

e−βnk log pk

)

= Π∞
k=0

1

1− e−β log pk

Z(β) = Π∞
k=0

1

1− p
−β
k
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On the other hand, any number can be written as a product of prime

powers in a unique way:

N =
∏

k

pnk

k ⇐⇒ logN =
∑

k

nk log pk

So

Z(β) =

∞
∑

nk=0

e−β
∑

k
nk log pk =

∞
∑

N=1

e−β logN =

∞
∑

N=1

1

Nβ

This is the Riemann zeta function;the variable β is usually called s in

number theory.

We just derived a famous identity of Euler for the Riemann zeta function

Π∞
k=0

1

1− p
−β
k

= ζ(β) ≡
∞
∑

N=1

1

Nβ

8.1.1. The Planck spectrum

Quantum mechanics began with Planck’s resolution of a paradox in com-

bining statistical physics with the new theory of electromagnetic radiation.

If you imagine a large metal box of side L, the electric and magnetic fields

inside can have wave numbers 2π
L
n where n ∈ Z

3 is a triple of integers.

(Solve the wave equation with the boundary conditions at the sides of the

box).

8.2. The Harmonic Oscillator

This review is too brief if you have not seen this previously. See the book
[7] for an excellent, detailed presentation.

8.2.1. The classical simple harmonic oscillator

The simple harmonic oscillator is a system with one degree of freedom with

hamiltonian

H =
1

2
p2 +

1

2
ω2q2

ω is the natural frequency. In classical mechanics, the momentum p and

position q satisfy the Poisson Brackets

{p, q} = 1
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The equations of motion are

dq

dt
= {H, q} = p,

dp

dt
= {H, p} = −ω2q

It is useful to introduce complex linear combinations

α =
1√
2

(√
ωq +

1√
ω
ip

)

, α∗ =
1√
2

(√
ωq − 1√

ω
ip

)

so that

H = ωα∗α, {α, α∗} = i

satisfying

dα∗

dt
= {H,α∗} = iωα∗,

dα

dt
= {H,α} = −iωα

The solutions are periodic (oscillating) functions

α = Ae−iωt, α∗ = A∗eiωt

or, after some change of variables,

q(t) = Q sin(ωt+ θ)

for some constants A,Q, θ. Thus, the period of the oscillation is 2π
ω
.

8.2.1.1. Partition function

In classical statistical mechanics, the probability density of states in phase

space is proportional to e−βH where β = 1
kBT

is the inverse temperature.

(Boltzmann’s constant kB converts T from units of temperature to units

of energy.) The thermodynamic properties of a system are given by the

partition function

Z(β) = Z0

∫

e−βHdpdq

The overall constant Z0 is undetermined in the classical theory.

For the harmonic oscillator this is a gaussian integral

Z(β) = Z0

∫

e−β[ 12p
2+ 1

2
ω2q2]dpdq = Z0

2π

ωβ

We will see that Z0 = 1
2π� from comparison with the quantum theory.
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8.2.2. The quantum simple harmonic oscillator

In quantum mechanics p and q are operators satisfying the Heisenberg

commutation relations

[p, q] = −i�

In the Schrodinger picture, p = −i� ∂
∂q
. The hamiltonian is now a dif-

ferential operator

H =
1

2

[

−�
2 ∂2

∂q2
+ ω2q2

]

Its eigenvalues En are the allowed values of energy. They are the values

for which the ODE

Hψn = Enψn

has non-zero solutions of finite norm:
∫

|ψn(q)|2dq < ∞.

To find them, it is useful to introduce two related operators

a =
1√
2

[

√

ω

�
q +

√

�

ω

∂

∂q

]

, a† =
1√
2

[

√

ω

�
q −

√

�

ω

∂

∂q

]

so that

[a, a†] = 1

and

H =
1

2
�ω
(

a†a+ aa†
)

= �ωa†a+
1

2
�ω

Exercise. Verify the above relations. Pay special attention to the term
1
2�ω in the hamiltonian.

So, how does this help to find eigenvalues of H? The key idea are the

relations

[H, a†] = �ωa†, [H, a] = −�ωa
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Thus, if we have one solution to the eigenvalue equation Hψn = Enψn

we can find another:

Ha†ψn = [H, a†]ψn + a†Hψn

= �ωa†ψn + Ena
†ψn

That is, the application of a† to ψn gives us another eigenstate with

energy En + �ω:

Ha†ψn = (En + �ω)a†ψn

as long as a†ψn 
= 0 and has finite norm. This is why a† is called a “raising

operator”: It raises the energy. Similarly, a is a lowering operator.

Haψn = (En − �ω)aψn

That is, we can lower energy by application of a unless aψn = 0. The

lowest value of energy corresponds to a solution of the equation

aψ0 = 0

We can see that

Hψ0 =
1

2
�ωψ0

so that the “ground state” has energy 1
2�ω.

It is easy enough to solve this ODE
[

√

ω

�
q +

√

�

ω

∂

∂q

]

ψ0(q) = 0 =⇒

ψ0 = Ce−
1
2

ω
�
q2

for some constant C.This function is normalizable; i.e.,
∫

|ψ0|2dq is finite.

We could choose C so that
∫

|ψ0|2dq = 1. But this is not important.

Example. What would have happened if we had solved a†χ0 = 0 instead?

Why is there no “highest value” for energy?

Now, we can find the next highest value of energy by applying the raising

operator:

ψ1 = a†ψ0

Hψ1 = �ω

[

1 +
1

2

]

ψ1
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and so on:

ψn = a†nψ0

Hψn =

[

n+
1

2

]

�ωψn, n = 0, 1, 2 · · ·

In many situations, a constant added to all the energy levels does not

matter: Only differences of energy levels matter. In that case we can redefine

the hamiltonian so that the ground state has energy zero:

H̃ = H − 1

2
�ω

ψn = a†nψ0

H̃ψn = n�ωψn, n = 0, 1, 2 · · ·

Thus the energy levels of a harmonic oscillator and equally spaced, mul-

tiples of �ω.

8.2.2.1. Partition function

In quantum statistical physics, the probability of a state is proportional to

its energy. The partition function is then Z(β) =
∑

E d(E)e−βE where d(E)

is the degeneracy of energy E (i.e., the number of states with energy E).

For the SHO, this is a sum we already evaluated: Z(β) =
∑∞

n=0 e
−n�ωβ =

1
1−e−�ωβ . We can see that in the limit � → 0

Z(β) → 1

�ωβ

which agrees with the classical result if the normalization constant Z0 =
1

2π� .

8.2.3. More degrees of freedom

Any oscillating system with small displacements can be reduced to a sum

of independent simple harmonic oscillators by a change of variables [13].

H =
1

2

∑

k

p2k +
1

2

∑

k

ω2
kq

2
k

{pk, ql} =

{

1 k = l

0 k 
= l

{pk, pl} = 0 = {qk, ql}
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Complex combinations again are useful

αk =
1√
2

(√
ωkqk +

1√
ωk

ipk

)

, α∗
k =

1√
2

(√
ωkqk −

1√
ωk

ipk

)

{αk, α
∗
l } =

{

i k = l

0 k 
= l

{αk, αl} = 0 = {α∗
k, α

∗
l }

so that

H =
∑

k

ωkα
∗
kαk.

The quantum theory also decomposes into a sum of independent

systems:

H =
∑

k

�ωa
†
kak +

1

2

∑

k

�ωk

[

ak, a
†
l

]

=

{

1 k = l

0 k 
= l

[ak, al] = 0 =
[

a
†
k, a

†
l

]

Again, if ψn is an eigenstate of energy En , a†kψn is one of energy En +

�ωk. As long as akψn 
= 0 , it is an eigenstate of energy En − �ωk.The

ground state is the simultaneous solution of

akψ0 = 0

which is a set of PDEs
[

√

ωk

�
qk +

√

�

ωk

∂

∂qk

]

ψ0(q) = 0

The solution is separable as a product of functions of single variables:

ψ0 = C
∏

k

e−
1
2

ωk
�

q2k

We can verify

Hψ0 =

[

∑

k

1

2
�ωk

]

ψ0
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This is the state of lowest energy. The other states obtained by acting

on ψ0 with some raising operators

ψn = a
†n1

1 a
†n2

2 · · ·ψ0

Hψn =

[

∑

k

(

nk +
1

2

)

�ωk

]

ψn

Again, we can add a constant to H so that the ground state energy is

zero:

H̃ = H −
∑

k

1

2
�ωk

H̃ =
∑

k

�ωka
†
kak

H̃ψn =

[

∑

k

�ωknk

]

ψn

8.3. Free Bosons are Harmonic Oscillators

You must have caught on by now to the point I am trying to make. The

energies of a system of harmonic oscillators are exactly the same as those

of a system of bosons.

En =
∑

k

nk�ωk, nk = 0, 1, 2 · · ·

So, the mathematical description of bosons are as oscillators. The nat-

ural frequencies of the oscillators are (up to a factor of �) the energies of

single bosons. The operator a†k can now be thought as creating a boson in

the state of energy �ωk. Similarly, ak is the annihilation operator of such a

boson.

An immediate application is to vibrations in a solid. At equilibrium, the

atoms of a crystalline solid are arranged in a regular periodic pattern: A

lattice. Small oscillations of the atoms around these equilibrium positions

propagate as sound waves. They have a characteristic frequencies which

are determined by the spring constants (second derivative at equilibrium of

the potential between nearby atoms). Quantum mechanically, these sound

waves behave like bosonic particles. They are called phonons.
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Similarly, the electromagnetic field inside a cavity with conducting walls

has oscillations. Quantum mechanically, these oscillations correspond to

particles of light: Photons.

We are onto a fundamental physical fact: Particles are quantum excita-

tions of fields. Particles and fields arose as different ideas in classical physics:

Electrons where thought of as particles and electromagnetism as a field. In

quantum theory, these ideas come together.

8.3.1. Occupation number basis

To describe particles, it is better to think of oscillator states directly in

terms of occupation numbers rather than in terms of wave functions.

Again start with a single degree of freedom. We want operators

satisfying

[a, a†] = 1

Denote the empty state by the symbol |0〉 (pronounced “ket 0” )

a|0〉 = 0

More generally, introduce states satisfying

a†a|n〉 = n|n〉

for some real numbers n. (Since a†a is hermitian, its eigenvalues are real.)

For different values of n these states must be orthogonal.

〈n|m〉 = 0, n 
= m

〈n| is the conjugate vector to |n〉 and is pronounced “bra n”. So, 〈n|m〉 is

the bra-ket2 of n and m. We can normalize the eigenstates to have length

one.

〈n|n〉 = 1

These are simply the eigenstates of the hamiltonian. Now,

a†a
(
a†|n〉

)
= a†

(
1 + a†a

)
|n〉 = (n+ 1)a†|n〉

2This terrible pun is due to Dirac. His only excuse is that he was quite young when he
invented this.
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Thus, a†|n〉 is proportional to |n+ 1〉. What is the proportionality fac-

tor?Let

a†|n〉 = ξn|n+ 1〉

As an infinite dimensional matrix,

a† =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ξ0 0 0 · · ·
0 0 ξ1 0 · · ·
0 0 0 ξ2 · · ·
0 0 0 0 · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

We can derive recursion relation relation for ξn using the commutation

relations and the requirement that a, a† are conjugate to each other.

a =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · ·
ξ∗0 0 0 · · ·
0 ξ∗1 0 · · ·
0 0 ξ∗2 · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎠

This can also be written as

a|0〉 = 0, a|n〉 = ξ∗n−1|n− 1〉, n > 0

Then

a†a =

⎛
⎜⎜⎜⎜⎜⎜⎝

|ξ0|2 0 0 · · ·
0 |ξ1|2 0 · · ·
0 0 |ξ2|2 · · ·
0 0 0 · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

, aa† =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · ·
0 |ξ0|2 0 · · ·
0 0 |ξ1|2 · · ·
0 0 0 · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

Thus

[a, a†] = 1 =⇒ |ξ0|2 = 1, |ξn|2 − |ξn−1|2 = 1, n > 0

The solution to this recursion relation is |ξn|2 = n+1. So, we can choose

ξn =
√
n+ 1.

a†|n〉 =
√
n+ 1|n+ 1〉, a|n〉 =

{√
n− 1|n− 1〉 n > 0

0 n = 0
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Or, as infinite dimensional matrices

a =

⎛
⎜⎜⎜⎜⎝

0 0 0 · · ·
1 0 0 · · ·
0

√
2 0 · · ·

0 0
√
3 · · ·

· · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠

, a† =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√
3 · · ·

0 0 0 0 · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠

Exercise 24. Find normalizable states satisfying a†χ(z) = za†χ(z),
χ(z) =

∑

n=0 χn(z)|n〉. These “coherent states” are especially useful in

quantum optics.

Exercise 25. Recall that |0〉 is Ce−
1
2

ω
�
q2 . Find polynomials Pn(q) such

that |n〉 is Pn(q)Ce−
1
2

ω
�
q2 . (Hint Derive recursion relations for Pn(q)).

8.4. Are Free Fermions some kind of Oscillators too?

Is there some kind of oscillator whose excitation number takes just two

values n = 0, 1?

Let us start with a system with just one natural frequency ω. It is either

empty or is filled by a fermion. If empty, the energy is zero. If filled the

energy is �ω.

H |0〉 = 0, H |1〉 = �ω|1〉

There are no other states. By analogy to the creation annihilation oper-

ators for bosons we can introduce operators

b|1〉 = |0〉, b†|0〉 = |1〉

b|0〉 = 0, b†|1〉 = 0

The above relations imply
[

bb† + b†b
]

|0〉 = |0〉
[

bb† + b†b
]

|1〉 = |1〉

so that

bb† + b†b = 1.

Notice that the sign is + : We have an anti-commutator rather than a

commutator as for bosons. We get

H̃F = �ωb†b.
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Since we cannot put more than one particle in the state (the exclusion

principle) we must have

b†2 = 0

Since there is never more than one particle to annihilate,

b2 = 0

as well. It is not difficult to find matrices and vectors that represent these

relations:

|0〉 =
(

0

1

)

, |1〉 =
(

1

0

)

b =

(

0 0

1 0

)

, b† =

(

0 1

0 0

)

.

You might remember the Pauli spin matrices:

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ1 =

(

1 0

0 −1

)

and then recognize

b† =
σ1 + iσ2

2
, b =

σ1 − iσ2

2
.

The hamiltonian of the fermionic oscillator can be thought of as

ĤF =
1

2
ω
(

b†b− bb†
)

= ωb†b− 1

2
ω

The extra − 1
2ω is the analogue of the zero point energy. We can remove

it by adding a constant to the hamiltonian as before (to get H̃F ) but it is

more symmetric to leave it in. Then you can see that

ĤF =
1

2
ωσ3

in terms of the Pauli matrices.This connection between spin matrices and

fermionic creation operators is not a coincidence; but we won’t delve deeper

into this matter here.

Exercise 26. Find the partition function of the fermionic oscillator above.

Solution 2 cosh[ωτ
2 ].

Is there an analogue of the representation of a, a† as differential opera-

tors? We can invent one, but it needs a new kind of number.
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8.4.1. Grassmann numbers

At some point you had to extend your idea of a number to include i , which

solves i2 = −1. In the same spirit, suppose there is a number that satisfies

θ2 = 0

but θ 
= 0. A function of such a number can be thought of as a linear

combination

ψ(θ) = ψ0 + θψ1

for real numbers ψ0, ψ1. Thus

θψ = θψ0

We can define

∂θψ = ψ1

Clearly

∂2
θ = 0

Moreover

θ∂θψ = θψ1

∂θ (θψ) = ψ0

so that

(θ∂θ + ∂θθ)ψ = ψ

Thus, these differential operators satisfy exactly the relations of b, b†.
We can now extend this trick to fermions with many degrees of freedom.

Introduce variables that satisfy:

θkθl + θlθk = 0

In particular (θk)2 = 0 etc. A function of such variables will be a series

ψ(θ) = ψ0 + ψkθ
k +

1

2!
ψklθ

kθl + · · ·

the coefficients are anti-symmetric

ψkl = −ψlk

etc. Define the differentiation

∂kψ(θ) = ψk + ψklθ
l + · · ·
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Then we can verify that

∂k∂l + ∂l∂k = 0

∂kθ
l + θl∂k = δlk

Exercise. How would you define the integral
∫
dθψ(θ) in order that it

is linear and “translation invariant”:
∫
dθψ(θ + α) =

∫
dθψ(θ) for some

constant Grassmann number α?

Solution
∫
dθ [ψ0 + θψ1] = ψ1is the only quantity that is linear and satis-

fies translation invariance. Incidentally, this means integration and differ-

entiation are the same thing for functions of a Grassmann variable!

8.5. Beyond Free Particles: The Jaynes–Cummings Model∗

To get a first taste of an interacting system, let us consider a boson with

just one energy level �ωB and a fermion with a single level as well �ωF . If

they do not interact with each other the hamiltonian is

H0 = �ωBa
†a+ �ωF b

†b

The operators satisfy, as before,

[a, a†] = 1, b†b+ bb† = 1, b2 = 0 = b†2

In addition, the fermion and boson creation annihilation operators do

not affect each other’s action; i.e., they commute:

[a, b] = 0 = [a†, b] = [a, b†] = [a†, b].

The energy levels are now

�ωBnB + �ωFnF

with nB = 0, 1, 2, . . . and nF = 0, 1. There can be any number of bosons,

but at most one fermion.

This model was originally invented to represent an atom inside an elec-

tromagnetic resonant cavity of frequency ωB.

We ignore all except one pair of energy levels of the atom. This pair has

energies differing from each other by �ωF which is approximately equal to

�ωB. Since there are just two possible states for the atom, mathematically

it is identical to the states of a single fermion: The empty fermion state is

the ground state of the atom and the occupied fermion state is the excited

state of the atom. This is the interpretation we will give it here.
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8.5.1. Interactions

The atom can emit a photon and make a transition from its excited state

to the ground state. In the other interpretation, a fermion is annihilated

and a photon created. To have detailed balance (time reversal symmetry)

we must allow for the opposite process as well: The atom absorbs a photon

and climbs to the excited state, or the photon is annihilated and a fermion

created.

This can represented by an additional “interaction term” in the hamil-

tonian

H1 = �g
(
a†b+ ab†

)

H = H0 +H1

Here g is a constant that measures the strength of the interaction (“cou-

pling constant”). This model is simple enough that it can be exactly solved.

The true eigenstates are some combinations of fermionic and bosonic states.

Much can be learned by working out such simple examples in detail.

Exercise 27. Find a conserved quantity for the Jaynes–Cummings model.

Use it to find the eigenvalues and eigenvectors of the hamiltonian.

Solution Let

a†a|n, ν〉 = n|n, ν〉, b†b|n, ν〉 = ν|n, ν〉, n = 0, 1, 2, . . . , ν = 0, 1

Each term in the hamiltonian leaves n+ν unchanged so it is a conserved

quantity. For a given value m of this quantity, there are two independent

states in the above basis if m > 0

|m, 0〉, |m− 1, 1〉,

and just one, |0, 0〉 if m = 0.

Conserved quantities are the key to solving any quantum system. If

m = 0 we get an eigenstate with eigenvalue zero:

H |0, 0〉 = 0

Now, if m > 0

H |m, 0〉 = �ωBm|m, 0〉+ �g
√
m|m− 1, 1〉

H |m− 1, 1〉 = [�ωB(m− 1) + �ωF ]|m− 1, 1〉+ �g
√
m|m, 0〉
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Thus in this two dimennsional subpsace H reduces to the matrix
(

�ωB(m− 1) + �ωF �g
√
m

�g
√
m �ωBm

)

It is convenient to define

∆ =
ωF − ωB

2

and write this as

[�ωBm+∆]

(

1 0

0 1

)

+

(

�∆ �g
√
m

�g
√
m −�∆

)

The eigenvalues are

�

{

ωBm+∆±
√

∆2 + g2m
}

corresponding to eigenvectors

(

cos θ±
sin θ±

)

, tan θ± =
±
√

∆2 + g2m−∆

g
√
m

8.6. Heisenberg Lie Algebra

8.6.1. The Heisenberg algebra is a three-dimensional Lie

algebra with basis p, q, c satisfying

[p, q] = c = −[q, p], [q, c] = 0 = [p, c]

Since all double commutators vanish, Jacobi identity is easily verified.

These are also called Canonical Commutation Relations.

8.6.1.1. This algebra has no faithful finite dimensional irreducible

representations

Faithful means the basis elements are represented by linearly independent

matrices; no information is lost in the representation. In an irreducible

reresentation, c would have to be a multiple of the identity (Schur’s lemma)

since it commutes with everything. But we would have a contradiction:

tr[p, q] = 0 
= trc
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In infinite dimensions, this argument doesn’t work because each side

can have infinite trace (i.e., the trace doesn’t exist).

8.6.1.2. The Heisenberg algebra has a unitary irreducible

representation

Unitary means that p and q are represented by hermitian operators and c

by an anti-Hermitian operator. Being irreducible, it must be a multiple of

the identity. To be unitary and irreducible, c = i�1̂, where � is some real

number. It has the dimensions of angular momentum (momentum times

position). In quantum mechanics it is Planck’s constant.

The Schrodinger representation

p = −i�
∂

∂q

and q is represented by position. With respect to the inner product

〈ψ, χ〉 =
∫

ψ∗(q)χ(q)dq

p, q are hermitian (ignoring some technical issues about domains etc.) There

is another approach more suited for our purposes:

8.6.2. An equivalent formulation is in terms of the creation-

annihilation operators

[a, a†] = 1, a =
1√
2
[q + ip]

8.6.3. In the Schrodinger representation the states are

described as functions of position

The annihilation operator a = 1√
2

[

q + d
dq

]

in units with � = ω = 1 (which

we use from now on). The equation a|0〉 = 0 becomes a differential equation

[

q +
d

dq

]

ψ0(q) = 0

which has solution

ψ0(q) = Ce−
1
2
q2
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The constant is chosen such that
∫

|ψ0(q)|2dq = 1 =⇒ C =
1√
π

Then |1 >= a†|0 > corresponds to the function

ψ1(q) =
1√
2

[

q − d

dq

]

ψ0(q)

=
√
2qψ0(q)

The rest of the states are given by the recursion relation

ψn(q) =
1√
n
a†ψn−1(q)

leading to

ψn(q) = Hn(q)ψ0(q)

where Hn(q) is a polynomial (Hermite) of order n.

Exercise. Derive a recursion relation giving Hn in terms of Hn−1 and its

derivative.

Solution

We have |n〉 = 1√
n
a†|n− 1〉 which translates to

Hn(q)ψ0(q) =
1√
2n

(

q − d

dq

)

[

Hn−1(q)e
− 1

2
q2
]

This simplifies to

Hn(q) =
1√
2n

[

2qHn−1(q)−H ′
n−1(q)

]

8.6.4. Another equivalent point of view is in terms

of complex functions

See the book by Klauder and Sudarshan [18] for more.

The creation operator is just multiplication by z; destruction is differ-

entiation

a† = z, a =
∂

∂z



152 PHYSICS THROUGH SYMMETRIES

We can calculate

[a, a†]ψ(z) =
∂

∂z
(zψ)− z

∂ψ

∂z
= ψ

so that the commutation relation is satisfied. Comparing

∂

∂z
zn = nzn−1

with

a|n〉 =
√
n|n− 1〉

we get the correspondence

|n〉 = zn√
n!
.

The inner product is given by integration with some weight function

(measure)

||ψ(z)||2 =

∫

ψ∗(z)ψ(z)ρ(z)d2z

Here
∫

d2z denotes integration over the whole complex plane. ρ(z) needs

to vanish sufficiently rapidly at infinity so that zn has a finite length. We

need

〈m|n〉 = δmn

so that
∫

z∗m√
m!

zn√
n!
ρ(z)d2z = δmn

This determines ρ(z) uniquely:

ρ(z) =
1

π
e−|z|2

Exercise 28. Prove that

∫

e−|z|2 z∗m√
m!

zn√
n!

d2z

π
= δmn
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Solution

First of all, we make the changes of variable

z = x+ iy, r =
√
x2 + y2, u = r2

to get

∫

e−|z|2d2z =

∫

e−x2−y2

dxdy =

∫ ∞

0

e−r22πrdr = π

∫ ∞

0

e−udu = π

More generally

z = reiθ

gives

∫

e−|z|2z∗mznd2z =

∫ ∞

0

e−r2rme−imθrneinθrdrdθ

=

∫ ∞

0

e−r2rm+nrdr

∫ 2π

0

ei(n−m)θdθ

The last factor is only non-zero if m = n:

∫ 2π

0

ei(n−m)θdθ = 2πδmn

∫

e−|z|2z∗mznd2z = 2πδmn

∫ ∞

0

e−r2rm+nrdr

= πδmn

∫ ∞

0

e−uumdu

∫

e−|z|2z∗mznd2z = πm!δmn

from which the results follows.

Exercise. With this inner product show that z and ∂
∂z

are hermitian con-

jugates of each other

〈

φ,
∂

∂z
ψ

〉∗
=

[
∫

φ∗(z)
∂ψ

∂z
e−z∗z d

2z

π

]∗

=

∫

φ(z)
∂ψ∗

∂z∗
e−z∗z d

2z

π
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=

∫

∂

∂z∗

[

φ(z)ψ∗e−z∗z
] d2z

π
−
∫

φ(z)ψ∗ ∂
[

e−z∗z
]

∂z∗
d2z

π

= −
∫

φ(z)ψ∗(z∗)ze−z∗z d
2z

π

= 〈ψ, zφ〉

as needed.

8.6.5. All irreducible unitary representations of the

Heisenberg algebra are equivalent to each other

The Schrodinger representation, the Heisenberg representation, the com-

plex function representation are all equivalent to each other:

Hn(q)e
− q2

2 ≡ |n〉 ≡ zn√
n!

where Hn are the Hermite polynomials [7].

8.7. Bosonic States as Polynomials

8.7.1. If the space of states of a single boson is V , that of

a pair of bosons is S2(V ), the space of symmetric

matrices

In some orthonormal basis, single particle states are given by vectors ψ =

(ψ1, . . . , ψM ) while two boson states are

ψij = ψji.

For fermions we would have anti-symmetric matrices. Suppose i =

1, . . . ,M : the single boson has some finite number M of states available to

it. Then there are M(M+1)
2 independent two-boson states. More generally

8.7.2. The space of states of n bosons is Sn(V ) the space

of symmetric tensors

ψi1···ia···ib···in = ψi1···ib···ia···in

invariant under any interchange. For fermions we would get anti-symmetric

tensors that change sign under odd permutations.



BOSONS AND FERMIONS 155

8.7.3. The total state space of bosons is S(V ) =⊕
∞

n=0
Sn(V )

S0(V ) = C is the vacuum or empty state, represented by a tensor of rank

zero: A scalar. This space of symmetric tensors you can build out of a vector

space is called its “Bosonic Fock space”.

8.7.4. We can also think of S(V ) as the space

of polynomials

ψ(z) =
∞
∑

n=0

ψi1···inzi1 · · · zin

The degree of the polynomial is the total number of bosons. In any

given state this is a finite number, but we allow it to be as large as needed.

Because the components of the complex numbers commute the coefficients

are symmetric tensors.

8.7.4.1. In the special case dimV = 1 there is a correspondence

between free bosonic states and the states of a simple

harmonic oscillator

There is just one polynomial of degree n, namely zn. It corresponds to the

state with occupation number n:

| n〉 = zn√
n!

The factor 1√
n!

ensures that it has norm one with respect to

||ψ(z)||2 =

∫

e−|z|2ψ∗(z)ψ(z)
d2z

π

8.7.5. The space of polynomials S(V ) carries a

representation of the canonical commutation

relations

[ai, a
†
j ] = δij , [ai, aj ] = 0 = [a†i , a

†
j]

We are to think of a†i as the multiplication of the polynomial represent-

ing the state by zi; and ai is the differentiation of this polynomial w.r.t.

zi:

a
†
i = zi, ai =

∂

∂zi
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We can

|n1, n2 · · · 〉 =
zn1

1√
n1!

zn2

2√
n2!

· · ·

ψ(z) =

∞
∑

ni=0

ψn1n2···|n1, n2 · · · 〉

||ψ(z)||2 =

∫

e−
∑

i |z|2ψ∗(z)ψ(z)
d2z1d

2z2 · · ·
π

8.8. The Symplectic Lie Group and its Lie Algebra

Recall that momentum and position play symmetric roles in classical

mechanics. We can even mix them in performing canonical transforma-

tions, as long as the Poisson brackets (canonical commutation relations)

are preserved. Let us study them a little more in depth.

Since we want to treat momentum and position at the same footing let

us introduce a common notation

ξa =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

p1

p2

· · ·
q1

q2

· · ·

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, a = 1, . . . 2n

The canonical Poisson brackets become
{

ξa, ξb
}

= Ωab

the matrix Ω is anti-symmetric (because the Poisson bracket is anti-

symmetric).

Ωab = −Ωba.

It is non-degenerate; i.e., its determinant is non-zero. Its inverse is often

called the “symplectic form”.

In the co-ordinate system above it has the explicit form Ω =
(

0n 1n
−1n 0n

)

where 1n is the n×n identity matrix. But we can use other systems as well.

A linear canonical transformation will be a 2n× 2n matrix Λ such that

the matrix Ω unchanged. That is

ξa �→ Λa
cξ

c

{ξa, ξb} �→ Λa
cΛ

b
d{ξc, ξd}
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so that

Λa
cΛ

b
dΩ

cd = Ωab

or in matrix notation

ΛΩΛT = Ω.

The set of matrices that satisfy this condition form a group called the

Symplectic Group Sp(n). It is analogous to the Orthogonal group, except

that it preserves an anti-symmetric tensor rather than a symmetric one.

Exercise 29. Show that an anti-symmetric matrix with non-zero deter-

minant must have even dimension.

Solution detΩ = detΩT and ΩT = −Ω imply that detΩ =

(−1)dimΩ detΩ.

Exercise 30. Show that there is a real linear transformation which can

brings an anti-symmetric non-degenerate matrix to the standard above Ω =(
0 1
−1 0

)
. (Hint i times an anti-symetric matrix is hermitian. Diagonalize

it using a complex transformation and then rewrite in terms of real and

imaginary parts.)

8.8.1. The Symplectic Lie algebra

As always the Lie algebra is easier to understand. A symplectic matrix

infinitesimally close to the identity

Λ = 1 + ǫλ

will satisfy

λΩ + ΩλT = 0

If we define

s = λΩ

this is the condition that

s = sT

(The point is that Ω is anti-symmetric, so that sT = ΩTλT = −ΩλT ).

Thus, the symplectic Lie algebra sp(n) consists of symmetric matrices.

Compare with so(n) which is made of anti-symmetric matrices.
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In particular

dim sp(n) =
2n(2n+ 1)

2
= n(2n+ 1).

The simplest case is sp(1) which is three-dimensional.

There is another way to understand the Symplectic Lie algebra. Given

a quadratic function

h(ξ) =
1

2
hbcξ

bξc

the infinitesimal canonical transformation generated by it is a linear trans-

formation

{h, ξa} =
1

2
hbcΩ

baξc +
1

2
hbcξ

bΩca = (λξ)
a

where

λa
c = hbcΩ

ba.

Such infinitesimal transformations preserve the Poisson brackets. (The

proof is straightforward: It uses the Jacobi identity. Since the above formula

is a one-one correspondence between quadratic functions and symmetric

tensors, we see that all elements of sp(n) arises this way from some function

(called the generator).

Moreover, the Poisson bracket of two quadratic functions is another

quadratic function:

{f, h} = Ωab∂bf∂ch = Ωbcfbdhceξ
dξe

Since the Poisson bracket is anti-symmetric and satisfies the Jacobi

identity, the set of quadratic functions is a Lie algebra. This Lie algebra is

sp(n).

8.8.2. A Representation of sp(1)

The functions p2, q2, pq form a basis for sp(1). The operators

ψ �→ −∂2ψ

∂q2
, q2ψ(q), −i

[

∂

∂q
(qψ) + q

∂ψ

∂q

]

provide a representation (the Schrodinger representation) for these basis

elements of sp(1). This representation is unitary w.r.t. the inner product

〈ψ, φ〉 =
∫

ψ∗(q)φ(q)dq

Of course, this is an infinite dimensional representation. One of the

elements of sp(1) is the hamiltonian of the
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harmonic oscillator

H =
1

2
(p2 + q2)

The partition function

Z(β) = tre−βH =
2

sinh β
2

can now be seen to be the character of this representation. The trace does

not converge for all quadratic operators; only the positive ones. (In general

the character makes sense as a formal power series or a distribution.)

More generally, the Bosonic Fock space carries a representation of sp(n).

Exercise 31. Show that the above representation of sp(1) is reducible as

the direct sum of two invariant subspaces; one corresponding to even func-

tions of q and other to odd functions. Each of these subspaces is irreducible,

although this is harder to prove.

8.8.3. ∗Exponentiating to a Representation of the Group

Recall that the odd spin representations of the orthogonal Lie algebra do

not provide a representation of SO(3) but of its extension SU(2). Some-

thing similar happens for SP (1). The above representation of the Lie alge-

bra does not lead to representation of SP (1), but of its extension by Z2

called the “Metaplectic” group. To understand this, consider the element(
cos θ − sin θ
sin θ cos θ

)
∈ SP (1). This is a rotation in the (p, q) plane. As θ varies

from 0 to 2π it describes a closed curve in SP (1) starting and ending at the

identity. In the above representation, the infinitesimal generator of a rota-

tion in the p, q plane is the hamiltonian of the harmonic oscillator. (Recall

that the orbits of the harmonic oscillator are circles). So, the corresponding

curve is the eiθH . At θ = 0 it is the identity operator. If the eigenvalues of

H had been integers, eiθH would have become identity at θ = 2π. But we

know that the eigenvalues of H are half-integers; the ground state energy

is 1
2 , the excited energy is 3

2 and so on. Thus, eiθH = −1 at θ = 2π. As we

increase θ to 4π, eiθHdoes become the identity again.

Remark 32. Often we add a multiple of the identity to the hamiltonian

so that the ground state has zero energy. This does not affect many physi-

cal results. But it will change the commutation relations: The commutation

relations would be spoilt by the addition of a term proportional to the iden-

tity. There are some situations (e.g. when there are an infinite number of
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degrees of freedom) where we have to add a constant to the hamiltonian

to make the vacuum expectation value finite (“normal order” the hamilto-

nian). The resulting Lie algebra (with an extra generator which commutes

with everything) is a “central extension” of the Symplectic Lie algebra.

So, instead of an extensionof the group SP by Z2 (see below) we have an

extension[14] by U(1).

This is all similar to the odd spin representation of the Lie algebra

so(3); its exponentiation gives a representation not of SO(3) but of its

double cover SU(2). In the same way the unitary matrices obtained by

exponentiating the representation of sp(1) on the harmonic oscillator states

give a representation of a double cover of SP (1) called MP (1). Weil coined

the word “Metaplectic” to describe this group (as well as the representation

of sp(1) on the harmonic oscillator). We can rephrase this in the language

of group extensions: There is an exact sequence of group homomorphisms

{1} → Z2 → MP (1) → SP (1) → {1}.
We omit the proofs of these statements. The exquisite mathematics

(with deep connections to number theory) can be found in the book by

Folland [16] and in the original paper of Bargmann [17].

There is an important difference with the case of so(3) however. The

group SO(3) is doubly connected (has fundamental group Z2), so that

SU(2) (its double cover) is simply connected. By contrast, SP (1) has fun-

damental group Z: It is infinitely connected. Indeed, as a manifold SP (1)

is diffeomorphic to R
2 × S

1; the “noncompact” directions
(
which are tan-

gential to
(
1 0
0 −1

)
and

(
0 1
1 0

)
)

correspond the contractible part R
2; the

rotations
(
tangential to

(
0 −1
1 0

)
)

correspond to the circle. The Metaplec-

tic group is also diffeomorphic to R
2 × S

1; except that its circle is a double

cover of the circle in SP (1).

There is a simply connected Lie group S̃P (1) which is diffeomorphic to

R
3; it has the same Lie algebra as SP (1). But it does not have an easy

description. See [17].

8.9. The Orthogonal Lie Algebra

We now return to the case of linear transformations that preserve a positive

inner product (i.e., a symmetric positive matrix or metric tensor). There

is always an orthogonal co-ordinate system (i.e., cartesian) in which the

metric tensor is simply the identity matrix.
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An infinitesimal rotation is generated by the analogues of the orbital

angular momentum operators

Lab = xa∂b − xb∂a

Their effect on the co-ordinates are easily worked out

[Lab, xc] = δbcxa − δacxb

This says that Lab only affects xa or xb which are rotated into each

other: It is a rotation in the ab plane.

The commutation relations of the Lie algebra follows also by direct

computation:

[Lab, Lcd] = δbcLad − δacLbd − δbdLac + δadLac

If the dimension of the underlying Euclidean space is even, (say 2n )

the following generators form a maximal set of commuting elements:

L12, L34, . . . , L2n−1,2n

Since there are n of them we see that is the rank of the o(2n) Lie algebra.

The dimension is

dim o(2n) =
2n(2n− 1)

2
= n(2n− 1)

If the dimension is odd (2n+1 say) the maximal commuting set is again

L12, L34, . . . , L2n−1,2n

and the dimension is

dim o(2n+ 1) =
2n(2n+ 1)

2
= n(2n+ 1)

The case o(3) is of rank one and dimension three, as we already know.

There are in addition, polynomials in the generators (analogous to L2)

which also commute with all the Lab. The number of them that are alge-

braically independent is equal to the rank:

LabLab, LabLbcLca, · · ·La1a2
La3a4

· · ·Lanan+1

The irreducible representations of the Orthogonal group are given by

traceless tensors of various symmetry types: unlike in the case n = 1, it

is in general possible to make tensors that are neither symmetric nor anti-

symmetric (mixed type). The irreducible representations of mixed type are

constructed using an elaborate theory of “Young Tableaux” which we skip.
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As in the case m = 3, there are representation of the Lie algebras

o(m) which do not exponentiate to a representation of O(m); instead they

exponentiate to representations of the double cover of the group (extension

by Z2) called the “spin group”.

1 → Z2 → Spin(m) → O(m) → 1

These spin representations are of great physical interest, for all values

of m (and even in the limit m → ∞).

8.10. Clifford Algebra

Recall that the Pauli matrices satisfy

σ1σ2 + σ2σ1 = 0, σ2
1 = 1 = σ2

2

Given σ1, σ2 we can get

σ3 = iσ1σ2

and verify that the algebra extends to three dimensions:

σiσj + σjσi = 2δij , i, j = 1, 2, 3

Then we find that the matrices provide a representation of the rotation

Lie algebra. Also,

b† =
σ1 + iσ2

2
, b =

σ1 − iσ2

2

satisfy the Canonical anti-commutation relations (are the creation and anni-

hilation operators for fermions).

All this generalizes to higher dimensions, and is central to our under-

standing of spin and fermions.

8.10.1. The Clifford algebra on R
2n is generated by matrices

satisfying the relations

ΓaΓb + ΓbΓa = δab, a, b = 1, 2, . . . , 2n

Let us first consider the case where a, b take the range of values 1, 2, 3, 4.

Once we understand this, we will see how to extend to any even dimension

2n. A simple trick will then allow us to pass to odd dimension 2n + 1 as

well.
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Let us start with the ansatz

Γ1 = σ1 ⊗ 1, Γ2 = σ2 ⊗ 1

If we choose also

Γ3 = σ3 ⊗ σ1, Γ4 = σ3 ⊗ σ2

we get what we want! The point is that σ3 anti-commutes with both σ1

and σ2 so that the last two matrices anti-commute with the first pair.

Now, if the dimension is six, we choose

Γ1 = σ1 ⊗ 1⊗ 1, Γ2 = σ2 ⊗ 1⊗ 1

Γ3 = σ3 ⊗ σ1 ⊗ 1, Γ4 = σ3 ⊗ σ2 ⊗ 1

and

Γ5 = σ3 ⊗ σ3 ⊗ σ1, Γ6 = σ3 ⊗ σ3 ⊗ σ2

Now, you get the idea for the general case.

Γ2k−1 = σ3 ⊗ (k − 1 times) · · · ⊗ σ3 ⊗ σ1 ⊗ 1(n− k times) · · · ⊗ 1,

Γ2k = σ3 ⊗ (k − 1 times) · · · ⊗ σ3 ⊗ σ2 ⊗ 1(n− k times) · · · ⊗ 1

for

k = 1, . . . , n

This is a representation of the Clifford algebra on an even dimensional

Euclidean space. The representation matrices act on a vector space of

dimension 2n. The space on which they act consists of spinors.

Note that the Clifford matrices are hermitian (direct products of her-

mitian matrices.)

8.10.2. The matrix product Γ1 · · ·Γ2n anti-commutes with

all the elements Γa

The point is each Γa commutes with itself but anti-commutes with the

others; so we get an odd number of negative signs as we pass Γa through

Γ1 · · ·Γ2n. Moreover

(Γ1 · · ·Γ2n)
†
= Γ2n · · ·Γ1 = (−1)2n−1+2n−2+···Γ1 · · ·Γ2n

= (−1)n(2n+1)Γ1 · · ·Γ2n =

{
−Γ1 · · ·Γ2n n odd

Γ1 · · ·Γ2n n even

So, if we define

Γ = inΓ1 · · ·Γ2n
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we will find that

Γ† = Γ, Γ2 = 1.

8.10.3. Bilinears of the Clifford matrices provide a unitary

representation of o(2n)

Σab =
1

2
[Γa,Γb]

They satisfy the commutation relations of o(2n)

[Σab,Σcd] = δbcΣad − δacΣbd − δbdΣac + δadΣbc

Exercise. Prove this by direct calculation.

Moreover, they are anti-hermitian matrices

Σ†
ab = −Σab

Also, the Clifford matrices transform as a collection of vectors:

[Σab,Γc] = δacΓb − δbcΓa

while Γ is a scalar:

[Σab,Γ] = 0.

Since Γ is not a multiple of the identity, the representation of o(2n) is

reducible. The two eigenspaces of Γ (with eigenvalues ±1) do provide irre-

ducible representations of o(2n). (Takes a bit more work to prove this.)

8.10.4. Using Γa we can construct a representation of the

Clifford algebra over odd dimensional Euclidean

spaces R
2n+1

We just have to define

Γ2n+1 = Γ

Then

Γ2
2n+1 = 1

and it anti-commutes with all the others:

ΓaΓb + ΓbΓa = 2δab, a, b = 1 · · · 2n+ 1
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8.10.5. Using the Clifford matrices we can construct the

Dirac Operator on spinors, which is a “square root”

of the Laplace operator

Suppose we have spinors that depend on position. Define

Dψ = Γa

∂ψ

∂xa

This is a rotation invariant3 operator: both ∂ψ
∂xa and Γa transform as

vectors. It is called the Dirac operator.

Then

D2ψ = Γa

∂

∂xa

(

Γb

∂ψ

∂xb

)

= ΓaΓb

∂2ψ

∂xa∂xb

since ∂2ψ
∂xa∂xb is symmetric in ab,

=
1

2
(ΓaΓb + ΓbΓa)

∂2ψ

∂xa∂xb

Thus the square of the Dirac operator is the Laplace operator:

D2ψ = δab
∂2ψ

∂xa∂xb

This will be important when we study relativistic wave equations. The

Dirac operator can be extended to Riemannian manifolds and provides

much subtle topological information not contained in the Laplace operator.

3Dirac originally discovered this operator while looking for a wave equation for the
electron. The group involved there is not an orthogonal group, but the Lorentz group
O(1, 3).
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Chapter 9

THE ISING MODEL

A phase transition is a spectacular phenomenon in thermodynamics. The most

familiar example is the boiling of water as it turns to steam. This is a first order

transition: There is a discontinuous change in the energy, called the latent heat:

The amount of energy needed to convert water to steam of the same temperature.

As we increase the pressure, the latent heat decreases. At a critical pressure and

temperature, the latent heat vanishes so that the energy is continuous. But the

derivative w.r.t. temperature (specific heat) is infinite at that point: This is called a

critical phase transition. (For water the the critical temperature is 374 𝐶 and the

critical pressure is 218 atmospheres; for nitrogen it is−147𝐶 and 34 atmospheres.)

You cannot liquefy a gas above the critical temperature no matter how much

pressure you apply.

Another important example of a critical phase transition occurs in a magnet.

At low temperatures a ferromagnet (indeed iron is an example) has most of its

magnetic moments point in the same direction. But above a critical temperature (the

Curie point) these magnets are randomly oriented. Remarkably, the singularities

at the critical point is the same for gases and magnets, even though the underlying

physical processes are very different. Understanding of this surprising phenomenon

of universality is one of the great achievements of twentieth century physics.

Onsager made the first step towards understanding critical phase transitions,

by solving a two dimensional model for a magnet exactly. This is possible because

of a surprising connection with spinors: The transfer matrix of the magnet on an

𝑀 × 𝑀 square lattice can be shown to be a spinor representative of a rotation

in 2𝑀dimensions. Using the representation theory of 𝑜(2𝑀) the partition func-

tion can be determined exactly. As 𝑀 → ∞ the free energy has a singularity,

corresponding to a critical phase transition.

167
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This showed for the first time that summing over molecular degrees of freedom

can lead to singularities in the free energy: Until then it was only a conjecture that

phase transitions could be explained this way.

9.1. The Hamiltonian

Our aim is to build the simplest model of a large number of molecules with magnetic

moments. The collective behavior of these magnets must lead to a low temperature

phase in which most moments point in the same direction (the ordered phase).

At high temperatures, there should be a disordered phase in which the magnetic

moments average to zero. A molecule has a magnetic moment that is proportional

to its angular momentum (spin). The proportionality constant (the gyromagnetic

ratio) depends on the structure of the molecule and is not important for us. In the

simplest model, the Ising model, this magnetic moment (or spin) can point in one

of two directions: We have a variable 𝑠 = ±1 at each molecule that describes this

orientation. There are more intricate models where the spin can lie on a circle (the

XY model ) or on a sphere (the Heisenberg model) but we look only at the simplest

case. The molecules are arranged on a cubic lattice (other lattices can be chosen

as well) of 𝐿 sites in each direction.

Two neighboringspins will interact with an energy−𝐽𝑠𝑠′. If the constant 𝐽 > 0,

the spins will have a tendency to align producing a ferromagnet at low temper-

atures1. This interaction is due to an intricate quantum mechanical phenomenon

involving tunneling, (the exchange interaction) and decays exponentially with dis-

tance (as chemical bonds do as well). So we can ignore the interaction except for

molecules that are very close together. That is why we only include interactions

among nearest neighbors.

Thus the magnetic energy of the Ising model is

𝐻 (𝜎) = −𝐽
∑
𝑥−𝑦

𝑠𝑥𝑠𝑦 − 𝐵̃
∑
𝑥

𝑠𝑥

where 𝑥 − 𝑦 denotes two positions on the lattice that are connected by a nearest

neighbor bond. The quantity 𝐵̃ is the externally imposed magnetic field (times the

gyromagnetic ratio of the molecule). The partition function of this system is

𝑍𝐿 (𝐽) =
∑
𝑠=±1

𝑒𝐽
∑

𝑥−𝑦 𝑠𝑥𝑠𝑦+𝐵
∑

𝑥 𝑠𝑥

1If 𝐽 < 0 the spins will try to be opposite: An anti-ferromagnet.
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where

𝐽 =
𝐽

𝑘𝐵𝑇
, 𝐵 =

𝐵̃

𝑘𝐵𝑇

and 𝑘𝐵 is Boltzmann’s constant and 𝑇 is temperature.

Recall that the thermodynamic free energy is the limit of a large number of

molecules

𝑊 (𝐽, 𝐵) = lim
𝐿→∞

− log 𝑍𝐿 (𝐽, 𝐵)
𝐿3

From this every other thermodynamic quantity (specific heat, magnetization)

etc. can be calculated by standard formulas in thermodynamics.

No one has been able to get an analytic formula for the free energy for the

cubic lattice. It is commonly accepted that this is impossible in terms of the usual

functions known to mathematical physicists.

Onsager solved the two dimensional Ising model; i.e., on a square lattice. He

was building on a technique developed by Ising for the one dimensional lattice,

called the transfer matrix method. Although the one dimensional model is too

simple (it does not have a phase transition) it is a good place to start.

9.2. Transfer Matrix of the 1D Ising Model

Imagine a long chain of 𝐿 spins arranged at regular intervals along a line. Each spin

interacts with its two nearest neighbors. We will eventually take the limit 𝐿 → ∞.

The hamiltonian can be written as

𝐻 = −𝐽
𝐿−1∑
𝑥=1

𝑠𝑥𝑠𝑥+1 − 𝐵̃
∑
𝑥

𝑠𝑥

A more symmetric way to write this is

𝐻 = −𝐽
𝐿−1∑
𝑥=1

𝑠𝑥𝑠𝑥+1 −
1

2
𝐵̃
∑
𝑥

(𝑠𝑥 + 𝑠𝑥+1)

It is convenient to split the term involving a single spin as an average of nearest

neighbors.2 The partition function is then

𝑍𝐿 (𝐽, 𝐵) =
∑
𝑠=±1

𝑒𝐽𝑠1𝑠2+ 1
2
𝐵 (𝑠1+𝑠2)𝑒𝐽𝑠2𝑠3+ 1

2
𝐵 (𝑠2+𝑠3)𝑒𝐽𝑠3𝑠4+ 1

2
𝐵 (𝑠3+𝑠4)

· · · 𝑒𝐽𝑠𝐿−1𝑠𝐿+ 1
2
𝐵 (𝑠𝐿−1+𝑠𝐿 )

2The boundary spins are counted with half the strength; we will see that they don’t matter much

anyway in the limit 𝐿 → ∞
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Define the 2 × 2 matrix labeled by 𝑠, 𝑠′ = ±1

𝑇𝑠𝑠′ = 𝑒
𝐽𝑠𝑠′+ 1

2
𝐵 (𝑠+𝑠′)

That is,

𝑇 =

(
𝑒𝐽+𝐵 𝑒−𝐽

𝑒−𝐽 𝑒𝐽−𝐵

)
≡
(

1
𝑢𝑣

𝑢

𝑢 𝑣
𝑢

)

with

𝑢 = 𝑒−𝐽 , 𝑣 = 𝑒−𝐵 .

This is called the transfer matrix: It transfers us by one step along the lattice.

Then

𝑍𝐿 (𝐽) =
∑

𝑠1 ,𝑠2 · · ·=±1

𝑇𝑠1𝑠2
𝑇𝑠2𝑠3

𝑇𝑠3𝑠4
· · ·𝑇𝑠𝐿−1𝑠𝐿

The simplifying feature of the one dimensional model is that the 𝑠2 only appears

in the first two factors, 𝑠3 only in the second and third and so on. The sum over

𝑠2, 𝑠3 · · · 𝑠𝐿−1 can be thought of as matrix multiplication.

𝑍𝐿 (𝐽, 𝐵) =
∑
𝑠1 ,𝑠𝐿

𝑇𝐿−1
𝑠1𝑠𝐿

The power of a symmetric matrix𝑇𝐿−1 can be calculated conveniently in terms

of its eigenvalues (which are real) and eigenvectors (which can be chosen to be

orthonormal).

𝑇𝜓1 = 𝜆1𝜓1, 𝑇𝜓2 = 𝜆2𝜓2

𝜓𝑇
1
𝜓1 = 1 = 𝜓𝑇

2
𝜓2, 𝜓𝑇

1
𝜓2 = 0.

𝑇𝐿
= 𝜆𝐿

1
𝜓1𝜓

𝑇
1
+ 𝜆𝐿

2
𝜓2𝜓

𝑇
2
.

Suppose |𝜆1 | > |𝜆2|.

𝑇𝐿
= 𝜆𝐿1

[
𝜓1𝜓

𝑇
1 +

(
𝜆2

𝜆1

)𝐿
𝜓2𝜓

𝑇
2

]
→ 𝜆𝐿1 𝜓1𝜓

𝑇
1

as 𝐿 → ∞. Thus the free energy is simply the log of the largest eigenvalue of the

transfer matrix:

𝑊 = − lim
𝐿→∞

[
log𝜆1 +

1

𝐿
log𝜓1𝜓

𝑇
1

]
= − log𝜆1
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A little algebra gives

𝜆1 =
1 + 𝑢2 +

√
4𝑢4𝑣2 + 𝑢4 − 2𝑢2 + 1

2𝑢𝑣

The only singularities (poles or branch cuts) in the physical region 𝑢, 𝑣 ≥ 0

are at 𝑢 = 0, 1 or 𝑣 = 0, 1; these correspond to zero or infinite temperature. The

one dimensional Ising model does not have a phase transition at any intermediate

values. Still it is a starting point for more intricate models.

9.2.1. A Trick with Pauli Matrices

It will be useful to write 𝑇 (with 𝐵 = 0) in terms of the Pauli matrices:

𝑇 =

(
𝑒𝐽 𝑒−𝐽

𝑒−𝐽 𝑒𝐽

)
= 𝑒𝐽12 + 𝑒−𝐽𝜎1

Since

𝑒𝐽
′𝜎1 = cosh 𝐽 ′ + 𝜎1 sinh 𝐽 ′

we can write

𝑇 = 𝑎𝑒𝐽
′𝜎1

where

𝑎 cosh 𝐽 ′ = 𝑒𝐽 , 𝑎 sinh 𝐽 ′ = 𝑒−𝐽

Solving,

tanh 𝐽 ′ = 𝑒−2𝐽 , 𝑎2
= 𝑒2𝐽 − 𝑒−2𝐽

= 2 sinh 2𝐽

This trick with Pauli matrices has a useful generalization for more complicated

models.

9.3. Ising Model on an 𝑳 × 2 Ladder

The next setup is to consider the Ising model on a ladder of two rows of spins,

coupling nearest neighbors along the row and columns (again we ignore the external

magnetic field):

𝐻 = −𝐽
𝐿−1∑
𝑥=1

[
𝑠𝑥,1𝑠𝑥+1,1 + 𝑠𝑥,2𝑠𝑥+1,2

]
− 𝐽

𝐿−1∑
𝑥=1

𝑠𝑥,1𝑠𝑥,2
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The same idea as before can work except we must think of the transfer matrix

as a 4 × 4 matrix.

𝑍𝐿 (𝐽) =
∑
𝑠=±1

𝑒𝐽𝑠11𝑠21+𝐽𝑠12𝑠22+𝐽𝑠11𝑠12𝑒𝐽𝑠21𝑠31+𝐽𝑠22𝑠32+𝐽𝑠21𝑠22

· · · 𝑒𝐽𝑠𝐿−1,1𝑠𝐿1+𝐽𝑠𝐿−1,2𝑠𝐿2+𝐽𝑠𝐿−1,1𝑠𝐿−1,2

Note that 𝑠21 and 𝑠22 only appear in the first two factors, 𝑠31 and 𝑠32only in

the second and third factor and so on. So we can again think of this as a matrix

product, but we need matrices to be labelled by pairs of spins, each taking values

±1 independently.: A 4 × 4 transfer matrix.

Define a “spin vector”

𝒔 = (𝑠1, 𝑠2)

with each component taking values ±1 independently. Define the 4 × 4 matrix

𝑻𝒔𝒔
′ = 𝑒𝐽 𝒔 ·𝒔

′
𝑒𝐽𝑠1𝑠2

This transfer matrix is a product of two matrices, a diagonal matrix

𝑄𝒔𝒔
′ = 𝛿𝒔𝒔′𝑒

𝐽 ′𝑠1𝑠2

and a non-diagonal matrix

𝑃𝒔𝒔
′ = 𝑒𝐽 𝒔 ·𝒔

′

The precise way we treat the boundary spins 𝑠1 and 𝑠𝐿 will not matter for

most values of temperature. Periodic bpundary conditions are mathematically

convenient; i.e., impose 𝑠1 = 𝑠𝐿 and sum over 𝑠1. In that case

𝑍𝑁 = tr𝑻𝐿−1.

9.4. The Ising Model on an 𝑳 × 𝑴 lattice

If we have 𝑀 rows, the same idea works except that

𝒔 = (𝑠1, 𝑠2, . . . 𝑠𝑀 )
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is a vector with 𝑀 components and each one takes ±1 values. The transfer matrix

is a 2𝑀 × 2𝑀 matrix which is again the product of a diagonal matrix

𝑄𝒔𝒔
′ = 𝛿𝒔𝒔′𝑒

𝐽 ′∑𝑀
𝑘=1 𝑠𝑘 𝑠𝑘+1

and a non-diagonal matrix

𝑃𝒔𝒔
′ = 𝑒𝐽 𝒔 ·𝒔

′

The problem is to find the eigenvalues of

𝑻 = 𝑃𝑄.

As 𝐿 → ∞, the largest eigenvalue dominates.3 The difficulty is that the size of

the matrix grows exponentially with 𝑀 .

9.4.1. Clifford Algebra to the rescue

Now we recall that the Clifford matrices in R2𝑀 are also 2𝑀 × 2𝑀 dimensional.

Kaufmann found a surprising use for them in the Ising model. (Onsager had solved

the problem earlier by a somewhat opaque method. Kaufmann, an associate of

Onsager, clarified the solution greatly. Mere mortals could understand Onsager’s

idea after that.) Kerson Huang’s wonderful book [20] on Statistical Mechanics has

a much deeper discussion than ours.

9.4.1.1. Transfer matrix in terms of Pauli matrices

Recall that the transfer matrix of the one dimensional Ising model can be written

in terms of Pauli matrices:

𝑇 = 𝑎𝑒𝐽
′𝜎1

tanh 𝐽 ′ = 𝑒−2𝐽 , 𝑎 =
√

2 sinh 2𝐽

The matrix 𝑃 is the direct product of 𝑀 copies of this 𝑇 .

𝑃𝒔𝒔
′ = 𝑇𝑠1𝑠

′
1
𝑇𝑠2𝑠

′
2
· · ·𝑇𝑠𝑀 𝑠′

𝑀

𝑃 = 𝑎𝑀 𝑒𝐽
′𝜎1 ⊗ 𝑒𝐽

′𝜎1 · · · ⊗ 𝑒𝐽
′𝜎1

3A more symmetrical choice of transfer matrix would be 𝑄
1
2 𝑃𝑄

1
2 . But it is a bit simpler to work

with this 𝑃𝑄 in this case.
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In other words

𝑃 = 𝑎𝑀 𝑒𝐽
′∑

𝑘=1 𝜎1
𝑘

where

𝜎1
𝑘 = 1 ⊗ 1 ⊗ · · · ⊗ 𝜎1 ⊗ · · · ⊗ 1

with 1 everywhere except at the 𝑘th site.

More obviously, the diagonal factor can be written in terms of 𝜎3:

𝑄 = 𝑒𝐽
′∑𝑀

𝑘=1 𝜎3
𝑘
𝜎3

𝑘+1

9.4.1.2. Clifford Bilinears in terms of Pauli matrices

We can choose a representation of the Clifford matrices4:

Γ1 = 𝜎3 ⊗ 1 ⊗ 1 · · · , Γ2 = 𝜎2 ⊗ 1 ⊗ 1 · · ·

Γ3 = 𝜎1 ⊗ 𝜎3 ⊗ 1 · · · , Γ4 = 𝜎1 ⊗ 𝜎2 ⊗ 1 · · ·

Γ5 = 𝜎1 ⊗ 𝜎1 ⊗ 𝜎3 · · · , Γ6 = 𝜎1 ⊗ 𝜎1 ⊗ 𝜎2 · · ·

You can check that it still satisfies the Clifford Algebra; this representation is

a bit more convenient for our current purpose.

Then

Γ1Γ2 = −𝑖𝜎1 ⊗ · · ·

Γ3Γ4 = −𝑖1 ⊗ 𝜎1 ⊗ · · ·

Γ5Γ6 = −𝑖1 ⊗ 1 ⊗ 𝜎1 ⊗ · · ·

etc.

Thus

𝜎1
𝑘 = 𝑖Γ2𝑘−1Γ2𝑘

𝑃 = 𝑎𝑀 𝑒𝑖𝐽
′∑𝑀

𝑘=1 Γ2𝑘−1Γ2𝑘

Moreover

Γ2Γ3 = −𝑖𝜎3 ⊗ 𝜎3 ⊗ · · ·

Γ4Γ5 = −𝑖1 ⊗ 𝜎3 ⊗ 𝜎3 ⊗ · · ·

4Compared to section (8.10.1) we are interchanging 𝜎1 and 𝜎3
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so that

𝑄 = 𝑒𝑖𝐽
∑𝑀−1

𝑘=1 Γ2𝑘Γ2𝑘+1

Thus

𝑻 = 𝑃𝑄 = 𝑎𝑀 𝑒𝑖𝐽
′∑𝑀

𝑘=1 Γ2𝑘−1Γ2𝑘 𝑒𝑖𝐽
∑𝑀−1

𝑘=1 Γ2𝑘Γ2𝑘+1

Since Clifford bilinears represent infinitesimal rotations, and 𝑻 is a product

of their exponentials, it can be thought of as a spinor representation of a rotation

matrix 𝑂 (2𝑀). Strictly speaking, it is a rotation by an imaginary angle (if 𝐽 is

real) but that won’t affect our algebraic considerations: We can always analytically

continue the formulas.

9.4.1.3. Self-duality

Before we solve the problem completely, we can already notice a surprising sym-

metry. It is obvious that interchanging the matrices Γ2𝑘−1Γ2𝑘 ⇄ Γ2𝑘Γ2𝑘+1 is a

symmetry: It amounts to a relabeling of indices. If we combined with 𝐽 ↔ 𝐽 ′ this

will change 𝑃𝑄 to 𝑄𝑃. Now, the partition function

𝑍𝐿 = tr𝑃𝑄𝑃𝑄 · · · 𝑃𝑄

will go over to

tr𝑄𝑃𝑄𝑃 · · ·𝑄𝑃

which (by cyclic symmetry of the trace) is the same as 𝑍𝐿 .

So, the partition function of the Ising model has a symmetry

𝑎−𝑀𝑍𝑀 (𝐽) = 𝑎′−𝑀𝑍𝑀 (𝐽 ′)

This is a symmetry that relates high temperature to low temperature (𝐽 →
0 =⇒ 𝐽 ′ → ∞). This “duality” was discovered by Elliott Montroll (by a different

method) and was one of the first indications that the Ising model can be solved. In

particular, it gives the exact location of the phase transition to be at the self-dual

point: 𝐽 = 𝐽 ′ =⇒ 𝐽 =
1
2

log(1 +
√

2) ≈ 0.440687.

9.4.1.4. From spinor to vector representation

Recall that Σ𝑎𝑏 =
1
4
[Γ𝑎,Γ𝑏] provide a representation of 𝑜(2𝑀) Lie algebra. The

defining representation is by matrices generating rotations in R2𝑀 . Explicitly they
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are matrices of the form

[𝜌𝑎𝑏]𝑐𝑑 = 𝛿𝑎𝑐𝛿𝑏𝑑 − 𝛿𝑎𝑑𝛿𝑏𝑐

That is the 𝑐𝑑 component of the matrix 𝜌𝑎𝑏 is 1 if 𝑎𝑏 = 𝑐𝑑, equal to −1 of

𝑎𝑏 = 𝑑𝑐 and zero otherwise. For example,

𝜌12 =

�







�

0 1 0 · 0

−1 0 0 . 0

0 0 0 . 0

. . . . .

0 0 0 . 0

���������
The transfer matrix of the Ising model is a 2𝑀 × 2𝑀 matrix:

𝑻 = 𝑎𝑀𝑅, 𝑅 = 𝑒2𝑖𝐽 ′ ∑𝑀
𝑘=1 Σ2𝑘−1,2𝑘𝑒2𝑖𝐽Σ2𝑘,2𝑘+1

It is the spin representative of the matrix

𝑟 = 𝑒2𝑖𝐽 ′∑𝑀
𝑘=1 𝜌2𝑘−1,2𝑘 𝑒2𝑖𝐽𝜌2𝑘,2𝑘+1

This is a 2𝑀×2𝑀matrix: much smaller when 𝑀is large. There is an orthogonal

matrix 𝑣 which can reduce 𝑟 to a canonical form

𝑟 = 𝑣𝑒
∑𝑀

𝑘=1 𝜃𝑘𝜌2𝑘−1,2𝑘 𝑣−1

This means 𝑅 has the canonical form by the spin representative of 𝑉 :

𝑅 = 𝑉𝑒
∑𝑀

𝑘=1 𝜃𝑘Σ2𝑘−1,2𝑘𝑉−1

Without knowing 𝑉 explicitly, we can read off the eigenvalues of 𝑅. The

matrices Σ2𝑘−1,2𝑘 commute with each other and have eigenvalues ± 1
2
. So, the

eigenvalues of 𝑅 are 𝑒±𝜖𝑘
𝜃𝑘
2 where 𝜖𝑘 = ±1.

The partition function is given by the trace:

tr𝑅 =

∑
𝜖𝑘=±1

𝑒±𝜖𝑘
𝜃𝑘
2 =

𝑀∏
𝑘=1

[
2 cosh

𝜃𝑘

2

]

Thus the problem of finding the partition function can be solved if we can find

the “characteristic values” 𝜃𝑘 of 𝑟 .
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9.4.1.5. Diagonalizing Cyclic matrices

To determine the characteristic values 𝜃𝑘 of 𝑟, the trick is note that each factor has

a simple form

𝑒2𝑖𝐽 ′ ∑𝑀
𝑘=1 𝜌2𝑘−1,2𝑘 =

�













�

cosh 2𝐽 ′ sinh 2𝐽 ′ 0 0 · · ·
sinh 2𝐽 ′ cosh 2𝐽 ′ 0 0 · · ·

0 0 cosh 2𝐽 ′ sinh 2𝐽 ′ · · ·
0 0 sinh 2𝐽 ′ cosh 2𝐽 ′ · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·

��������������
�

𝑒2𝑖𝐽
∑𝑀

𝑘=1 𝜌2𝑘,2𝑘+1 =

�













�

1 0 0 0 · · ·
0 cosh 2𝐽 sinh 2𝐽 0 · · ·
0 sinh 2𝐽 cosh 2𝐽 ′ 0 0 · ·
0 0 0 cosh 2𝐽 sinh 2𝐽 · ·
0 0 0 sinh 2𝐽 cosh 2𝐽 · ·
0 0 0 0 0 · ·
0 0 0 0 0 · ·

��������������
�

Another way to write this is[
𝑒2𝑖𝐽 ′ ∑𝑀

𝑘=1 𝜌2𝑘−1,2𝑘

]
𝑎𝑏

= 𝑐1𝛿𝑎𝑏 + 𝑠1

∑
𝑘

[
𝛿𝑎,2𝑘−1𝛿𝑏,2𝑘 + 𝛿𝑎,2𝑘𝛿𝑏,2𝑘−1

]
[
𝑒2𝑖𝐽

∑𝑀
𝑘=1 𝜌2𝑘−1,2𝑘

]
𝑐𝑑

= 𝑐2𝛿𝑐𝑑 + 𝑠2

∑
𝑙

[
𝛿𝑐,2𝑙𝛿𝑑,2𝑙+1 + 𝛿𝑐,2𝑙+1𝛿𝑏,2𝑙

]

The product is some matrix of the form (setting 𝑐1 = cosh 𝐽 ′, 𝑠1 = sinh 𝐽 ′, 𝑐2 =

cosh 𝐽, 𝑠2 = sinh 𝐽 )[
𝑒2𝑖𝐽 ′ ∑𝑀

𝑘=1 𝜌2𝑘−1,2𝑘 𝑒2𝑖𝐽
∑𝑀

𝑘=1 𝜌2𝑘−1,2𝑘

]
𝑎𝑑

= 𝑐1𝑐2𝛿𝑎𝑑

+ 𝑠1𝑐2

∑
𝑘

[
𝛿𝑎,2𝑘−1𝛿𝑑,2𝑘 + 𝛿𝑎,2𝑘𝛿𝑑,2𝑘−1

]

+ 𝑠2𝑐1

∑
𝑙

[
𝛿𝑎,2𝑙𝛿𝑑,2𝑙+1 + 𝛿𝑎,2𝑙+1𝛿𝑏,2𝑙

]

+ 𝑠1𝑠2

∑
𝑘𝑙

[
𝛿𝑎,2𝑘−1𝛿2𝑙,2𝑘𝛿𝑑,2𝑙+1 + 𝛿𝑎,2𝑘𝛿2𝑘−1,2𝑙+1𝛿𝑏,2𝑙

]
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The last term simplifies to

𝑠1𝑠2

∑
𝑘𝑙

[
𝛿𝑎,2𝑘−1𝛿𝑑,2𝑘+1 + 𝛿𝑎,2𝑘𝛿𝑏,2𝑘−2

]
This matrix has the form (displayed below for with 𝑀 = 7, but the pattern is

valid generally)

�

































�

𝑐1𝑐2 𝑐1𝑠2 𝑠1𝑠2 0 0 0 0 0 0 0 0 0 0 𝑐2𝑠1

𝑐1𝑠2 𝑐1𝑐2 𝑐2𝑠1 0 0 0 0 0 0 0 0 0 0 𝑠1𝑠2

0 𝑐2𝑠1 𝑐1𝑐2 𝑐1𝑠2 𝑠1𝑠2 0 0 0 0 0 0 0 0 0

0 𝑠1𝑠2 𝑐1𝑠2 𝑐1𝑐2 𝑐2𝑠1 0 0 0 0 0 0 0 0 0

0 0 0 𝑐2𝑠1 𝑐1𝑐2 𝑐1𝑠2 𝑠1𝑠2 0 0 0 0 0 0 0

0 0 0 𝑠1𝑠2 𝑐1𝑠2 𝑐1𝑐2 𝑐2𝑠1 0 0 0 0 0 0 0

0 0 0 0 0 𝑐2𝑠1 𝑐1𝑐2 𝑐1𝑠2 𝑠1𝑠2 0 0 0 0 0

0 0 0 0 0 𝑠1𝑠2 𝑐1𝑠2 𝑐1𝑐2 𝑐2𝑠1 0 0 0 0 0

0 0 0 0 0 0 0 𝑐2𝑠1 𝑐1𝑐2 𝑐1𝑠2 𝑠1𝑠2 0 0 0

0 0 0 0 0 0 0 𝑠1𝑠2 𝑐1𝑠2 𝑐1𝑐2 𝑐2𝑠1 0 0 0

0 0 0 0 0 0 0 0 0 𝑐2𝑠1 𝑐1𝑐2 𝑐1𝑠2 𝑠1𝑠2 0

0 0 0 0 0 0 0 0 0 𝑠1𝑠2 𝑐1𝑠2 𝑐1𝑐2 𝑐2𝑠1 0

𝑠1𝑠2 0 0 0 0 0 0 0 0 0 0 𝑐2𝑠1 𝑐1𝑐2 𝑐1𝑠2

𝑐2𝑠1 0 0 0 0 0 0 0 0 0 0 𝑠1𝑠2 𝑐1𝑠2 𝑐1𝑐2

�����������������������������������
Each row is repeated two steps below, shifted by two permutations. With

periodic boundary conditions this will become a symmetry under the cyclic group

Z𝑀 . So it is a good guess that it has eigenvectors of the form

𝜓 =

�











�

𝑢

𝑧𝑢

𝑧2𝑢

𝑧3𝑢

·
·
·

�������������
�

, 𝑧𝑀 = 1

where 𝑢 =

(
𝑢1

𝑢2

)
is a two dimensional vector. This ansatz reduces the problem of

diagonalizing 𝑟 to an eigenvalue equation for a 2 × 2 matrix[20].(
𝑐1𝑐2 + 𝑠1𝑠2𝑧 𝑐2𝑠1𝑧

−1 + 𝑐1𝑠2

𝑐2𝑠1𝑧 + 𝑐1𝑠2 𝑐1𝑐2 + 𝑠1𝑠2𝑧
−1

)
𝑢 = 𝜆𝑢
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Extracting the thermodynamic information (e.g., the phase transition) from

this is a rewarding exercise in statistical mechanics, but it does not involve any

more group theory. Read more in [20].

In three dimensions, the Ising model has not been solved exactly; may be it

is not possible. But the ideas introduced by Wilson (based on renormalization)

have given us a deep understanding of the physics. Further ideas using conformal

symmetry (“conformal bootstrap” of Rychkov) also have been effective. These are

beyond the scope of this book.
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Chapter 10

WAVE EQUATIONS

10.1. Lorentz Invariance

We saw that rotations are described by 3 × 3 matrices satisfying

𝑅𝑇 𝑅 = 1, det 𝑅 = 1.

In relativity, space and time (similarly, energy and momentum) are combined

into a single vector with four components. Our convention will be that time (or

energy) is the zeroth component.

Its length2 is given by the Minkowski rule:

𝑝 ≡
�����
�

𝑝0

𝑝1

𝑝2

𝑝3

�����
�

𝑝.𝑝 = 𝐸2 − 𝑐2p2

It will be useful to think of this as

𝑝.𝑝 = 𝑝𝑇 𝜂𝑝, 𝜂 =

�������

1 0 0 0

0 −𝑐2 0 0

0 0 −𝑐2 0

0 0 0 −𝑐2

������
�

where the matrix 𝜂 is called the “Minkowski metric”. It will be convenient to

use units with 𝑐 = 1 in discussing relativistic physics. You can always convert

181
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to ordinary units by dimensional analysis. We will use these units (mostly) from

now on.

Thus mass is simply the length of the energy-momentum vector (up to a factor

𝑐2). More generally the scalar product of a vector with itself may be positive

(energy-momentum for massless particles), zero (massless particles) or negative.

A vector with 𝑝 · 𝑝 < 0 cannot be the energy-momentum of any particle: It would

have imaginary mass. But such “space-like” vectors can represent other interesting

things; like the separation between two points in space-time.

There are transformations analogous to rotations that preserve the length2 of a

vector. Obviously, any rotation is of this type. But there are also transformations

that mix space and time. For example,

Λ =

�����
�

cosh 𝜃 sinh 𝜃 0 0

sinh 𝜃 cosh 𝜃 0 0

0 0 1 0

0 0 0 1

�����
�

This is an example of a Lorentz transformation. The variable 𝜃 (called rapidity)

is analogous to an angle of rotation. Unlike an angle, it can vary from −∞ to ∞.

Exercise 33. Verify that (cosh 𝜃𝑝0 + sinh 𝜃𝑝1)2 − (sinh 𝜃𝑝0 + cosh 𝜃𝑝1)2
= 𝑝2

0
−

𝑝2
1

for any 𝜃.

The condition that a linear transformation 𝑝 ↦→ Λ𝑝 preserve the Minkowski

dot product is

(Λ)𝑇 𝜂(Λ𝑝) = 𝑝𝑇 𝜂𝑝 ⇐⇒ Λ
𝑇 𝜂Λ = 𝜂

Exercise 34. Show that detΛ = ±1.

Such transformations can be divided into four types, depending on the sign of

Λ00 and of detΛ. If Λ00 < 0 the Lorentz transformation also involves a reversal

of time (called 𝑇). If detΛ = −1 it involves a reflection of space and time (called

𝑃𝑇). It turns out there are subtle effects in particle physics (weak interactions) that

are not invariant under 𝑇 or 𝑃𝑇 . The subset of Lorentz transformations (“proper

Lorentz transformations”) that have Λ00 > 0, detΛ = 1 are true symmetries of

nature.

It should not be surprising that the scalar wave equation and the Klein-Gordon

equation (see below) are invariant under all Lorentz transformations; proper or
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not. Later we will see wave equations for spinors that are only invariant under the

proper Lorentz transformations. They describe neutrinos, for example.

10.1.1. Index Notation

It will be convenient to denote a 4-vector as 𝑝𝜇 with the subscript ranging over

0, 1, 2, 3. The Minkowski inner product can be written as

𝑝2
0 − 𝑝2

1 − 𝑝2
2 − 𝑝2

3 =

∑
𝜇𝜈

𝑝𝜇𝑝𝜈𝜂
𝜇𝜈

where 𝜂00 = 1, 𝜂11 = 𝜂22 = 𝜂33 = −1, all other components being zero. We can

abbreviate it further as

𝑝2
0 − 𝑝2

1 − 𝑝2
2 − 𝑝2

3 = 𝑝𝜇𝑝𝜈𝜂
𝜇𝜈

by dropping the summation symbol: Any index that is repeated will be summed

over.

𝑝0𝑞0 − 𝑝1𝑞1 − 𝑝2𝑞2 − 𝑝3𝑞3 = 𝑝𝜇𝑞𝜈𝜂
𝜇𝜈

Part of the deal is that an index can appear no more than twice. For example

(𝑝0𝑞0 − 𝑝1𝑞1 − 𝑝2𝑞2 − 𝑝3𝑞3)2
= 𝑝𝜇𝑞𝜈𝜂

𝜇𝜈 𝑝𝜌𝑞𝜎𝜂
𝜌𝜎

and not 𝑝𝜇𝑞𝜈𝜂
𝜇𝜈 𝑝𝜇𝑞𝜈𝜂

𝜇𝜈.

10.2. Lorentz Group and Its Lie Algebra

10.2.1. The Lorentz Group consists of matrices that satisfy the condition

𝚲𝜼𝚲𝑻
= 𝜼

Here 𝜂 =
��
�

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

���
is the Minkowski metric.

10.2.2. The determinant of such a matrix is ±1

The set of matrices of determinant 1 forms subgroup 𝑆𝑂 (1, 3). Under continuous

deformations, the sign of the determinant cannot change. There is a further sign

that cannot change under such deformations:
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10.2.3. The set of matrices of determinant one and 𝚲00 > 0 is a subgroup

𝑺𝑶+(1, 3)

The 𝑆𝑂+(1, 3) is the subgroup that does not invert either time or space. Thus, the

Lorentz group breaks up into four connected subsets, according to the signs of Λ00

and detΛ. Of these, 𝑆𝑂+(1, 3) is a connected subgroup.

10.2.4. Surprisingly, only 𝑺𝑶+(1, 3) is an exact symmetry of nature

Space reversal (parity) is broken by weak interactions. The combination of space

and time reversal 𝑆𝑂 (1, 3) is broken by a subtle phase in the quark mass matrix

(Kobayashi-Maskawa). So, only the connected components of the Lorentz Lie

group (the part determined by its Lie algebra) is an exact symmetry.

10.2.5. Infinitesimal Lorentz transformations satisfy 𝑴𝜼 + 𝜼𝑴𝑻
= 0

Here Λ = 1 + 𝜖𝑀 where 𝜖 is an infinitesimally small quantity. Equivalently, 𝜂𝑀 is

anti-symmetric. There are
(

4
2

)
= 6 independent solutions for this condition. They

form a six dimensional Lie algebra under commutation. It includes the Lie algebra

of rotations as a sub-algebra. The remaining generators mix time and space (e.g.,

“boosts”).

10.3. The Variational Principle for the Wave Equation

Let us start with the simplest case

10.3.1. The 1+ 1 Dimensional wave equation �𝝓− 𝝓′′
= 0 is the condition

for 𝑺[𝝓] = 1
2

∫
[

�𝝓2 − 𝝓′2
]

𝒅𝒕𝒅𝒙 to be an extremum

Consider the class of functions satisfying the initial and final conditions

𝜙(𝑡1, 𝑥) = 𝑞1(𝑥), 𝜙(𝑡2, 𝑥) = 𝑞2 (𝑥)

It is convenient also to put a cut-off on space (“box” boundary conditions)

𝜙(𝑡1,−𝐿) = 0 = 𝜙(𝑡1, 𝐿)

Usually we are interested in the case of unbounded space. The mathematically

correct thing to do is to first consider the finite box, then take the limit. We won’t

bother to do that usually. But let us do it in this simple context to see how it is

done.
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We will consider variations that preserve these conditions. That is

𝜙𝜖 (𝑡, 𝑥) = 𝜙(𝑡, 𝑥) + 𝜖𝜉 (𝑡, 𝑥)

with

𝜉 (𝑡1, 𝑥) = 0 = 𝜉 (𝑡2, 𝑥)

We must also require the variations at the spatial boundary:

𝜉 (𝑡1,−𝐿) = 0 = 𝜉 (𝑡1, 𝐿)

Then

𝑆 [𝜙𝜖 ] = 𝑆 [𝜙] + 𝜖

∫ 𝑡2

𝑡1

𝑑𝑡

∫ 𝐿

−𝐿

[ �𝜙 �𝜉 − 𝜙′𝜉 ′
]
𝑑𝑥 + 1

2
𝜖2

∫ [ �𝜉2 − 𝜉 ′2
]
𝑑𝑡𝑑𝑥

By integration by parts (the boundary term vanishes because of the b.c. above)

in space ∫ 𝐿

−𝐿
𝜙′𝜉 ′𝑑𝑥 = [𝜙′𝜉]𝑥=𝐿𝑥=−𝐿 −

∫ ∞

−∞
𝜙′′𝜉𝑑𝑥

and in time (we use the condition on 𝜉 at initial and final times)∫ 𝑡2

𝑡1

𝑑𝑡 �𝜙 �𝜉 =
[ �𝜙𝜉] 𝑡=𝑡2

𝑡=𝑡1
−
∫ 𝑡2

𝑡1

𝑑𝑡 
𝜙𝜉

Thus the first order variation can be written as

𝛿𝑆 = 𝜖

∫ 𝑡2

𝑡1

𝑑𝑡

∫ 𝐿

−𝐿

[ �𝜙 �𝜉 − 𝜙′𝜉 ′
]
𝑑𝑥 = −𝜖

∫ 𝑡2

𝑡1

𝑑𝑡

∫ 𝐿

−𝐿

[ 
𝜙 − 𝜙′′] 𝜉𝑑𝑥
At an extremum this must vanish for all 𝜉. That is possible precisely when the

wave equation is satisfied:


𝜙 − 𝜙′′
= 0.

You might wonder why we kept the second order term in 𝑆 as we don’t need it to

prove the wave equation. But it helps us to understand the nature of the extremum.

10.3.2. We can cast the action in a Lorentz invariant form

𝑆 [𝜙] = 1

2

∫
𝜂𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙𝑑𝑡𝑑𝑥

Its variation is

𝑆 [𝜙𝜖 ] = 𝑆 [𝜙] + 𝜖

∫ 𝑡2

𝑡1

𝑑𝑡

∫ 𝐿

−𝐿
𝜂𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜉𝑑𝑥 +

1

2
𝜖2

∫
𝜂𝜇𝜈𝜕𝜇𝜉𝜕𝜈𝜉𝑑𝑡𝑑𝑥
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The integration by parts we did is based on the identity

𝜂𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜉 = 𝜕𝜈
[
𝜂𝜇𝜈𝜕𝜇𝜙𝜉

]
−
[
𝜂𝜇𝜈𝜕𝜇𝜕𝜈𝜙

]
𝜉

and the following theorem

10.3.3. Gauss’ theorem: The integral of a divergence over a region 𝛀 can

be written as a surface integral on its boundary 𝝏𝛀

∫
Ω

𝜕𝜇 𝑗
𝜇𝑑𝑥 =

∫
𝜕Ω

𝑗 𝜇𝑑𝜎𝜇

You have seen proofs of this in two and three dimensions. It holds in all

dimensions. Here 𝑑𝜎𝜇is the area element on the boundary. It should be thought of

as a vector pointing along the outward normal to the boundary.

In the above example, 𝜕Ω consists of four pieces:

𝑡 = 𝑡1, 𝑡 = 𝑡2, 𝑥 = ±𝐿

which works out to

−
∫ 𝐿

−𝐿
𝑗0 (𝑡1, 𝑥)𝑑𝑥 +

∫ 𝐿

−𝐿
𝑗0 (𝑡2, 𝑥)𝑑𝑥 −

∫ 𝑡1

𝑡1

𝑗1 (𝑡,−𝐿)𝑑𝑡 +
∫ 𝑡2

𝑡1

𝑗1 (𝑡, 𝐿)𝑑𝑥

The signs arise because the outward normal points backward in time (the first

term) and to the left (in the third term).

In that case each of these pieces 𝑗 𝜇 was zero. But later we will need the general

case of Gauss’ theorem.

10.3.4. Another important application of Gauss’ theorem is to conserva-

tion laws

If 𝜕𝜇 𝑗
𝜇
= 0, the surface integral of 𝑗 on the boundary of any domain is zero.

Applied to the above region it says that∫ 𝐿

−𝐿
𝑗0 (𝑡1, 𝑥)𝑑𝑥 =

∫ 𝐿

−𝐿
𝑗0 (𝑡2, 𝑥)𝑑𝑥 −

∫ 𝑡1

𝑡1

𝑗1 (𝑡,−𝐿)𝑑𝑡 +
∫ 𝑡2

𝑡1

𝑗1 (𝑡, 𝐿)𝑑𝑥

If we assume that the flux 𝑗1 tends to zero as 𝐿 → ∞ we get∫ ∞

−∞
𝑗0 (𝑡1, 𝑥)𝑑𝑥 =

∫ ∞

−∞
𝑗0 (𝑡2, 𝑥)𝑑𝑥

Think of 𝑗0 as a charge density. The total initial charge is equal to the final

charge. Thus, 𝜕𝜇 𝑗
𝜇
= 0 is the differential version of a conservation law.
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10.3.5. Now we see that the wave equation in any dimension follows from

the variational principle 𝑺[𝝓] = 1
2

∫

𝜼𝝁𝝂𝝏𝝁𝝓𝝏𝝂𝝓𝒅𝒙

Here 𝑑𝑥 = 𝑑𝑥0𝑑𝑥1, . . . . The Lorentz invariant version of the argument carries over

with no change to higher dimensions. Read it again with 𝜇, 𝜈 = 0, 1, 2, 3. You may

strain our geometric imagination a bit but the equations are the same.

10.4. The Klein-Gordon Equation

10.4.1. The set of four-momenta of a particle with mass 𝒎 satisfy

𝑝2
0 − 𝑐2𝑝2

1 − 𝑐2𝑝2
2 − 𝑐2𝑝2

3 = 𝑚2𝑐4, 𝑝0 > 0

10.4.2. If we ignore the condition that the energy has to be positive, we can

express this as a simple differential equation for its wave-function

−ℏ2

[
𝜕2

𝜕𝑡2
− 𝑐2 𝜕2

𝜕𝑥2
1

− 𝑐2 𝜕2

𝜕𝑥2
2

− 𝑐2 𝜕2

𝜕𝑥2
3

]
𝜙 = 𝑚2𝑐4𝜙

Recall that 𝑝0 = 𝑖ℏ 𝜕
𝜕𝑡

, 𝑝1 = −𝑖ℏ 𝜕
𝜕𝑥1 etc. in quantum mechanics.

10.4.3. In Lorentz invariant notation 𝜼𝝁𝝂𝝏𝝁𝝏𝝂𝝓+ 𝝁2𝝓 = 0 where 𝝁 =
𝒎𝒄
ℏ

Note that 𝜇 has dimensions of length−1. The static (time-independent) solutions

satisfy Yukawa’s equation.

10.4.4. The equation is invariant under Lorentz transformations-

including parity and time reversal

The equation allows for negative energy solutions. To properly interpret this situ-

ation, we need quantum field theory. We will return to this topic later.

10.4.5. If 𝝓 is complex-valued, the Klein-Gordon equation implies a con-

servation law

𝑗𝜇 = 2Im𝜙∗𝜕𝜇𝜙

The point is that

𝜂𝜇𝜈𝜕𝜈
[
𝜙∗𝜕𝜇𝜙

]
= 𝜂𝜇𝜈𝜕𝜈𝜙

∗𝜕𝜇𝜙 + 𝜙∗𝜂𝜇𝜈𝜕𝜈𝜕𝜇𝜙
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The second term is zero because of the equation of motion:

𝜂𝜇𝜈𝜕𝜈
[
𝜙∗𝜕𝜇𝜙

]
= 𝜂𝜇𝜈𝜕𝜈𝜙

∗𝜕𝜇𝜙

The quantity of the r.h.s. is real (complex conjugation interchanges the two

factors up to a switching of indices 𝜇 ⇄ 𝜈). So,

𝜕𝜇 𝑗𝜇 = 2Im𝜕𝜇
[
𝜙∗𝜕𝜇𝜙

]
= 0.

10.5. Noether’s Theorem

10.5.1. This conservation law can also be understood as a consequence

of a symmetry of the action under 𝝓 → 𝒆𝒊𝜶𝝓

𝑆 =

∫ [
𝜂𝜇𝜈𝜕𝜈𝜙

∗𝜕𝜇𝜙 + 𝜇2𝜙∗𝜙
]
𝑑𝑥

Varying w.r.t. 𝜙∗ gives the equation of motion. The action is clearly invariant

under the above transformation when 𝛼 is a constant. To derive the conservation

law, we use a deep idea of Noether. Consider the change of 𝑆 under infinitesimal

changes 𝛿𝜙(𝑥) = 𝑖𝜖𝛼(𝑥)𝜙(𝑥) where 𝛼(𝑥) can depend on 𝑥. We already know that

𝑆 is invariant under such changes when 𝛼 is a constant. So, 𝛿𝑆 must be of the form

𝛿𝑆 =

∫
𝜕𝜇𝛼 𝑗 𝜇𝑑𝑥

for some 𝑗 𝜇 which depends quadratically on 𝜙 and involves one derivative of 𝜙.

By a straightforward calculation we can see that it is

𝑗 𝜇 = −𝑖𝜕𝜇𝜙∗𝜙 + 𝑖𝜙∗𝜕𝜇𝜙

which is just the 𝑗 𝜇 we defined earlier.

To proceed further we need two facts:

• 𝛿𝑆 =
∫

𝜕𝜇 [𝛼 𝑗 𝜇] 𝑑𝑥−
∫

𝛼𝜕𝜇 𝑗
𝜇𝑑𝑥. The first term is a surface integral by Gauss’s

theorem and hence can be set to zero (the fields and hence 𝑗 𝜇 must vanish at

infinity).

• When the equation of motion is satisfied, 𝛿𝑆 = 0 for any variation.

Together they imply that

𝜕𝜇 𝑗
𝜇
= 0

which is the conservation law.
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10.5.2. The power of Noether’s theorem is that it holds for non-linear

equations as well: Any symmetry implies a conservation law

For example, the action

𝑆 =

∫ [
𝜂𝜇𝜈𝜕𝜈𝜙

∗𝜕𝜇𝜙 + 𝜆

2

(
𝜙∗𝜙 − 𝑎2

)2
]
𝑑𝑥

also has the symmetry under 𝜙 ↦→ 𝑒𝑖𝛼𝜙. The same argument as above implies

again the conservation of

𝑗 𝜇 = −𝑖𝜕𝜇𝜙∗𝜙 + 𝑖𝜙∗𝜕𝜇𝜙

But this action leads to a more complicated non-linear equation of motion,

𝜂𝜇𝜈𝜕𝜈𝜕𝜇𝜙 + 𝜆(𝜙∗𝜙 − 𝑎2)𝜙 = 0

A version of this occurs is the standard model, in connection with the Higgs

boson.

10.5.3. Noether’s theorem also applies to non-abelian symmetries: Every

symmetry of the action under a Lie group implies the conservation

of a current valued in its Lie algebra

For example, let 𝜙 : R1,3 → R𝑛 be a scalar field as far as Lorentz transformations

are concerned; but it transforms as a vector under some “internal”𝑂 (𝑛) symmetry.

An action of the form

𝑆 =

∫ [
𝜂𝜇𝜈𝜕𝜈𝜙𝑎𝜕𝜇𝜙𝑎 + 𝑉 (|𝜙 |2)

]
𝑑𝑥, |𝜙 |2 = 𝜙𝑎𝜙𝑎

is invariant under 𝑂 (𝑛). This leads to the conservation of a current

𝑗
𝜇

𝑎𝑏
= 𝜕𝜇𝜙𝑎𝜙𝑏 − 𝜙𝑎𝜕𝜇𝜙𝑏

The argument is the same as above, applied to 𝛿𝜙𝑎(𝑥) = 𝜖𝛼𝑎𝑐 (𝑥)𝜙𝑐 (𝑥) where

𝛼𝑎𝑏 (𝑥) is anti-symmetric in 𝑎𝑏. Note that the current is an anti-symmetric matrix

for each 𝜇 (in the indices 𝑎𝑏): It is valued in the Lie algebra 𝑜(𝑛).
In fact the earlier case of a complex scalar field is just the particular

case 𝑛 = 2.
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10.6. Fermionic Wave Equations

10.6.1. The Weyl Equation

A scalar field represents a particle with spin zero. This is partly why the Klein–

Gordon equation cannot describe the electron. Even when it is not moving, the

electron carries an angular momentum of ℏ

2
. Before we discuss the Dirac equation,

let us look at an even more basic equation, the Weyl equation for a massless spin

half particle. After that we will see how to add mass to it. There are two ways of

doing this, the so called “Majorana mass” and the “Dirac mass”. The electron mass

is of Dirac type, but the neutrinos (at least two kinds of neutrinos are massive; we

don’t know for sure yet which two) may well have a Majorana mass.

To understand this, note that the length2 of a four-vector can be written as a

determinant:

𝑝2
0 − 𝑝2

1 − 𝑝2
2 − 𝑝2

3 = det

(
𝑝0 + 𝑝3 𝑝1 − 𝑖𝑝2

𝑝1 + 𝑖𝑝2 𝑝0 − 𝑝3

)

In terms of Pauli matrices

𝜎0
=

(
1 0

0 1

)
, 𝜎1

=

(
1 0

0 −1

)
, 𝜎2

=

(
0 −𝑖
𝑖 0

)
, 𝜎3

=

(
1 0

0 −1

)

The matrix above is hermitian and can be written as a linear combination of

Pauli matrices:

𝑝 =

(
𝑝0 + 𝑝3 𝑝1 − 𝑖𝑝2

𝑝1 + 𝑖𝑝2 𝑝0 − 𝑝3

)
= 𝑝0𝜎

0 + 𝑝1𝜎
1 + 𝑝2𝜎

2 + 𝑝3𝜎
3 ≡ 𝜎𝜇𝑝𝜇 .

Conversely, every 2 × 2 hermitian matrix can be thought of as a four-vector.

(The number of independent components of a 2 × 2 hermitian matrix is four.)

If 𝑝 is the momentum of a massless particle it would be a null vector; i.e.,

det 𝑝 = 0.

In this case there will be a spinor 𝑢̃(𝑝)such that

𝑝𝑢̃(𝑝) = 0.

If we pass to the Fourier transform

𝑢(𝑥) =
∫

𝑢(𝑝)𝑒𝑖𝑝 ·𝑥 𝑑𝑝

(2𝜋)4

this becomes a differential equation

𝜎𝜇 𝜕𝑢

𝜕𝑥𝜇
= 0.
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This is the Weyl equation: an analogue of the wave equation for a massless

spin half particle. Itis the most elementary of wave equations.

10.6.2. The Weyl Equation implies the wave equation

This is obvious in the momentum picture. If there is a non-zero spinor satisfying

𝑝𝑢̃(𝑝) = 0, we must have det 𝑝 = 0 which implies the wave equation. We can

derive it another way. Define the “parity” conjugate Pauli matrices

𝜎̌𝜇
= (1,−𝜎1,−𝜎2,−𝜎3)

Then

𝜎̌𝜇𝜎𝜈 + 𝜎̌𝜈𝜎𝜇
= 2𝜂𝜇𝜈

Equivalently

𝜎̌𝜇𝜎𝜈 𝑝𝜇𝑝𝜈 = 𝜂𝜇𝜈 𝑝𝜇𝑝𝜈

We can apply the operator 𝜎̌𝜇 𝜕
𝜕𝑥𝜇 to the Weyl equation to derive the wave

equation

𝜎𝜈 𝜕𝑢

𝜕𝑥𝜈
= 0 =⇒ 𝜎̌𝜇 𝜕

𝜕𝑥𝜇
𝜎𝜈 𝜕𝑢

𝜕𝑥𝜈
= 𝜎̌𝜇𝜎𝜈 𝜕

𝜕𝑥𝜇
𝜕𝑢

𝜕𝑥𝜈
= 𝜂𝜇𝜈 𝜕2𝑢

𝜕𝑥𝜇𝜕𝑥𝜈
= 0

10.6.2.1. Lorentz invariance transformation of spinors

A Lorentz transformation must take 𝑝 to another hermitian matrix. This suggests

that there is a 2×2 complex matrix corresponding to every Lorentz transformation

such that

Λ̂𝑝 = 𝜆𝑝𝜆†

The r.h.s. is hermitian for any 𝜆. The condition that the length be unchanged

becomes det 𝑝 = det
[
𝜆𝑝𝜆†

]
; i.e.,

| det𝜆|2 = 1.

Now, if you change 𝜆 by multiplying it by a complex number of magnitude

one, 𝜆𝑝𝜆† is unchanged. We can use this phase freedom to choose

det𝜆 = 1.

So, we suspect that to every Lorentz transformationΛ, there is a 2×2 complex

matrix of determinant one such that

Λ̂𝑝 = 𝜆𝑝𝜆† (10.6.1)
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for all four-vectors. This is true, but with some important caveats.

• Both 𝜆 and −𝜆 give the same Λ. Thus we have a 2 to 1 map, 𝜆 is much like a

“matrix square root” of Λ.

• Λ must be a proper Lorentz transformation. That is, Λ00 > 0 and detΛ = 1.

This subgroup of of Lorentz transformations is called 𝑆𝑂+(1, 3). To see the first

condition consider the special case 𝑝 = (1, 0, 0, 0). Then
(
Λ̂𝑝

)
00

= Λ00 = |𝜆00 |2.

Similarly, we can show that detΛ > 0 as well if it arises from a 𝜆 as above. So,

we cannot find such a 𝜆 for parity (space reflection) or time reversal: For the

first case detΛ < 0 and for the second Λ00 < 0.

The precise statement is,

Theorem 35. There is a homomorphism Λ : 𝑆𝐿2(C) → 𝑆𝑂+(1, 3) such that

Λ
𝜇
𝜈 (𝜆)𝜎𝜈

= 𝜆𝜎𝜇𝜆†.

The kernel of this homomorpism is 𝑍2 = {1,−1} ⊂ 𝑆𝐿2(C) .

Explicitly, for 𝜆 =

(
𝑎 𝑏

𝑐 𝑑

)
,

Λ(𝜆) =

��������
�

1
2

(
|𝑎 |2 + |𝑏 |2 + |𝑐 |2 + |𝑑 |2

)
1
2
(𝑏𝑎∗ + 𝑎𝑏∗ + 𝑑𝑐∗ + 𝑐𝑑∗)

1
2
(𝑐𝑎∗ + 𝑎𝑐∗ + 𝑑𝑏∗ + 𝑏𝑑∗) 1

2
(𝑑𝑎∗ + 𝑎𝑑∗ + 𝑐𝑏∗ + 𝑏𝑐∗)

− 1
2
𝑖 (𝑐𝑎∗ − 𝑎𝑐∗ + 𝑑𝑏∗ − 𝑏𝑑∗) − 1

2
𝑖 (𝑑𝑎∗ − 𝑎𝑑∗ + 𝑐𝑏∗ − 𝑏𝑐∗)

1
2

(
|𝑎 |2 + |𝑏 |2 − 𝑐𝑐∗ − 𝑑𝑑∗

)
1
2
(𝑏𝑎∗ + 𝑎𝑏∗ − 𝑑𝑐∗ − 𝑐𝑑∗)

1
2
𝑖 (𝑏𝑎∗ − 𝑎𝑏∗ + 𝑑𝑐∗ − 𝑐𝑑∗) 1

2

(
|𝑎 |2 + |𝑐 |2 − 𝑏𝑏∗ − 𝑑𝑑∗

)
1
2
𝑖 (𝑑𝑎∗ − 𝑎𝑑∗ − 𝑐𝑏∗ + 𝑏𝑐∗) 1

2
(𝑐𝑎∗ + 𝑎𝑐∗ − 𝑑𝑏∗ − 𝑏𝑑∗)

1
2
(𝑑𝑎∗ + 𝑎𝑑∗ − 𝑐𝑏∗ − 𝑏𝑐∗) − 1

2
𝑖 (𝑐𝑎∗ − 𝑎𝑐∗ − 𝑑𝑏∗ + 𝑏𝑑∗)

1
2
𝑖 (𝑏𝑎∗ − 𝑎𝑏∗ − 𝑑𝑐∗ + 𝑐𝑑∗) 1

2

(
|𝑎 |2 + |𝑑 |2 − 𝑏𝑏∗ − 𝑐𝑐∗

)

���������
This is the analogue of the homomorphism 𝑅 : 𝑆𝑈 (2) → 𝑆𝑂 (3) we found in

Sec.4.4. Indeed if we restrict to the subgroup 𝑆𝑈 (2) ⊂ 𝑆𝐿2(C) it reduces to that

case.

Exercise 36. Prove the above theorem.

Now if the spinor 𝑢 transforms as

𝑢 ↦→ 𝜆†−1𝑢
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the Weyl equation is invariant under proper Lorentz transformations 𝑆𝑂+(1, 3). It

is not invariant under Parity, as a 𝜆 does not exist in this case, as noted above.

Pauli actually discovered the Weyl equation first. But he rejected it as unphys-

ical, because at that time Parity was believed to be an exact symmetry of nature.

But once physicists discovered that Parity was violated in reactions that involve

neutrinos, it became natural to use this equation to describe a neutrino.

But this story is full of twists and turns. Now, we know that at least some kinds

of neutrinos are massive. So they cannot be described by the Weyl equation any

more.

How would we modify the Weyl equation so that the particle has a mass? That

is, so that the condition for a solution is det 𝑝 = 𝑚2 ? There are two kind of masses:

Majorana mass and the Dirac mass. The latter requires that we double the number

degrees of freedom but has the added benefit that the equation becomes parity

invariant.

10.6.3. The Majorana Equation

Let us write 𝜆 =

(
𝑎 𝑏

𝑐 𝑑

)
, 𝑎𝑑 − 𝑏𝑐 = 1. Then 𝜆−1 =

(
𝑑 −𝑏
−𝑐 𝑎

)
. Now,

(
0 −1

1 0

) (
𝑎 𝑏

𝑐 𝑑

) (
0 1

−1 0

)
=

(
0 −1

1 0

) (
−𝑏 𝑎

−𝑑 𝑐

)
=

(
𝑑 −𝑐
−𝑏 𝑎

)
= 𝜆−1𝑇

so that matrices of determinant one satisfy

𝜆 =

(
0 −1

1 0

)
𝜆−1𝑇

(
0 1

−1 0

)
.

Recall that the set of matrices of determinant one form a group, called 𝑆𝐿2(C).
Now, 𝑢 ↦→ 𝜆†−1𝑢 implies that

𝑢∗ → 𝜆−1𝑇 𝑢∗

and (
0 1

−1 0

)
𝑢∗ ↦→

(
0 1

−1 0

)
𝜆−1𝑇 𝑢∗

=

(
0 −1

1 0

)
𝜆−1𝑇

(
0 1

−1 0

) (
0 1

−1 0

)
𝑢∗ = 𝜆

(
0 1

−1 0

)
𝑢∗

That is, the combination
(

0 1
−1 0

)
𝑢∗ transforms the same way as 𝑖𝜎𝜇𝜕𝜇𝑢 :(

0 1

−1 0

)
𝑢∗ ↦→ 𝜆

(
0 1

−1 0

)
𝑢∗, 𝑖𝜎𝜇𝜕𝜇𝑢 ↦→ 𝜆𝑖𝜎𝜇𝜕𝜇𝑢
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Thus the equation

𝑖𝜎𝜇𝜕𝜇𝑢 + 𝑚

(
0 1

−1 0

)
𝑢∗ = 0

is Lorentz invariant. Because of the presence of the complex conjugate in the

second term, this equation is no longer complex linear (i.e., 𝑢 being a solution

need not mean 𝑖𝑢 is a solution.) It is better to think of as a system of equation for

four real variables rather than two complex variables. This is the way Majorana

thought of it originally.

This equation violates parity, as can be verified by writing it out explicitly in

terms of spatial derivatives. There isn’t even any way of implementing parity as a

transformation on 𝑢.

10.6.4. The Dirac Equation

But there must be a way to give the fermion a mass without violating parity. The

electron is massive and its most important interaction (electromagnetic) is parity

preserving. The idea is to double the number of degrees of freedom, so that parity

interchanges them. That is, we introduce two independent spinor fields 𝑢 and 𝑣

which transform as

𝑢 ↦→ 𝜆†−1𝑢, 𝑣 ↦→ 𝜆𝑣

Then

𝑖𝜎𝜇𝜕𝜇𝑢 + 𝑚𝑣 = 0

is invariant, as we saw earlier. We need an additional equation involvingderivatives

of 𝑣.

Define

𝜎̌0
= 𝜎0, 𝜎̌𝑖

= −𝜎𝑖 , 𝑖 = 1, 2, 3

so that 𝜎̌𝜇 is the Parity transform of 𝜎𝜇 . Then we see that

𝑖𝜎̌𝜇𝜕𝜇𝑣 + 𝑚𝑢 = 0

is also Lorentz invariant.

Exercise 37. Show that Λ
𝜇
𝜈 (𝜆)𝜎̌𝜈

= 𝜆†−1𝜎̌𝜇𝜆−1

We can combine the two equations for 𝑢, 𝑣 into a four component equation:

𝜓 =

(
𝑢

𝑣

)
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to get the Dirac equation

𝑖𝛾𝜇𝜕𝜇𝜓 + 𝑚𝜓 = 0.

Here, the Dirac matrices are

𝛾𝜇
=

(
0 𝜎̌𝜇

𝜎𝜇 0

)
.

They satisfy the “Clifford algebra”

𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇
= 2𝜂𝜇𝜈

There are other representations for the Dirac matrices which differ from the

above by linear equivalence transformations (changes of basis). In calculations,

it is best not to rely on any choice of basis, and use only properties that follow

directly from the Clifford algebra.

Exercise 38. Show that the Dirac equation implies the Klein–Gordon equation

for each component of 𝜓. This verifies the claim that it describes a massive free

particle. Also, show that the Dirac equation is Parity invariant, if we let 𝑢 and 𝑣

interchanged under Parity.

Having doubled the number of degrees of freedom, you should expect that the

equation describes twice as many particles as the electron itself. This is true: It

also predicts the existence of an anti-particle with the same mass but the opposite

(positive) charge. To understand this, we have to couple the Dirac equation to the

electromagnetic field (see later) and also “second quantize” it [15].

10.6.5. The Feuter Equation

The analytic continuation of the scalar wave equation to Euclidean space (imagi-

nary time) is the Laplace equation. What is the analytic continuation of the Weyl

equation? We would replace the Pauli matrices by

𝜎̃4
= 𝜎0

= 1, 𝜎̃1
=
√
−1𝜎1, 𝜎̃2

=
√
−1𝜎2, 𝜎3 =

√
−1𝜎3

and

𝜕𝜒

𝜕𝑥4
+ 𝜎̃1 𝜕𝜒

𝜕𝑥1
+ 𝜎̃2 𝜕𝜒

𝜕𝑥2
+ 𝜎̃3 𝜕𝜒

𝜕𝑥3
= 0

This has an interesting mathematical meaning. If we denote

𝑖 = 𝜎̃1, 𝑗 = 𝜎̃2, 𝑘 = 𝜎̃3
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the algebraic relations satisfied by the “Eulcidean Pauli matrices” becomes

𝑖2 = −1 = 𝑗2 = 𝑘2

𝑖 𝑗 = 𝑘 = − 𝑗𝑖, 𝑗 𝑘 = 𝑖 = −𝑘 𝑗, 𝑘𝑖 = 𝑗 = −𝑖𝑘

These are the relations satisfied by quaternions: A generalization of complex

numbers to higher dimensions discovered by Hamilton. Then the “Eucidean Weyl

equation” is the quaternionic analogue of the Cauchy-Riemann equations (quater-

nionic analyticity).

𝜕𝜒

𝜕𝑥4
+ 𝑖

𝜕 𝜒

𝜕𝑥1
+ 𝑗

𝜕 𝜒

𝜕𝑥2
+ 𝑘

𝜕𝜒

𝜕𝑥3
= 0.

Independently of Dirac, Feuter discovered this equation in this context. The

theory of quaternionic analytic functions is much more complicated than complex

analytic functions, because quaternions do not commute. Still, it has been worked

out in some detail. Most physicists just use Pauli matrices instead of thinking in

terms of quaternions.

10.7. Variational Principle for Fermionic Wave Equations

Recall that the wave equation for spin zero particles can be deduced from a

variational principle. There are similar principles for fermions as well.

Let us begin with the Dirac equation. Note that 𝛾𝜇is hermitian for 𝜇 = 0

and anti-Hermitian for 𝜇 = 1, 2, 3. Yet, 𝛾𝜇† satisfies the same anti-commutation

relations as 𝛾𝜇. In fact

𝛾𝜇
= 𝛾0𝛾𝜇†𝛾0.

Define

𝜓̄ = 𝜓†𝛾0

We can use arguments similar to those in the section on the Dirac equation to

see that

• 𝜓̄𝜓 transforms as a scalar

• 𝜓̄𝛾𝜇𝜓 transforms as a vector

when 𝜓 transforms as a Dirac spinor. Thus

𝑆𝐹 =

∫
𝜓̄
[
𝑖𝛾𝜇𝜕𝜇 + 𝑚

]
𝜓𝑑𝑥
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is Lorentz invariant. It serves as the variational principle: Varying w.r.t. 𝜓̄ yields

the Dirac equation. Similarly, for a Weyl spinor, 𝑢†
(

0 1
−1 0

)
𝑢∗ is a Lorentz scalar

and 𝑢†𝜎𝜇𝑢 is a Lorentz vector. Thus

𝑆𝑊 =

∫
𝑢†

[
𝑖𝜎𝜇𝜕𝜇𝑢 + 𝑚

(
0 1

−1 0

)
𝑢∗
]
𝑑𝑥

is a variational principle for the Majorana equation.

10.8. Maxwell’s Equations

The book by Jackson on Classical Electrodynamics has become a standard refer-

ence. The second volume of the series by Landau and Lifshitz Classical Theory of

Fields shows greater physical insight.

10.8.1. All magnetic fields must have zero divergence

∇ · B = 0

This means in particular that there is no analogue to an isolated electric charge

in magnetism: A permanent magnet has to be a dipole. If you cut a dipole into

two we will not get an isolated North pole and South pole. Instead we will get

two dipoles again. Some theories that go beyond the standard model do allow for

magnetic monopoles; but none have yet been observed.

10.8.2. This equation can be solved by postulating that the magnetic field

is a curl of a vector potential

B = ∇ × A

10.8.3. Two vector potentials that differ only by the gradient of a scalar

give the same magnetic field

This is called a gauge transformation

A′
= A + ∇Λ, B′

= B

∇ × ∇Λ = 0.

It turns out that invariance under this transfomation is a fundamental symmetry

of nature. We will see that gauge transformations that generalize this are the

fundamental symmetries of the standard model.
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10.8.4. Another equation of Maxwell relates the time derivative of the

magnetic field to the eletric field

𝜕B

𝜕𝑡
= −∇ × E

10.8.5. We can solve this by postulating in addition a scalar potential 𝑽

E =
𝜕A

𝜕𝑡
− ∇𝑉

Remark 1. Recall that we are using units such that 𝑐 = 1. Otherwise there will

be some factors of 𝑐all over the place.

The gauge transformations must now change the scalar potential as well

𝑉 ′
= 𝑉 +

𝜕Λ

𝜕𝑡

so that the electric field is unchanged.

𝜕∇Λ
𝜕𝑡

= ∇ 𝜕Λ

𝜕𝑡
.

10.8.6. Under Lorentz transformations the scalar and vector potentials

combine into a four-vector 𝑨 = (𝑽,A).

We will introduce an index 𝜇 = 0, 1, 2, 3 such that

𝐴0 = 𝑉, 𝐴 = (𝐴0, 𝐴1, 𝐴2, 𝐴3)

Then the gauge transformation can be written as

𝐴′
𝜇 = 𝐴𝜇 + 𝜕𝜇Λ

where 𝜕𝜇 denotes differentiation along the 𝜇 th direction. Gauge invariance is

based on the identity

𝜕𝜇𝜕𝜈Λ = 𝜕𝜈𝜕𝜇Λ.

The electric and magnetic fields are then

𝐸𝑖 = 𝜕0𝐴𝑖 − 𝜕𝑖𝐴0, 𝑖 = 1, 2, 3.

𝐵1 = 𝜕2𝐴3 − 𝜕3𝐴2, 𝐵2 = 𝜕3𝐴1 − 𝜕1𝐴3, 𝐵3 = 𝜕1𝐴2 − 𝜕2𝐴1

This suggests that we combine them into a single matrix 𝐹𝜇𝜈

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇
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It is an anti-symmetric matrix:

𝐹 =

������

0 𝐸1 𝐸2 𝐸3

−𝐸1 0 𝐵3 −𝐵2

−𝐸2 −𝐵3 0 𝐵1

−𝐸3 𝐵2 −𝐵1 0

�����
�

10.8.7. The remaining Maxwell’s equations can be written in Lorentz

invariant form as

𝜕𝜇𝐹𝜇𝜈 = 𝑗𝜈

Expanded in terms of three-dimensional quantities

𝜕E

𝜕𝑡
= −∇ × B + j

∇ · E = 𝑗0

The scalar 𝑗0 is proportional to charge density and the vector j to current

density.

10.8.8. The potential 𝑨 satisfies a wave equation

10.8.9. The electromagnetic field describes a particle of mass zero and

spin one

Mass zero because it travels at the velocity of light. (Duh. it is light.) Spin one

because in three-dimensional language it includes a vector field, which has spin

one.

10.9. Quantum Electrodynamics

So far we know the equations for the wave functions of spin 0, 1
2

and 1 particles. To

understand the interactions of these particles with each other we must introduce

non-linearities. The key is gauge invariance. A complete study of the resulting

theory, quantum electrodynamics is well outside the scope of this course. Itzykson

and Zuber Introduction to Quantum Field Theory is still a good reference. At a

level closer to this course is the book by Kerson Huang, Quarks and Leptons.

Exercise. The Dirac equation implies the conservation of a current

𝑗 𝜇 = 𝜓̄𝛾𝜇𝜓, 𝜓̄ = (𝜒∗ 𝜙∗)



200 PHYSICS THROUGH SYMMETRIES

That is,

𝜕𝜇 𝑗
𝜇
= 0.

This implies that

𝜕

𝜕𝑡

∫
𝑗0𝑑3𝑥 = 0.

Thus we can think of 𝑄 = 𝑒
∫

𝑗0𝑑3𝑥 as the electric charge and 𝑗0, j as the

charge and current densities respectively. The constant 𝑒 is the electric charge of

the electron (or whatever other particle to which we will apply this equation).Thus

10.9.1. The Maxwell’s equations in the presence of electrons is

𝜕𝜇𝐹𝜇𝜈 = 𝑒𝜓̄𝛾𝜇𝜓. (10.9.1)

Just as electrons create electric and magnetic fields, these fields must affect

their motion. The change in the Dirac equation due to the presence of electric and

magnetic fields is more subtle. Gauge invariance is the key to understanding this.

Recall that under gauge transformation

𝐴′
𝜇 = 𝐴𝜇 + 𝜕𝜇Λ

where Λ is an arbitrary function. We want to preserve this symmetry when we

introuduce 𝐴𝜇 into the Dirac equation. We must transform 𝜓as well so that the

changes in 𝜓 and 𝐴𝜇compensate for each other. Notice that if

𝜓′
= 𝑒𝑖𝑒Λ𝜓

𝜕𝜇𝜓
′
= 𝑒𝑖𝑒Λ

[
𝜕𝜇𝜓 +

(
𝑖𝑒𝜕𝜇Λ

)
𝜓
]

Remark 40. Sensible people can handle the double use of the symbol 𝑒 here.

The 𝑒 in the exponent is the electric charge and that below is the base of natural

logarithms. Their values of course, have nothing to do with each other.

Thus in the combination below the derivatives of Λ cancel out:[
𝜕𝜇 − 𝑖𝑒𝐴′

𝜇

]
𝜓′

= 𝑒𝑖𝑒Λ
[
𝜕𝜇 − 𝑖𝑒𝐴𝜇

]
𝜓

10.9.2. The Dirac equation in the presence of an electromagnetic field is

𝛾𝜇
[
𝜕𝜇 − 𝑖𝑒𝐴𝜇

]
𝜓 = 𝑖𝑚𝜓 (10.9.2)

Under a gauge transformation both sides are multiplied by the same factor,

so it cancels out. The pair of equations (10.9.1,10.9.2) describe Quantum Electro

Dynamics (QED) of charged spin one half particles and photons.
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10.9.3. The equation of a charged massive spin zero particle is

𝜂𝜇𝜈
[
𝜕𝜇 − 𝑖𝑒𝐴𝜇

]
[𝜕𝜈 − 𝑖𝑒𝐴𝜈] 𝜙 = −𝑚2𝜙

This also follows using gauge invariance. Of course, here 𝜙 is a scalar not a

spinor.

10.9.4. The proper interpretation of the equations of Quantum Electro-

dynamics involves renormalization

The trouble is that the equations as described above lead to infinities when quantum

effects are fully included. They have to be removed by a strange set of rules called

“renormalization”. These rules work remarkably well and agree with experiments

to high precision: Fifteen decimal point accuracy is the best science has ever

achieved. Yet the correct mathematical formulation is still not clear. Dirac himself

was very unsatisfied by this situation. New ideas in analysis are needed. But that

is another story.

10.10. Lagrangian Formalism

10.10.1. Hamilton’s Variation Principle gives a concise formulation of

equations of motion

Define the Lagrangian 𝐿 to be some function of position and velocity; and action

to be its integral:

𝑆 =

∫
𝐿(𝑞, �𝑞)𝑑𝑡

The condition that the action be stationary w.r.t. to small changes in 𝑞 leads to

the condition

𝑑

𝑑𝑡

𝜕𝐿

𝜕 �𝑞 − 𝜕𝐿

𝜕𝑞
= 0

With the choice

𝐿 =
1

2
𝑚 �𝑞2 −𝑉 (𝑞)

this gives the Newtonian equations of motion

𝑚 
𝑞 = −𝜕𝑉

𝜕𝑞
.
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10.10.2. In a relativistic theory the dynamical quantities are fields:

Functions of space and time

10.10.3. The Lagrangian depends on the fields and their derivatives

The Lagrangian is a Lorentz scalar.

10.10.4. The action is the integral of the Lagrangian over space and time

𝑆 =

∫
𝐿(𝜙, 𝜕𝜙)𝑑4𝑥

𝜕𝜇

[
𝜕𝐿

𝜕
(
𝜕𝜇𝜙

) ] = 𝜕𝐿

𝜕𝜙

The Lagrangian of a free massive scalar field is

𝐿 =
1

2
𝜂𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 − 1

2
𝑚2𝜙2

leading to the Klein–Gordon equation

𝜕𝜇𝜕
𝜇𝜙 + 𝑚2𝜙 = 0

More generally, an interacting scalar theory will have a lagrangian that has

terms higher degree than two:

𝐿 =
1
2
𝜂𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 −𝑉 (𝜙)

𝜕𝜇𝜕
𝜇𝜙 + 𝜕𝑉

𝜕𝜙
= 0

For the Higgs field of the standard model ( a complex doublet)

𝐿 = 𝜂𝜇𝜈𝜕𝜇𝜙
†𝜕𝜈𝜙 − 𝑉 (𝜙), 𝑉 (𝜙) = 𝜆

2

[
𝜙†𝜙 − 𝑣2

]2

We can see directly that the ground states are on the sphere

𝜙†𝜙 = 𝑣2

10.10.5. The Lagrangian of Maxwell’s theory is

𝐿 =
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 + 𝑗 𝜇𝐴𝜇, 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇
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leading to the equation

𝜕𝜇𝐹𝜇𝜈 = 𝑗𝜈

10.10.6. The Lagrangian of Dirac field is

𝐿 = 𝜓̄
[
𝑖𝛾𝜇𝜕𝜇 + 𝑚

]
𝜓

10.10.7. To get interacting theories we add the free lagrangians plus terms

that depend on several fields

For the Yukawa theory,

𝐿 = 𝜓̄
[
𝑖𝛾𝜇𝜕𝜇 + 𝑔𝜙

]
𝜓 + 𝜂𝜇𝜈𝜕𝜇𝜙

†𝜕𝜈𝜙 − 𝑉 (𝜙)

For QED

𝐿 = 𝜓̄𝑖𝛾𝜇
[
𝜕𝜇 + 𝑖𝑒𝐴𝜇

]
𝜓 + 𝑚𝜓̄𝜓 + 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈

For the Abelian Higgs Model

𝐿 = 𝜂𝜇𝜈
[
∇𝜇𝜙

]∗ ∇𝜈𝜙 −𝑉 (𝜙), ∇𝜇𝜙 = 𝜕𝜇 − 𝑖𝑒𝜙 𝑉 (𝜙) = 𝜆

2

[
𝜙∗𝜙 − 𝑣2

]2

10.11. Yang–Mills Theory

10.11.1. Yang–Mills Theory is the foundation of the theory of elementary

particles

It describes the self-interaction of spin 1 particles: The photon, 𝑍,𝑊± and the

gluons. The principle of gauge invariance also determines the interactions of these

spin one particles with those of spin zero and spin 1
2
: The quarks and leptons.There

is also a theory of interactions of spin zero particles (Higgs fields) and spin two

particles (General Relativity).

10.11.2. Maxwell’s theory of electromagnetism is invariant under an

abelian gauge group

Let Λ : 𝑅4 → 𝑅 be a real valued function. Recall that under the gauge transforma-

tion

𝐴𝜇 → 𝐴𝜇 + 𝜕𝜇Λ
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the field strength

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇

is unchanged. Thus, the Lagrangian

𝐿 =
1

4
𝐹𝜇𝜈𝐹𝜇𝜈

is invariant under both gauge and Lorentz transformations. Two successive gauge

transformations is equivalent to one under the sum

Λ1 + Λ2

This is a commutative (abelian) group. Suppose a scalar field transforms as

𝜙 → 𝑒𝑖Λ𝜙

Then the covariant derivative

∇𝜇𝜙 = 𝜕𝜇𝜙 + 𝑖𝐴𝜇𝜙

transforms as

∇𝜇𝜙 → 𝑒𝑖Λ∇𝜇𝜙.

The Lagrangian

𝐿 =
1

4𝑒2
𝐹𝜇𝜈𝐹𝜇𝜈 +

1

2
|∇𝜙 |2 −𝑉 (|𝜙 |)

is gauge invariant. We saw a version of this in the discussion of the Higgs mecha-

nism.

10.11.2.1. The value of 𝑒 determines the strength of the interaction

We have chosen to define the gauge potential such that the coupling constant

appears as a constant factor in the Lagrangian. For any 𝑒 the gauge invariance

holds. and is determined experimentally to be about a third. More precisely

𝑒2

4𝜋
≈ 1

137
.

10.11.2.2. The commutator of covariant derivatives is just a multiplica-

tion by the field strength

∇𝜇∇𝜈𝜙 − ∇𝜈∇𝜇𝜙 = 𝑖𝐹𝜇𝜈𝜙

This is similar to the definition of curvature in Riemannian geometry.
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10.11.3. In Yang–Mills theory, the gauge transformations are valued in

a Lie group

Let 𝑔 : 𝑅4 → 𝐺 be a function from space-time into a Lie group. The cases of

most physical interest are 𝐺 = 𝑆𝑈 (𝑛) or 𝑈 (𝑛). Suppose we have a scalar field

transforming under some representation of this group. (Think of 𝐺 = 𝑈 (𝑛) and

𝜙(𝑥) ∈ 𝐶𝑛.) Then

𝜙 → 𝑔𝜙

We can define a covariant derivative by analogy

∇𝜇𝜙 = 𝜕𝜇𝜙 + 𝑖𝐴𝜇𝜙

where 𝐴𝜇 is valued in (matrix representation of ) the Lie algebra of𝐺. For example,

if 𝐺 = 𝑈 (𝑛), then each component of 𝐴𝜇 (𝑥) is a hermitian matrix. How should

𝐴𝜇 transform in order that this covariant derivative transform as before?

∇𝜇𝜙 → 𝑔∇𝜇𝜙

A short calculation gives the answer

𝐴𝜇 → 𝑔𝐴𝜇𝑔
−1 + 𝑔𝜕𝜇(𝑔−1)

If 𝑔 = 𝑒𝑖𝑒Λ this reduces to the transformation of Maxwell’s theory. What then is

the analogue of the field strength? We can calculate

∇𝜇∇𝜈𝜙 − ∇𝜈∇𝜇𝜙 = 𝑖𝐹𝜇𝜈𝜙

where

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 + 𝑖[𝐴𝜇 , 𝐴𝜈]

The commutator term on the r.h.s. makes all the difference: It implies interac-

tions among spin one particles that have no analogue in Maxwell’s theory.

Under gauge transformations,

𝐹𝜇𝜈 → 𝑔𝐹𝜇𝜈𝑔
−1.

10.11.3.1. Recall that Compact Lie algebra is one that admits a positive

invariant inner product

That is, for non-zero elements of the Lie algebra

〈𝑢, 𝑢〉 > 0
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and under the adjoint action it is invariant:

〈𝑔𝑢𝑔−1, 𝑔𝑢𝑔−1〉 = 〈𝑢, 𝑢〉.

On compact simple Lie algebras (e.g., 𝑠𝑢(𝑛)) such an inner product is unique

up to a scalar multiple. On 𝑢(𝑛) ≈ 𝑠𝑢(𝑛) ⊕ 𝑢(1) there are two independent con-

stants determining the general inner product. These constants are called coupling

constants in the context of Yang-Mills theory

10.11.4. The Lagrangian of Yang-Mills theory is determined by a positive

inner product on its Lie algebra

𝐿 =
1

4
〈𝐹𝜇𝜈 , 𝐹𝜇𝜈〉

10.11.5. Using covariant derivatives we can bring spin zero and spin one

fields

𝐿 =
1

4
〈𝐹𝜇𝜈 , 𝐹𝜇𝜈〉 +

1

2
|∇𝜙 |2 +𝑉 (|𝜙 |)

𝐿 =
1

4
〈𝐹𝜇𝜈 , 𝐹𝜇𝜈〉 + 𝜓̄ [𝑖𝛾𝜇∇𝜇 + 𝑚]𝜓

10.11.6. The Higgs Model with 𝑼(2) invariance describes weak

interactions

𝐿 =
1

4
〈𝐹𝜇𝜈 , 𝐹𝜇𝜈〉 +

1

2
|∇𝜙 |2 −𝑉 (|𝜙 |)

where 𝜙 =

(
𝜙1

𝜙2

)
is a vector with two complex components. It is convenient to split

the gauge field into a traceless 2 × 2 matrix 𝐿𝜇 and a multiple of the identity 𝑌𝜇

since 𝑢(2) ≈ 𝑠𝑢(2) ⊕ 𝑢(1)

𝐴𝜇 = 𝐿𝜇 + 𝑌𝜇

𝐿 =
1

4𝑒2
1

tr 𝐿𝜇𝜈𝐿𝜇𝜈 + 1

4𝑒2
2

𝑌 𝜇𝜈𝑌𝜇𝜈 + 1
2
|∇𝜙 |2 −𝑉 (|𝜙 |)

where

∇𝜇𝜙 = 𝜕𝜇𝜙 + 𝑖𝐿𝜇𝜙 + 𝑖𝑞𝑌𝜇𝜙

The “hypercharge” 𝑞 of the Higgs field and the coupling constants 𝑒1, 𝑒2 are

experimentally determined. With the potential

𝑉 (𝜙) = 𝜆

2

[
𝜙†𝜙 − 𝑣2

]2
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this describes a set of three massive particles 𝑊±, 𝑍 and a massless photon. (Higgs

mechanism).

10.11.7. Yang–Mills Theory with gauge group 𝑺𝑼(3) is Quantum Chro-

modynamics, the theory of strong interactions

𝐿 =
1

4𝛼
〈𝐹𝜇𝜈 , 𝐹𝜇𝜈〉 +

𝑁 𝑓∑
𝑎=1

𝜓̄ [𝑖𝛾𝜇∇𝜇 + 𝑚𝑎]𝜓

Each quark field 𝜓𝑎 is a three component vector under 𝑆𝑈 (3)in addition to

being a Dirac spinor. There are six kinds of such quarks 𝑎 = 1, . . . , 6 corresponding

to 𝑢, 𝑑, 𝑐, 𝑠, 𝑡, 𝑏 with widely varying masses:

𝑚𝑎 ∼ 5, 10, 1500,250, 175000,5000

in MeV. In most cases of interest in Nuclear Physics, only the lightest two or three

quarks needs to be considered. For an excellent summary of the standard model

see [10].
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Chapter 11

RANDOM MATRICES

The main reference is the book “Random Matrices” by M. L. Mehta [21]. More

mathematical developments are in the book by D. Gioev and P. Deift [23].

11.1. Sources of Random Matrix Theory

Random matrices arise in several disciplines of physics, probability theory and

statistics.

11.1.1. The Eigenvalues of a Matrix Whose Elements are Random

Variables

This is an idea, first pursued by Wigner in Nuclear Physics. The thousands of

energy levels of nuclei defied any simple dynamical description. The hamiltonian

was modeled as a hermitian or real symmetric matrix. Although the actual nuclear

eigenvalues are not well described by this model, the level spacing (energy dif-

ference between two successive energy levels) fits with those of a random real

symmetric matrix. (This happens when the spin-dependent part of the nuclear

hamiltonian is important.) Part of the reason for the success is the universality of

the spacing distribution: It is the same for a large class of random matrices.

This universality may be viewed as analogous to the central limit theorem,

which says that the sum of a large number of random variables is Gaussian for

more or less any collection of random variables. If the hamiltonian is a sum of a

large number of terms of independent physical origin, each matrix element will

tend to an independent gaussian random variable (the only relation between them

comes from being hermitian or symmetric). Since there is no preferred basis,

209
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the joint probability distribution must be invariant under unitary (or orthogonal)

transformations.

11.1.2. Covariance Matrix of Samples

Imagine we make 𝑝 measurements of some quantities 𝜉𝑖 , 𝑖 = 1, . . . , 𝑛 (e.g., prices

of stocks in the S&P 500, annual rain falls in the counties of NY state etc.) We can

arrange these into an 𝑛× 𝑝 rectangular matrix 𝑥𝑖𝑎 . By subtracting the mean values

we get another vector:

𝑦𝑖𝑎 = 𝑥𝑖𝑎 − 1

𝑝

𝑝∑
𝑏=1

𝑥𝑖𝑏

The covariance matrix of the data is

Σ𝑖 𝑗 =
1

𝑝

∑
𝑏

𝑦𝑖𝑏𝑦 𝑗𝑏

This is a positive1 symmetric matrix of random variables. The eigenvector of

the largest eigenvalue of this matrix is important in statistics: It captures most of

the random variation (Principal Component Analysis). What is the distribution

of this eigenvalue? This answer turns out to be universal (the same for a large class

of random variables) and was found by Tracy and Widom. Such “extreme value

distributions” are an active area of research in random matrix theory. But we won’t

go into that here.

11.1.3. Operator algebras

A different approach (due to Voiculescu), with surprising connections to Wigner’s

theory, started in the theory of operator algebras. The simplest example, is based

on the Toeplitz algebra, defined by the relations

𝐴𝐴†
= 1,

Note the similarity to the canonical commutation relations for creation-

annihilation operators. Yet, an important difference is that it is the product 𝐴𝐴†,
not the commutator that is equal to one. The states on which the operators act

can be obtained by acting with “creation operators” 𝐴† on the “vacuum state” |0〉

1A matrixΣ is positive if𝑢†Σ𝑢 ≥ 0 for all vectors𝑢. In our case this is the sum 1
𝑝

∑
𝑖 𝑗𝑏 𝑢∗

𝑖
𝑦𝑖𝑏𝑦 𝑗𝑏𝑢 𝑗 =

1
𝑝

∑
𝑏 | ∑𝑖 𝑦 𝑗𝑏𝑢 𝑗 |2 which is clearly positive.
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defined by

𝐴 | 0〉 = 0.

We will normalize this state so that

〈0 | 0〉 = 1.

A convenient way to characterize a probability distribution is in terms of

its moments. In operator algebras, this is the expectation value in some state

of the powers of some self-adjoint operator (“observable”). We state the main

result. Its proof will exploit the analogy with the simple harmonic oscillator. The

analogues of the Hemite polynomials will be Chebyshev polynomials of the second

kind. The analogue of the gaussian (the ground state) will be the semi-circular

distribution.

Proposition 41. The vacuum expectation values are

〈0 | (𝐴 + 𝐴†)𝑛 | 0〉 =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
𝑘+1

(
2𝑘

𝑘

)
𝑛 = 2𝑘

0 𝑛 is odd

The integers 1
𝑘+1

(
2𝑘
𝑘

)
are called Catalan numbers. They arise as the solution

to many counting problems.

Proof. Define

| 𝑛〉 = 𝐴†𝑛 | 0〉, 𝑛 = 0, 1, . . .

Using 𝐴𝐴† = 1we get

〈𝑚 | 𝑛〉 = 〈0 | 𝐴𝑚𝐴†𝑛 | 0〉 = 〈0 | 𝐴𝑚−1𝐴†𝑛−1 | 0〉

By iterating this we get

〈𝑚 | 𝑛〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 𝑚 = 𝑛

〈0 | 𝐴𝑚−𝑛 | 0〉 = 0 𝑚 > 𝑛

〈0 | 𝐴†𝑛−𝑚 | 0〉 = 0 𝑛 > 𝑚
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The last equality follows from 〈0 | 𝐴†𝑛−𝑚 | 0〉 = 〈0 | 𝐴𝑛−𝑚 | 0〉∗. Thus the

states | 𝑛〉 are orthonormal and complete (being the eigenstates of the hermitian

operator 𝐴†𝐴):

〈𝑚 | 𝑛〉 = 𝛿𝑚𝑛,

∞∑
𝑚=0

| 𝑚〉〈𝑚 |= 1

Now,

𝑄 = 𝐴 + 𝐴†

is a hermitian operator. There must be a family of states which are eigenvectors for

this operator:

𝑄 | 𝑞) = 𝑞 | 𝑞)

Since 𝑄 is hermitean, the eigenvalues are real. The relation of these to the

states | 𝑛〉 should be through some quantities 𝜓𝑛 (𝑞)

| 𝑞) =
∞∑
𝑛=0

𝜓𝑛 (𝑞) | 𝑛〉

We have

𝑞 | 𝑞) = (𝐴 + 𝐴†) | 𝑞) =
∞∑
𝑛=0

𝜓𝑛 (𝑞)
[
𝐴 + 𝐴†] | 𝑛〉

That is,

𝑞

∞∑
𝑛=0

𝜓𝑛 (𝑞) | 𝑛〉 =
∞∑
𝑛=1

𝜓𝑛 (𝑞) | 𝑛 − 1〉 +
∞∑
𝑛=0

𝜓𝑛 (𝑞) | 𝑛 + 1〉

𝑞

∞∑
𝑛=0

𝜓𝑛 (𝑞) | 𝑛〉 =
∞∑
𝑛=0

𝜓𝑛+1 (𝑞) | 𝑛〉 +
∞∑
𝑛=1

𝜓𝑛−1 (𝑞) | 𝑛〉

So, we have the recursion relations

𝑞𝜓0(𝑞) = 𝜓1 (𝑞) (11.1.1)

𝑞𝜓𝑛 (𝑞) = 𝜓𝑛+1 (𝑞) + 𝜓𝑛−1 (𝑞), 𝑛 > 1 (11.1.2)

Now, recall the Chebyshev polynomials defined by

𝑇𝑛 (cos 𝜃) = cos (𝑛𝜃) , 𝑈𝑛 (cos 𝜃) = sin ( [𝑛 + 1]𝜃)
sin 𝜃
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They satisfy a similar recursion (a direct consequence of the addition formula

for cosines and sines):

cos( [𝑛 + 1]𝜃) + cos ( [𝑛 − 1]𝜃) = 2 cos 𝜃 cos(𝑛𝜃) ⇐⇒ 𝑇𝑛−1 (𝑥)

+𝑇𝑛+1 (𝑥) = 2𝑥𝑇𝑛 (𝑥) (11.1.3)

sin( [𝑛 + 1]𝜃) + sin ( [𝑛 − 1]𝜃) = 2 cos 𝜃 sin(𝑛𝜃) ⇐⇒ 𝑈𝑛−1 (𝑥)

+𝑈𝑛+1 (𝑥) = 2𝑥𝑈𝑛(𝑥) (11.1.4)

Moreover

𝑇0 (𝑥) = 1, 𝑇1 (𝑥) = 𝑥, 𝑈0 (𝑥) = 1, 𝑈1 (𝑥) = 2𝑥

What distinguishes𝑈𝑛 from 𝑇𝑛 is the coefficient 2 in the formula for𝑈1(𝑥).
The ansatz

𝜓𝑛 (𝑞) =
{
𝑎𝑇𝑛

(𝑞
2

)
+ 𝑏𝑈𝑛

(𝑞
2

)}
𝑓 (𝑞)

will then satisfy (11.1.2). Then (11.1.1) reduces to

{
𝑎
𝑞

2
+ 𝑏𝑞

}
= 𝑞{𝑎 + 𝑏} =⇒ 𝑎 = 0.

Thus we find that

𝜓𝑛 (𝑞) = 𝑈𝑛
(𝑞
2

)
𝜓0(𝑞).

The orthogonality relations for the Chebyshev polynomials follow from those

of the sine functions:

∫ 𝜋

0

sin [(𝑚 + 1)𝜃] sin[(𝑛 + 1) 𝜃]𝑑𝜃 = 𝜋

4
𝛿𝑚𝑛, 𝑚, 𝑛 = 0, 1, 2 · · ·

Putting 𝑞 = 2 cos 𝜃 this becomes

∫ 2

−2

𝑈𝑚

(𝑞
2

)
𝑈𝑛

(𝑞
2

) √
4 − 𝑞2𝑑𝑞 = 2𝜋𝛿𝑚𝑛, 𝑚, 𝑛 = 0, 1, 2 · · ·

Thus, it emerges that the spectrum of𝑄 is continuous! In fact, it is the interval

[−2, 2].
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Being eigenstates of a self-adjoint operator the states | 𝑞) satisfy the complete-

ness and orthogonality relations:

(𝑞 | 𝑞′) = 𝛿(𝑞 − 𝑞′),

∫
| 𝑞) (𝑞 | 𝑑𝑞 = 1,

which translates to

∞∑
𝑛=0

𝜓∗
𝑛 (𝑞)𝜓𝑛 (𝑞′) = 𝛿(𝑞 − 𝑞′),

∫
𝜓∗
𝑚(𝑞)𝜓𝑛 (𝑞)𝑑𝑞 = 𝛿𝑚𝑛

To get
∫
𝜓∗
𝑚(𝑞)𝜓𝑛 (𝑞)𝑑𝑞 = 𝛿𝑚𝑛 we must choose

|𝜓0(𝑞) |2 =

⎧⎪⎪⎨
⎪⎪⎩

1
2𝜋

√
4 − 𝑞2 |𝑞 | ≤ 2

0 |𝑞 | ≥ 2

This is known as the semi-circular distribution.

Now we can calculate the moments

〈0 | (𝐴 + 𝐴†)𝑛 | 0〉 =
∫

𝑞𝑛 |𝜓0(𝑞) |2 𝑑𝑞

By the symmetry 𝑞 → −𝑞 this vanishes for odd 𝑛. For even 𝑛 the integral can

be calculated (e.g., use Mathematica) to be

∫ 2

−2

𝑞2𝑘 1

2𝜋

√
4 − 𝑞2𝑑𝑞 =

1

𝑘 + 1

(
2𝑘

𝑘

)

This proves the formula for the moments. �

11.2. The Gaussian Unitary Ensemble

This is the original model of a random matrix, due to Wigner.

11.2.1. The Gaussian Unitary Ensemble (GUE) is a random hermitian

matrix whose elements taken together have the joint probability

distribution function

1

𝑍
𝑒
− 1

2𝜎2
tr𝐴2

𝑑𝐴
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So, 𝐴 is a hermitean matrix2 whose matrix elements are gaussian random

variables. These are 𝑁2 independent real random variables, once the condition of

hermiticity is imposed.

𝑑𝐴 stands for the measure of integration over these 𝑁2 components. Also, 𝑍 is

a normalization constant.

We assume that the mean of each matrix element is zero. The probability

distribution function (p.d.f.) is invariant under the action of the unitary group

𝐴 → 𝑈𝐴𝑈†, 𝐴 ∈ 𝑈 (𝑁)

which explains the name.

11.2.1.1. The Gaussian Orthogonal Ensemble (GOE) is a random real

symmetric matrix with the analogous p.d.f.

This time it is invariant under the orthogonal group action

𝐴 → 𝑔𝐴𝑔𝑇 , 𝑔 ∈ 𝑂 (𝑁)

There is also a Gaussian Symplectic Ensemble which is a quaternionic ana-

logue. We won’t pursue these models further here. See the book by Mehta for more

on this.

11.2.2. Although the matrix elements are independent variables, the

eigenvalues are not

In particular, the eigenvalues exhibit the phenomenon of level repulsion: Two

eigenvalues of a matrix are unlikely to be close to each other. We can prove this by

considering the special case of 2 × 2 hermitian matrices. Any such matrix can be

expanded in terms of the Pauli matrices:

𝐴 = 𝑎01 + 𝑎1𝜎1 + 𝑎2𝜎2 + 𝑎3𝜎3 := 𝑎0 + a · 𝝈

The eigenvalues are

𝜆1,2 = 𝑎0 ± 𝑎, 𝑎 = |a|

The joint pdf of the matrices elements is

𝑒
− 1

2𝜎2 [𝑎2
0
+|a |2] 𝑑𝑎0𝑑

3a

𝑍

2It is a coincidence of notation that both the random matrix and the annihilation operator in the Topelitz

algebra are called 𝐴. In fact, the random matrix 𝐴 is more analogous to the quantity 𝑄 = 𝐴 + 𝐴†of

that section.



216 PHYSICS THROUGH SYMMETRIES

In polar co-ordinates, after integrating over the angular co-ordinates, this

becomes

𝑒
− 1

2𝜎2 [𝑎2
0
+𝑎2]

𝑎2 𝑑𝑎0𝑑𝑎

𝑍

We have omitted a constant factor of 4𝜋 : It can be absorbed into the nor-

malization constant 𝑍 . The factor 𝑎2 is the Jacobian for transformation to polar

co-ordinates.

Let us express this in terms of eigenvalues

𝑎0 =
𝜆1 + 𝜆2

2
, 𝑎 =

𝜆1 − 𝜆2

2

Thus joint of p.d.f. of the eigenvalues is (again absorbing a constant into 𝑍)

𝑒
− 1

2𝜎2 [𝜆2
1
+𝜆2

2] |𝜆1 − 𝜆2 |2
𝑑𝜆1𝑑𝜆2

𝑍

The p.d.f. of 𝜆1, 𝜆2 does not factorize as a product of functions of single

variables 𝜆1 and 𝜆2 , because of the factor |𝜆1 − 𝜆2 |2.; this factor is the Jacobian of

the change of variables from matrix elements to eigenvalues. The “level repulsion”

is the phenomenon that the joint probability density function for 𝜆1 and 𝜆2 vanishes

as 𝜆1 → 𝜆2. Another way of thinking of this is to rewrite this as

𝑒
−
{

1

2𝜎2 [𝜆2
1
+𝜆2

2]−2 log |𝜆1−𝜆2 |
}
𝑑𝜆1𝑑𝜆2

𝑍

Physicists are used to thinking of probability distributions in analogy to sta-

tistical mechanics., where the probability of a configuration is proportion to 𝑒−𝛽𝐸

where 𝛽 is the inverse of temperature and 𝐸 is the energy. So the above distribution

behaves as if the “energy” of the configuration 𝜆1, 𝜆2 is proportional to

𝐸 (𝜆1, 𝜆2) =
1

2𝜎2

[
𝜆2

1 + 𝜆2
2

]
− 2 log |𝜆1 − 𝜆2 |

As 𝜆1 and 𝜆2 approach each other the energy grows: As if they repel each other.

This is not to be taken literally: There is no actual energy associated to eigenvalues.

But this analogy to statistical mechanics gives powerful physical intuition. This is

useful when we look at the case of 𝑁 eigenvalues and let 𝑁 → ∞.

11.2.3. The joint p.d.f. of the eigenvalues of the GUE is

𝑃(𝜆1, . . . , 𝜆𝑁 ) = 𝑒−
1

2𝜎2

∑
𝑖 𝜆

2
𝑖

∏
𝑖< 𝑗

|𝜆𝑖 − 𝜆 𝑗 |2
𝑑𝜆1, . . . , 𝑑𝜆𝑁

𝑍
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The tricky part is to compute the Jacobian
∏
𝑖< 𝑗 |𝜆𝑖 − 𝜆 𝑗 |2: the transformation

to eigenvalues is analogous to that to polar co-ordinates. This factor can be thought

of the volume of the set of all matrices of a given spectrum {𝜆1, . . . , 𝜆𝑁 }. Thus,

there is a unitary matrix such that

𝐴 = 𝑈diag(𝜆1, . . . , 𝜆𝑁 )𝑈†

𝑑𝐴 = 𝑈diag(𝑑𝜆1, . . . , 𝑑𝜆𝑁 )𝑈† + [𝑑𝑈𝑈†, 𝐴]

tr 𝑑𝐴2
=

∑
𝑖

𝑑𝜆2
𝑖 + 2

∑
𝑖< 𝑗

(𝜆𝑖 − 𝜆 𝑗 )2 |
[
𝑈†𝑑𝑈

]
𝑖 𝑗
|2

This is similar to the formula of the metric of Euclidean space in polar co-

ordinates. The eigenvalues are the “radial co-ordinates”; the unitary matrix is like

a rotation, and contains the “angular co-ordinates”. The analogue of the sphere

is the coset space 𝑈 (𝑁)/(𝑈 (1))𝑁 . Its volume is a finite constant times the factor∏
𝑖< 𝑗 |𝜆𝑖 − 𝜆 𝑗 |2 .

The formula for the p.d.f. above follows from the usual formula for the volume

element in Riemannian geometry (square root of the determinant of the metric.)

An overall finite factor corresponding to the integral over the “angular co-ordinates

(volume of ) can be absorbed into the normalization factor 𝑍 . See Mehta’s book

[21] for a more detailed derivation.

11.2.4. Of special interest is the probability density of a single eigenvalue

obtained by integrating all the others out:

𝑅(𝜆1) =
∫

𝑒−𝑁
∑

𝑖 𝜆
2
𝑖

∏
𝑖< 𝑗

|𝜆𝑖 − 𝜆 𝑗 |2
𝑑𝜆2 · · · 𝑑𝜆𝑁

𝑍

Remarkably, this approaches a limit as 𝑁 → ∞. (We choose 2𝜎2 ∼ 𝑁−1 for

this limit to exist.) More precisely,

11.2.5. The p.d.f. of 𝒙 = 𝝀1 tends to the semi-circular distribution

𝑅(𝑥) =
⎧⎪⎪⎨
⎪⎪⎩

1
2𝜋

√
4 − 𝑥2 |𝑥 | < 2

0 |𝑥 | > 2

In particular, the probability for |𝑥 | > 2 is zero.
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The proof of this uses some ideas from statistical mechanics. Consider the

negative log of the integrand

𝐸 (𝜆) = 𝑁
∑
𝑖

𝜆2
𝑖 −

∑
𝑖≠ 𝑗

log |𝜆𝑖 − 𝜆 𝑗 |

This can be thought of as the energy of a set of particles which repel each other

by the log potential, but held in place by a background harmonic oscillator potential.

(Remember that the probability of a configuration of energy 𝐸 is proportional to

𝑒−𝛽𝐸 ; so the negative log of the probability density can be interpreted as a constant

times energy.)

If we define the density

𝜌(𝜆) = 1

𝑁

∑
𝑖

𝛿(𝜆 − 𝜆𝑖),
∫

𝜌(𝜆)𝑑𝜆 = 1

this can be written as

𝐸 [𝜌] = 𝑁2

[∫
𝜌(𝜆)𝜆2 − 1

2
P

∫
𝜌(𝜆)𝜌(𝜆′) log |𝜆 − 𝜆′ |𝑑𝜆𝑑𝜆

]

The principal value P means we are to exclude a small region near 𝜆 = 𝜆′ from

the integral. In the limit 𝑁 → ∞ we should expect that the density will tend to

some continous function: The pair wise repulsion will push the 𝜆𝑖 apart while the

confining potential will prevent them from going off to infinity. Since there are an

infinite number of them, they have to approach each other and form a continuous

distribution. The most likely configuration will have the least energy. Setting the

variation w.r.t. 𝜌 to zero (subject to the condition that
∫
𝜌(𝜆)𝑑𝜆 = 1)

𝐶 + 𝜆2
= 2P

∫
𝜌(𝜆′) log |𝜆 − 𝜆′ |𝑑𝜆′

(𝐶 is the Lagrange multiplier enforcing the constraint.) Differentiating (to eliminate

𝐶) we get the singular integral equation

𝜆 = P
∫

𝜌(𝜆′)
𝜆 − 𝜆′ 𝑑𝜆

′,

∫
𝜌(𝜆)𝑑𝜆 = 1

The operator on the r.h.s. is (a constant times) the Hilbert transform, a well

known integral transform in complex function theory. The square of the Hilbert

transform is the negative of the identity operator. This allows us to solve the

equation by evaluating the Hilbert transform of the L.H.S. The solution is

𝜌(𝜆) =
⎧⎪⎪⎨
⎪⎪⎩

1
2𝜋

√
4 − 𝜆2 |𝜆| < 2

0 |𝜆| ≥ 2
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Exercise 42. Verify that this is a solution to the integral equation. This needs

some complex analysis (Hilbert transform and its connection to branch cuts of a

multi-valued function).

Note the remarkable fact that the eigenvalue distribution of random hermitian

matrices is the same as that of 𝐴+𝐴† in the Toeplitz algebra. This is the beginning of

a new theory of non-commutative random variables. Voiculescu’s “Free Probability

Theory” extends this idea to relate random matrix theory to the algebra of the Free

group. This is a frontier of research, outside the scope of this book. See [22].

11.2.6. Also of interest is the correlation function of a pair of eigenvalues

𝑻2 defined by

𝑅2(𝜆1, 𝜆2) =
∫

𝑒−𝑁
∑

𝑖 𝜆
2
𝑖

∏
𝑖< 𝑗

|𝜆𝑖 − 𝜆𝑖 |2
𝑑𝜆3 · · · 𝑑𝜆𝑁

𝑍

𝑇2 (𝜆1, 𝜆2) = 𝑅2(𝜆1, 𝜆2) − 𝑅(𝜆1)𝑅(𝜆2)

11.2.7. This tends to a universal function of the normalized difference

𝒓 =
√

2𝑵 |𝝀 − 𝝀1 |

1 −
[
sin 𝜋𝑟

𝜋𝑟

]2

We will not study the correlations further here. See the book [23] by Deift and

Gioev.

Although the formula is originally derived for Gaussians, the correlation turns

out to be the same as this for more or less any ensemble of hermitian random

matrices. This universality is reminiscent of that of critical phenomena in statistical

physics.

11.2.8. Amazingly, numerical computations show that the zeros of the

Riemann zeta function 𝜻 ( 1
2
+ 𝒊𝝀) have the same correlation

function

Perhaps this is because the zeros 𝜆𝑖 are the eigenvalues of some hermitian matrix.

This suggests certain strategies for proving the most famous problem in mathe-

matics, the Riemann hypothesis. So far, they have not worked though.



This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



Chapter 12

HARMONIC ANALYSIS ON FINITE

GROUPS

12.1. Discrete Fourier Series

Harmonic analysis is a generalization of Fourier analysis. So let us begin with the

simplest kind of Fourier analysis, based on a finite cyclic group 𝑍Λ, where Λ ≥ 2

is an integer. We can identify 𝑍Λ = Z/ΛZ as the quotient of the additive group of

integers by the subgroup of numbers which are multiples of Λ. We can think of 𝑍Λ

equivalently as the multiplicative group of complex numbers 𝜁 satisfying 𝜁Λ = 1.

Whether we mean the additive or multiplicative picture should be clear from the

context; they are isomorphic to each other.

A function 𝜙 : 𝑍Λ → C is simply a sequence of complex numbers 𝜙(𝑛), 𝑛 ∈ Z
satisfying the periodicity condition

𝜙(𝑛 + Λ) = 𝜙(𝑛),
which says that 𝜙 descends to a function on the quotient 𝑍Λ = Z/ΛZ.

A physical application could be a one-dimensional model of a lattice of atoms:

Arranged at equal separation, with the (unphysical) boundary condition that the

last atom be the nearest neighbor of the first.1

The obvious example of such a function is the exponential 𝑒
2𝜋𝑖
Λ

𝑛 or any of its

powers 𝑒
2𝜋𝑖
Λ

𝑘𝑛. Each exponential spans a one-dimensional representation of the

cyclic group 𝑍Λ:

𝑒
2𝜋𝑖
Λ

𝑘 (𝑛+𝑛′)
= 𝑒

2𝜋𝑖
Λ

𝑘𝑛𝑒
2𝜋𝑖
Λ

𝑘𝑛′ .

Later we will see a generalization where 𝑍Λ is replaced by a finite non-abelian

group. Then these exponentials are replaced by the matrix elements of a represen-

tation, possibly of dimension greater than one.

1Such periodic boundary conditions are commonly used as a prelude to taking Λ → ∞ in the statistical

physics of lattices.
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Clearly, there areΛ independent complex numbers 𝜙(0), 𝜙(1) · · · 𝜙(Λ−1) that

completely specify such a function 𝜙 : 𝑍Λ → C. On the other hand, there are Λ

independent exponentials:

1, 𝑒
2𝜋𝑖
Λ

𝑛, 𝑒
2𝜋𝑖
Λ

2𝑛, 𝑒
2𝜋𝑖
Λ

3𝑛, · · · , 𝑒 2𝜋𝑖
Λ

(Λ−1)𝑛.

The constant function equal to one is the zeroth power of 𝑒
2𝜋𝑖
Λ

𝑛; it is also the

Λth power. The basic theorem of Discrete Fourier series is that these exponentials

are a basis in the space of all periodic functions of period Λ. That is, there is a

periodic sequence 𝜙(𝑘), 𝑘 ∈ Z with 𝜙(𝑘 + Λ) = 𝜙(𝑘) such that

𝜙(𝑛) =
1

Λ

Λ−1∑
𝑘=0

𝜙(𝑘)𝑒
2𝜋𝑖
Λ

𝑘𝑛.

The overall factor of Λ is put in for later convenience.

Indeed we can give a formula for these coefficients:

𝜙(𝑘) =

Λ−1∑
𝑚=0

𝜙(𝑚)𝑒−
2𝜋𝑖
Λ

𝑘𝑚

The proof is based on the following identity

Λ−1∑
𝑘=0

𝑒
2𝜋𝑖
Λ

𝑘𝑛
=

{
Λ 𝑛 = 0

0 𝑛 = 1, . . . ,Λ − 1
(12.1.1)

The first statement is obvious: When 𝑛 = 0 each term in the sum is equal to

one. When 𝑛 = 1, . . . ,Λ − 1 suppose

𝑆𝑛 =

Λ−1∑
𝑘=0

𝑒
2𝜋𝑖
Λ

𝑘𝑛

In the sum we can shift 𝑘 ↦→ 𝑘 − 1:

𝑆𝑛 =

Λ−1∑
𝑘=0

𝑒
2𝜋𝑖
Λ

𝑘𝑛
=

Λ∑
𝑘=1

𝑒
2𝜋𝑖
Λ

(𝑘−1)𝑛
= 𝑒−

2𝜋𝑖
Λ

𝑛

Λ∑
𝑘=1

𝑒
2𝜋𝑖
Λ

𝑘𝑛
= 𝑒−

2𝜋𝑖
Λ

Λ∑
𝑘=1

𝑒
2𝜋𝑖
Λ

𝑘𝑛

The 𝑘 = Λ term of the last sum is equal to one, so that

Λ∑
𝑘=1

𝑒
2𝜋𝑖
Λ

𝑘𝑛
=

Λ−1∑
𝑘=0

𝑒
2𝜋𝑖
Λ

𝑘𝑛 .

That is,

𝑆𝑛 = 𝑒−
2𝜋𝑖
Λ

𝑛𝑆𝑛

Since 𝑛 ≠ 0 this means that 𝑆𝑛 = 0, as was to be proved.
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This result can be restated as a

Lemma 43. The exponentials satisfy the relation:

1

Λ

Λ−1∑
𝑘=0

𝑒
2𝜋𝑖
Λ

𝑘 (𝑚−𝑛)
= 𝛿 (𝑚 = 𝑛 mod Λ) (12.1.2)

The r.h.s. is equal to 1 if 𝑚 = 𝑛 mod Λ and zero otherwise.

Now we can prove the fundamental theorem of Discrete Fourier analysis:

Theorem. Given a function 𝜙 : 𝑍Λ → C, define

𝜙(𝑘) =
Λ−1∑
𝑚=0

𝜙(𝑚)𝑒− 2𝜋𝑖
Λ

𝑘𝑚.

Then

𝜙(𝑛) = 1

Λ

Λ−1∑
𝑘=0

𝜙(𝑘)𝑒 2𝜋𝑖
Λ

𝑘𝑛.

Proof. Substitute the definition of 𝜙(𝑚) into the series:

𝜙(𝑛) = 1

Λ

Λ−1∑
𝑘=0

(
Λ−1∑
𝑚=0

𝜙(𝑚)𝑒− 2𝜋𝑖
Λ

𝑘𝑚𝑒
2𝜋𝑖
Λ

𝑘𝑛

)
=

Λ−1∑
𝑚=0

{
1

Λ

Λ−1∑
𝑘=0

𝑒
2𝜋𝑖
Λ

𝑘 (𝑚−𝑛)
}
𝜙(𝑚)

Using the Lemma above,

=

Λ−1∑
𝑚=0

𝛿 (𝑚 = 𝑛 mod Λ) 𝜙(𝑚) = 𝜙(𝑛).
�

Exercise 44. Find the eigenvalues 𝜆 of the difference equation 𝜓𝑚+1 − 2𝜓𝑚 +
𝜓𝑚−1 = 𝜆𝜓𝑚 subject to the periodic boundary conditions 𝜓𝑚+Λ = 𝜓𝑚.

Solution First of all

Λ−1∑
𝑚=0

𝑒−
2𝜋𝑖
Λ

𝑘𝑚𝜓𝑚+1 =

Λ−1∑
𝑚=0

𝑒−
2𝜋𝑖
Λ

𝑘 (𝑚−1)𝜓𝑚 = 𝑒
2𝜋𝑖
Λ

𝑘
Λ−1∑
𝑚=0

𝑒−
2𝜋𝑖
Λ

𝑘𝑚𝜓𝑚 = 𝑒
2𝜋𝑖
Λ

𝑘 𝜓̃𝑘

and similarly

Λ−1∑
𝑚=0

𝑒−
2𝜋𝑖
Λ

𝑘𝑚𝜓𝑚−1 = 𝑒−
2𝜋𝑖
Λ

𝑘 𝜓̃𝑘 .
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After Fourier analysis the eigenvalue equation becomes

𝑒
2𝜋𝑖
Λ

𝑘 𝜓̃𝑘 − 2𝜓̃𝑘 + 𝑒−
2𝜋𝑖
Λ

𝑘 𝜓̃𝑘 = 𝜆𝜓̃𝑘 ⇐⇒
{
2 cos 2𝜋𝑘

Λ
− 2

}
𝜓̃𝑘 = 𝜆𝜓̃𝑘 ⇐⇒ −4 sin2

(
𝜋𝑘
Λ

)
𝜓̃𝑘 = 𝜆𝜓̃𝑘

Thus the eigenvalues are 𝜆𝑘 = −4 sin2
(
𝜋𝑘
Λ

)
, 𝑘 = 0, 1, · · ·Λ − 1. This is the

discrete version of the eigenvalue equation of the Laplace operator on a circle.

12.1.1. The Fourier transform of a convolution is a product

What is the function corresponding to the product of Fourier coefficients of two

functions 𝜙 and 𝜓? We can calculate

1

Λ

Λ−1∑
𝑘=0

𝜙(𝑘)𝜓̃ (𝑘)𝑒 2𝜋𝑖
Λ

𝑘𝑚
=

1

Λ

Λ−1∑
𝑘=0

{
Λ−1∑
𝑛=0

𝜙(𝑛)𝑒− 2𝜋𝑖
Λ

𝑘𝑛

} {
Λ−1∑
𝑙=0

𝜓(𝑙)𝑒− 2𝜋𝑖
Λ

𝑘𝑙

}
𝑒

2𝜋𝑖
Λ

𝑘𝑚

Re-arranging,

=

Λ−1∑
𝑛,𝑙=0

𝜙(𝑛)𝜓(𝑙)
{

1

Λ

∑
𝑘

𝑒
2𝜋𝑖
Λ

𝑘 (𝑚−𝑛−𝑙)
}

Using Eqn. (12.1.2) we get

1

Λ

Λ−1∑
𝑘=0

𝜙(𝑘)𝜓̃ (𝑘)𝑒 2𝜋𝑖
Λ

𝑘𝑚
=

Λ−1∑
𝑛=0

𝜙(𝑛)𝜓(𝑚 − 𝑛)

This operation is called the convolution:

𝜙 ∗ 𝜓(𝑚) =
Λ−1∑
𝑛=0

𝜙(𝑛)𝜓(𝑚 − 𝑛)

Inverting the Fourier transform we can write the result as

Λ−1∑
𝑚=0

𝜙 ∗ 𝜓(𝑚)𝑒− 2𝜋𝑖
Λ

𝑘𝑚
= 𝜙(𝑘)𝜓̃ (𝑘).

In the other direction we also have similarly:

Λ−1∑
𝑚=0

𝜙(𝑚)𝜓(𝑚)𝑒− 2𝜋𝑖
Λ

𝑘𝑚
=

1

Λ

Λ−1∑
𝑙

𝜙(𝑘 − 𝑙)𝜓̃ (𝑙)

The Fourier synthesis of a convolution is a product.

These are useful in many applications. Clearly, multiplication is a simpler

operation than convolution. The Fourier transform reduces the latter to the former.
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Thus, it plays a role similar to the logarithm, which reduces multiplication of

numbers to the simpler operation of addition.

12.1.2. The limit 𝚲 → ∞

We can guess that as Λ → ∞ the periodicity condition becomes irrelevant: We

just have a function 𝜙 : Z→ C . The sum

𝜙(𝑘) =
Λ−1∑
𝑚=0

𝜙(𝑚)𝑒− 2𝜋𝑖
Λ

𝑘𝑚

can be given a meaning for large Λ by a change of variable:

𝑥 =
𝑘

Λ
.

These will get very close together as Λ gets large. Define

Φ̃(𝑥) =
Λ−1∑
𝑚=0

𝜙(𝑚)𝑒−2𝜋𝑖𝑥𝑚

Clearly there is a periodicity 𝑥 → 𝑥 + 1. So 𝑥 =
Λ−2
Λ
, 𝑥 =

Λ−1
Λ

is the same as

𝑥 = − 2
Λ
, 𝑥 = − 1

Λ
, etc. respectively.

Using this we can enumerate the values it takes by starting at zero and going

out in both directions:

𝑥 = · · · ,− 2

Λ
,− 1

Λ
, 0,

1

Λ
,

2

Λ
· · · ,

Roughly Λ

2
values are to the right of 0 and roughly Λ

2
are to the left. As Λ → ∞

this tends to a continuous variable taking values in the range
[
− 1

2
, 1

2

]
.

By identifying Λ − 1 with −1 and so on we can also enumerate the values of

𝑚 as

𝑚 = · · · − 2,−1, 0, 1, 2, . . .

So, Φ̃(𝑥) tends to an infinite sum

Φ̃(𝑥) =
∞∑

𝑚=−∞
𝜙(𝑚)𝑒−2𝜋𝑖𝑥𝑚

This converges if | 𝜙(𝑚) | vanishes fast enough for large |𝑚 |. For example, each

summand has magnitude | 𝜙(𝑚) | , so the sum converges if
∑∞

𝑚=−∞ | 𝜙(𝑚) |< ∞.

OTOH, the sum 1
Λ

∑
Λ−1
𝑘=0 𝜙(𝑘)𝑒

2𝜋𝑖
Λ

𝑘𝑛 tends to an integral:

1

Λ

Λ−1∑
𝑘=0

𝜙(𝑘)𝑒 2𝜋𝑖
Λ

𝑘𝑛 →
∫ 1

2

− 1
2

Φ̃(𝑥)𝑒2𝜋𝑖𝑥𝑚𝑑𝑥
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Thus there is a version of Fourier analysis for functions on an infinite lattice:

𝜙(𝑚) =
∫ 1

2

− 1
2

Φ̃(𝑥)𝑒2𝜋𝑖𝑥𝑚𝑑𝑥

Although our arguments are not mathematically rigorous, this can be proved

under some assumptions on the decay of 𝜙 at infinity. It is in fact closer to

the original analysis of Fourier (who was an engineer solving problems in heat

conduction.)

The range of values of 𝑥 can be thought of as a circle: It is a periodic variable

with period 1. So, the Fourier transform of a function on Z is a function on a circle.

We will return to this theme in the next chapter.

12.1.2.1. Convolutions

The convolution of functions on Z is defined similarly:

𝜙 ∗ 𝜓(𝑚) =
∞∑

𝑛=−∞
𝜙(𝑛)𝜓(𝑚 − 𝑛)

This makes sense if the functions vanish at infinity fast enough (e.g., are square

integrable). Again, the Fourier coefficients of a convolution is a product:

∞∑
𝑚=−∞

𝜙 ∗ 𝜓(𝑚)𝑒−2𝜋𝑖𝑥𝑚
= Φ̃(𝑥)Ψ̃(𝑥)

In the other direction, we have

∞∑
𝑚=−∞

𝜙(𝑚)𝜓(𝑚)𝑒−2𝜋𝑖𝑥𝑚
=

{∫ 1
2

− 1
2

Φ̃(𝑦)𝑒2𝜋𝑖𝑦𝑚𝑑𝑦

} {∫ 1
2

− 1
2

Ψ̃(𝑧)𝑒2𝜋𝑖𝑧𝑚𝑑𝑧

}

=

∫ 1
2

− 1
2

Φ̃(𝑦)Ψ̃(𝑧)
{∑
𝑚∈Z

𝑒2𝜋𝑖 (𝑦+𝑧−𝑥)𝑚
}
𝑑𝑦𝑑𝑧

Exercise 45. Prove an identity analogous to Lemma (12.1.2)∑
𝑚∈Z

𝑒2𝜋𝑖𝑥𝑚
= 𝛿(𝑥)

where the Dirac delta function for periodic functions of period one satisfies∫ 1
2

− 1
2

𝜙(𝑦)𝛿(𝑥 − 𝑦)𝑑𝑦 = 𝜙(𝑥).
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Using this, we get

∞∑
𝑚=−∞

𝜙(𝑚)𝜓(𝑚)𝑒−2𝜋𝑖𝑥𝑚
=

∫ 1
2

− 1
2

Φ̃(𝑦)Ψ̃(𝑥 − 𝑦)𝑑𝑦

The r.h.s. is a convolution on the circle, thought of as a group under the

operation of addition modulo 1. Instead of a sum we have an integral.

12.2. Non-abelian Finite Groups

The remarkable fact is that there is a far reaching generalization of Fourier anal-

ysis to non-abelian groups. We will see that the “dual” of a group is the set of

its irreducible representations. The exponentials of Fourier are replaced by the

matrix elements of these representations. All representations in this section will be

assumed to be finite dimensional complex vector spaces; and all groups are finite.

Later we will extend to certain kinds of Lie groups (i.e., compact).

The main reference for this section is the excellent book [24].

12.2.1. Finite dimensional representations of a finite group are

unitarizable

That is, each of them have an invariant inner product. This can be established by

a simple trick. Pick some inner product ((, )) in the vector space 𝑉 carrying the

representation 𝜌. Define a new inner product by “averaging” over the group:

(𝑎, 𝑏) = 1

|𝐺 |
∑
𝑔∈𝐺

((𝜌(𝑔)𝑎, 𝜌(𝑔)𝑏)) , 𝑎, 𝑏 ∈ 𝑉

The group being finite, we don’t have to worry about the convergence of the

sum; this could be a problem for infinite groups.

It is easy to see that this average is invariant:

(𝜌(ℎ)𝑎, 𝜌(ℎ)𝑏) = 1

|𝐺 |
∑
𝑔∈𝐺

((𝜌(𝑔)𝜌(ℎ)𝑎, 𝜌(𝑔)𝜌(ℎ)𝑏))

=
1

|𝐺 |
∑
𝑔∈𝐺

((𝜌(𝑔ℎ)𝑎, 𝜌(𝑔ℎ)𝑏)) = 1

|𝐺 |
∑
𝑔∈𝐺

((𝜌(𝑔)𝑎, 𝜌(𝑔)𝑏)) .

In the last step, we re-enumerate the group elements by 𝑔 ↦→ 𝑔ℎ−1. So

(𝜌(ℎ)𝑎, 𝜌(ℎ)𝑏) = (𝑎, 𝑏) as needed.
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12.2.2. Finite dimensional reducible unitary representations are

completely reducible

If 𝑊 ⊂ 𝑉 is an invariant subspace of the vector space carrying a unitary repre-

sentation, then its orthogonal complement𝑊⊥ = {𝑣 | (𝑣, 𝑤) = 0∀𝑤 ∈ 𝑊} is also

invariant:

∀𝑤 ∈ 𝑊&∀𝑣 ∈ 𝑊⊥, 𝜌(𝑔)𝑤 ∈ 𝑊 =⇒ (𝑣, 𝜌(𝑔)𝑤) = 0 =⇒ (𝜌(𝑔†)𝑣, 𝑤) =
0 =⇒ 𝜌(𝑔)𝑣 ∈ 𝑊⊥.

Thus, the representation can be split as the direct sum of two representations

𝑉 = 𝑊 ⊕𝑊⊥.

The representation matrices are then block diagonal2
(
𝜌𝑊 (𝑔) 0

0 𝜌𝑊⊥ (𝑔)

)
. Then we

can repeat this argument on𝑊 and𝑊⊥ until𝑉 is expressed as a sum of irreducible

representations (which don’t have any proper invariant subspaces). Thus any finite

dimensional unitary representation can be expressed as a direct sum3

𝜌 =

⊕
𝑟 ∈𝐺̃

𝑚𝑟 𝑟

Here, 𝐺̃ denotes the set of all equivalence classes of unitary irreducible repre-

sentations. Also, 𝑚𝑟 = 0, 1, 2, . . . (called the multiplicity) is the number of copies

of eac h irreducible representation contained in 𝜌. This is similar to the decom-

position of any number as a product of primes; the irreducible representations are

like primes and the multiplicities are like the exponents of each prime.

To proceed further we will need several tools of representation theory. We start

with

12.2.3. Schur’s lemma

This is really a couple of results. The first of them is

Lemma 46. Let 𝑟 and 𝑠 be two irreducible representations,on vector spaces 𝑉

and 𝑊 respectively, of a finite group 𝐺; and 𝑇 is a linear map 𝑇 : 𝑉 → 𝑊 such

that

𝑇 [𝑟 (𝑔)𝑣] = 𝑠(𝑔) [𝑇𝑣] ,∀𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉 (12.2.1)

Then either 𝑇 is an isomorphism or it is zero.

2If 𝜌 is not unitary, there is the possibility that representation matrices are only block-triangular(
𝜌𝑊 (𝑔) 𝑏 (𝑔)

0 𝜌𝑊⊥ (𝑔)
)
; that is, the representation is not totally reducible.

3If the representation 𝜌 is irreducible, there is just one term in this direct sum.
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A map satisfying the condition (12.2.1)is called an intertwiner. First, we note

that ker𝑇 ≡ {𝑣 ∈ 𝑉 | 𝑇𝑣 = 0} is invariant under 𝑟 (𝑔):

𝑇𝑣 = 0 =⇒ 𝑠(𝑔)𝑇𝑣 = 0 =⇒ 𝑇 [𝑟 (𝑔)𝑣] = 0.

Similarly, Image 𝑇 ≡ {𝑇𝑣 | 𝑣 ∈ 𝑉 } is an invariant under 𝑠(𝑔).
But, since 𝑟 is an irreducible representation, an invariant subspace is either

zero or all of 𝑉 . Thus either ker 𝑇 = 0 or ker 𝑇 = 𝑉 .

Since 𝑠 is also irreducible, Image 𝑇 = 0 or Image 𝑇 = 𝑊 . The only two

possibilities are

ker 𝑇 = 0, Image 𝑇 = 𝑊

in which case 𝑇 is an isomorphism; or

ker 𝑇 = 𝑉, Image 𝑇 = 0

in which case it is zero.This proves the Lemma.

Thus, if 𝑟 is not equivalent to 𝑠 the only intertwiner between them is zero. If

𝑟 ∼ 𝑠, we can identify 𝑉 and 𝑊 . An intertwiner of 𝑟 to itself is simply a matrix

that commutes with all of the representation matrices.

Corollary 47. If an operator commutes with all the representation matrices of

an irreducible representation, it is a multiple of the identity.

For, every linear operator𝑇 : 𝑉 → 𝑉 has at least one eigenvalue (recall that𝑉 is

a complex vector space) 𝜆. If 𝑇 is an intertwiner of an irerducible representation to

itself, 𝑇 − 𝜆1 is also an interwtiner. It cannot be an isomorphism because it cannot

be invertible (the definition of an eigenvalue!). So, it must vanish; i.e., 𝑇 = 𝜆1.

Corollary 48. Any irreducible representation of an abelian group is one

dimensional.

The point is that the representation matrices commute with each other; so are

multiples of the identity in an irreducible representation.

Another tool we need is that of a character

12.2.4. The trace of the representation matrices associates a function on

the group to every representation, called its character

Let 𝜌 be some representation. Define a function 𝜒𝜌 : 𝐺 → C by

𝜒𝜌 (𝑔) = tr𝜌(𝑔)
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This functions is called the character. Note that this function is invariant under

conjugation:

𝜒𝜌 (ℎ𝑔ℎ−1) = 𝜒𝜌 (𝑔), 𝑔, ℎ ∈ 𝐺.

Also its value at the identity is the dimension of the representation.

𝜒𝜌 (1) = dim 𝜌.

Recall that if 𝜌and 𝜎 are two representations, their direct sum is another

representation, whose matrices are block-diagonal:

𝜌 ⊕ 𝜎(𝑔) =
(
𝜌(𝑔) 0

0 𝜎(𝑔)

)

It takes but a moment to realize that

𝜒𝜌⊕𝜎 (𝑔) = 𝜒𝜌 (𝑔) + 𝜒𝜎 (𝑔)

Iterating this, we see that if we decompose 𝜌 into ireducible representations

𝜌 =

⊕
𝑟 ∈𝐺̃

𝑚𝑟 𝑟

we have a formula for its character:

𝜒𝜌 (𝑔) =
∑
𝑟 ∈𝐺̃

𝑚𝑟 𝜒𝑟 (𝑔)

12.2.5. An inner product on functions: 𝒍2(𝑮)

The space of complex valued functions on 𝐺 is a complex vector space whose

dimension is equal to the cardinality |𝐺 | of𝐺: A function is completely determined

by its values at each point of the group.4

We can establish an inner product on it.

〈𝜙, 𝜓〉 =
∑
𝑔∈𝐺

𝜙∗(𝑔)𝜓(𝑔).

We will call this vector space with inner product 𝑙2 (𝐺).

4Put another way, the functions 𝛿ℎ , ℎ ∈ 𝐺 equal to one at ℎ and zero everywhere else is a basis for

the space of functions on 𝐺. See below,
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12.2.6. The matrix elements of inequivalent irreducible representations

are orthogonal in 𝒍2(𝑮)

Suppose 𝑟 and 𝑠 are two irreducible representations of 𝐺 which are not equiv-

alent to each other. We have orthonormal bases 𝑒𝑎, 𝑎 = 1, . . . dim 𝑟 and 𝑓𝑖, 𝑖 =

1, 2, . . . dim 𝑠 in their vector spaces. Using them we have the matrix elements

𝑟𝑎𝑏 (𝑔) = (𝑒𝑎, 𝑟 (𝑔)𝑒𝑏) , 𝑠𝑖 𝑗 (𝑔) =
(
𝑓𝑖 , 𝑠(𝑔) 𝑓 𝑗

)
which are functions on 𝐺 for each 𝑎𝑏 and 𝑖 𝑗 .

The 𝑙2 (𝐺) inner product of these functions is

〈𝑟𝑎𝑏, 𝑠𝑖 𝑗 〉 ≡
∑
ℎ∈𝐺

𝑟∗𝑎𝑏 (ℎ)𝑠𝑖 𝑗 (ℎ)

Using unitarity this can be also be written

〈𝑟𝑎𝑏 , 𝑠𝑖 𝑗 〉 ≡
∑
ℎ∈𝐺

𝑟𝑏𝑎 (ℎ−1)𝑠𝑖 𝑗 (ℎ)

The trick is to construct an intertwiner between the two representations out of

this inner product. Since 𝑟 and 𝑠 are inequivalent, such an intertwiner would have

to be zero.

For each choice 𝑏 𝑗 , define a matrix with elements.5

𝑇𝑖𝑎 =

∑
ℎ∈𝐺

𝑟𝑏𝑎 (ℎ−1)𝑠𝑖 𝑗 (ℎ).

Recalling (12.2.1), we need to show that

dim 𝑟∑
𝑎=1

𝑇𝑖𝑎𝑟𝑎𝑐 (𝑔) =
dim 𝑠∑
𝑘=1

𝑠𝑖𝑘 (𝑔)𝑇𝑘𝑐

Now

𝐿𝐻𝑆 ≡
dim 𝑟∑
𝑎=1

𝑇𝑖𝑎𝑟𝑎𝑐 (𝑔) =
dim 𝑟∑
𝑎=1

∑
ℎ∈𝐺

𝑟𝑏𝑎 (ℎ−1)𝑠𝑖 𝑗 (ℎ)𝑟𝑎𝑐 (𝑔)

Using the representation property we can combine the first and last factors:

𝐿𝐻𝑆 =

∑
ℎ∈𝐺

𝑠𝑖 𝑗 (ℎ)𝑟𝑏𝑐 (ℎ−1𝑔)

5We suppress the indices 𝑏. 𝑗 to simplify the notation; but beware that 𝑇𝑖𝑎 does depend on the choice

of 𝑏, 𝑗.
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OTOH,

𝑅𝐻𝑆 ≡
dim 𝑠∑
𝑘=1

𝑠𝑖𝑘 (𝑔)𝑇𝑘𝑐 =

∑
ℎ∈𝐺

dim 𝑠∑
𝑘=1

𝑠𝑖𝑘 (𝑔)𝑟𝑏𝑐 (ℎ−1)𝑠𝑘 𝑗 (ℎ)

Again combining the first and last factors,

𝑅𝐻𝑆 =

∑
ℎ∈𝐺

𝑠𝑖 𝑗 (𝑔ℎ)𝑟𝑏𝑐 (ℎ−1)

Replacing ℎ ↦→ 𝑔−1ℎ

𝑅𝐻𝑆 =

∑
ℎ∈𝐺

𝑠𝑖 𝑗 (ℎ)𝑟𝑏𝑐 (ℎ−1𝑔)

Thus, we get 𝐿𝐻𝑆 = 𝑅𝐻𝑆. This proves 𝑇 is an intertwiner; but then it has to

be zero since 𝑟 and 𝑠 are inequivalent. This being true for each choice of 𝑏, 𝑗 , we

get 〈𝑟𝑎𝑏 , 𝑠𝑖 𝑗〉 = 0.

12.2.7. The inner product between any pair of matrix elements

Now we consider the situation when 𝑟 is equivalent to 𝑠. By choosing appropriate

bases, we can identify the matrix elements of 𝑟 and 𝑠. We look at the inner product

〈𝑟𝑎𝑏, 𝑟𝑎′𝑏′〉 ≡
∑
ℎ∈𝐺

𝑟𝑏𝑎 (ℎ−1)𝑟𝑎′𝑏′ (ℎ)

Again, keeping 𝑏, 𝑏′ fixed we define

𝑇𝑎′𝑎 =

∑
ℎ∈𝐺

𝑟𝑏𝑎 (ℎ−1)𝑟𝑎′𝑏′ (ℎ)

The same argument as before shows that this is an intertwiner of 𝑟 to itself:

dim 𝑟∑
𝑎=1

𝑇𝑎′𝑎𝑟𝑎𝑐 (𝑔) =
dim 𝑟∑
𝑎=1

𝑟𝑎′𝑎 (𝑔)𝑇𝑎𝑐

But this time Schur’s lemma tells us that 𝑇𝑎′𝑎 is a multiple of the identity!

∑
ℎ∈𝐺

𝑟∗𝑎𝑏 (ℎ)𝑟𝑎′𝑏′ (ℎ) = 𝜆𝑟𝑏𝑏′𝛿𝑎′𝑎
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The eigenvalue can depend on 𝑟, 𝑏 and 𝑏′, which we show explicitly. If we set

𝑎 = 𝑎′ and sum over 𝑎, this gives (using the representation property on the lhs)∑
ℎ∈𝐺

𝑟𝑏𝑏′ (1) = 𝜆𝑟𝑏𝑏′ dim 𝑟

Since the summand on the lhs is independent of ℎ, we get

|𝐺 |𝑟𝑏𝑏′ (1) = 𝜆𝑟𝑏𝑏′ dim 𝑟

But 𝑟𝑏𝑏′ (1) = 𝛿𝑏𝑏′.

|𝐺 |𝛿𝑏𝑏′ = 𝜆𝑟𝑏𝑏′ dim 𝑟 =⇒ 𝜆𝑟𝑏𝑏′ =
|𝐺 |

dim 𝑟
𝛿𝑏𝑏′

and

〈𝑟𝑎𝑏, 𝑟𝑎′𝑏′〉 ≡
|𝐺 |

dim 𝑟
𝛿𝑎𝑎′𝛿𝑏𝑏′

12.2.8. The component of a function along each irreducible

representation

Combining with the earlier result of orthogonality when 𝑟 ≁ 𝑠, we have

〈𝑟𝑎𝑏, 𝑠𝑖 𝑗 〉 ≡
∑
ℎ∈𝐺

𝑟∗𝑎𝑏 (ℎ)𝑠𝑖 𝑗 (ℎ) =
|𝐺 |

dim 𝑟
𝛿𝑟𝑠𝛿𝑏 𝑗𝛿𝑎𝑖

Equivalently,
√

dim 𝑟
|𝐺 | 𝑟𝑎𝑏 is an orthonormal set of functions in 𝑙2 (𝐺) as 𝑟 runs

over the set of equivalence classes 𝐺̃ of representations of 𝐺, and 𝑎, 𝑏 label the

bases in each representations. These are analogous to the exponential functions of

Fourier analysis.

So, the (dim 𝑟)2 numbers

𝜙𝑟𝑎𝑏 =

∑
ℎ∈𝐺

𝑟∗𝑎𝑏 (ℎ)𝜙(ℎ)

can be thought of as the components of the complex-valued function 𝜙 for each

irreducible representation 𝑟 ∈ 𝐺̃. Do these components completely determine a

function? That is, can we reconstruct 𝜙 from its components 𝜙𝑟
𝑎𝑏

?

To answer this we need to prove the completeness of this decomposition. The

essential tool is the character of representations.
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12.2.9. Orthogonality of characters

A particular case of orthogonality is of special interest. By setting 𝑎 = 𝑏 and 𝑖 = 𝑗

and summing over 𝑎 and 𝑖 we get from the above

〈𝜒𝑟 , 𝜒𝑠〉 ≡
∑
ℎ∈𝐺

𝜒𝑟 (ℎ−1)𝜒𝑠 (ℎ) = |𝐺 |𝛿𝑟𝑠 , 𝑟, 𝑠 ∈ 𝐺̃

Thus, the characters of inequivalent representations are orthogonal to each

other. Moreover, the 𝑙2 norm of the character of an irreducible representation is√
|𝐺 |.

Suppose we have a representation

𝜌 =

⊕
𝑟 ∈𝐺̃

𝑚𝑟 𝑟

so that

𝜒𝜌 =

∑
𝑟 ∈𝐺̃

𝑚𝑟 𝜒𝑟 .

If we know the character function of 𝜌we can determine the multiplicities:

〈𝜒𝜌, 𝜒𝑟 〉 =
∑
𝑠∈𝐺̃

𝑚𝑠 〈𝜒𝑠 , 𝜒𝑟 〉 = |𝐺 |𝑚𝑟 =⇒ 𝑚𝑟 =
1

|𝐺 | 〈𝜒𝜌, 𝜒𝑟 〉

This justifies the name character: It completely determines the representation!

12.2.10. The left regular representation

The vector space 𝑙2(𝐺) carries a representation of the group, called its “left

regular representation”. That is, to every ℎ ∈ 𝐺 we associate a linear operator

𝐿(ℎ) : 𝑙2 (𝐺) → 𝑙2 (𝐺) by the formula

[𝐿(ℎ)𝜙] (𝑔) = 𝜙(ℎ−1𝑔), ℎ ∈ 𝐺.

We can check that this is indeed a representation6:

[𝐿(ℎ1)𝐿(ℎ2)𝜙] (𝑔) = [𝐿(ℎ2)𝜙] (ℎ−1
1 𝑔) = 𝜙(ℎ

−1
2 ℎ

−1
1 𝑔)

= 𝜙((ℎ1ℎ2)−1𝑔) = [𝐿(ℎ1ℎ2)𝜙] (𝑔).

6A point about notation: 𝐿 (ℎ1)𝐿 (ℎ2)𝜙 means that we act with 𝐿 (ℎ1) acts on the result of the action

of with 𝐿 (ℎ2) on 𝜙. This is the meaning of the first equality.
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(What would have been wrong with defining [𝐿(ℎ)𝜙] (𝑔) = 𝜙 (ℎ𝑔)?). More-

over, this is a unitary representation. That is

〈𝐿(ℎ)𝜙, 𝐿(ℎ)𝜓〉 = 〈𝜙, 𝜓〉, ℎ ∈ 𝐺.

For,

〈𝐿(ℎ)𝜙, 𝐿(ℎ)𝜓〉 =
∑
𝑔∈𝐺

𝜙∗(ℎ−1𝑔)𝜓(ℎ−1𝑔)

In the sum we can replace 𝑔 by ℎ𝑔: This is a one-one correspondence of

elements, just a different way to enumerate them. But then the r.h.s. just becomes

〈𝜙, 𝜓〉, proving invariance.

Thus, the left regular representation is a unitary representation of dimension

|𝐺 | of the group.

Remark 49. The left regular representation of 𝐺 is faithful. That is, 𝐿(ℎ)𝜙 =

𝜙,∀𝜙 ∈ 𝑙2 (𝐺) =⇒ ℎ = 1. (Just choose 𝜙 to be 1 at the identity and zero

everywhere else).

Of course, there is a mirror image of this construction that gives the right

regular representation:

[𝑅(ℎ′)𝜙] (𝑔) = 𝜙(𝑔ℎ′), ℎ′ ∈ 𝐺

It is also a faithful unitary representation of 𝐺. But it contains the same

information, so we just study the left regular.

12.2.11. The character of the left regular representation

Let us now calculate the character of the left regular representation. A basis for

𝑙2 (𝐺) is given by the functions 𝛿ℎ defined by

𝛿ℎ (𝑔) =
{

1 𝑔 = ℎ

0 𝑔 ≠ ℎ

Clearly any function can be expanded uniquely in terms of them:

𝜙(𝑔) =
∑
ℎ∈𝐺

𝜙(𝑔)𝛿ℎ(𝑔).
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(This is another way of seeing that 𝑙2 (𝐺) has dimension |𝐺 |.) Also, this basis

is orthonormal:

〈𝛿ℎ, 𝛿ℎ′〉 =
∑
𝑔∈𝐺

𝛿ℎ (𝑔)𝛿ℎ′ (𝑔) =
{

1 ℎ = ℎ′

0 ℎ ≠ ℎ′

The representation matrices are

𝐿ℎ,ℎ′ (𝑔) =
∑
𝑔′∈𝐺

𝛿ℎ (𝑔
′)𝛿ℎ′ (𝑔−1𝑔′) =

{
1 ℎ = 𝑔ℎ′

0 ℎ ≠ 𝑔ℎ′

The diagonal entries are all equal to one if 𝑔 is the identity and zero other wise:

𝐿ℎ,ℎ (𝑔) =
{

1 1 = 𝑔

0 1 ≠ 𝑔

Summing over ℎ, there are |𝐺 | terms equal to one when 𝑔 is the identity:

𝜒𝐿 (𝑔) =
{
|𝐺 | 𝑔 = 1

0 𝑔 ≠ 1

12.2.12. Left Regular is the mother of all representations

See [25] for further study of the “mother of all representations”.

Like any finite dimensional representation, the left regular representation can

be decomposed into a direct sum of irreducibles.

𝐿 =

⊕
𝑟 ∈𝐺̃

𝑚𝑟 𝑟. (12.1.2)

Since we know the character of 𝐿 we can compute the multiplicities:

𝑚𝑟 =
1

|𝐺 |
〈𝜒𝐿 , 𝜒𝑟 〉 = 𝜒𝑟 (1) = dim 𝑟

That is, left-regular representation contains every irreducible representation! In

fact it contains dim 𝑟 copies of each irreducible representation 𝑟. We have moreover

𝜒𝐿 (𝑔) =
∑
𝑟 ∈𝐺̃

dim 𝑟 𝜒𝑟 (𝑔)
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In particular, this gives for 𝑔 = 1

dim 𝐿 =

∑
𝑟 ∈𝐺̃

(dim 𝑟)2

But the dimension of the left regular representation is |𝐺 |:

|𝐺 | =
∑
𝑟 ∈𝐺̃

(dim 𝑟)2 (12.1.3)

This is a simple and beautiful relation between the irreducible representations

and the size of the group.

Remark 50. Of course we could have also said all this about the right regular

representation.In fact you see that the left-multiplicity of 𝑟being dim 𝑟 simply has

to do with the action of 𝐺 on the right.This becomes especially clear if we look

at how the components transform under the left and right regular actions. Perhaps

Right Regular is the father of all representations!

12.2.13. The transformations of the irreducible components of a function

under the left and right regular actions

Suppose we transform a function by the left regular action: 𝜙 ↦→ 𝐿𝑔𝜙 where

𝐿𝑔𝜙(ℎ) = 𝜙(𝑔−1ℎ).

How do its components change?

�[𝐿𝑔𝜙]𝑟𝑎𝑏 =

∑
ℎ∈𝐺

𝑟∗𝑎𝑏 (ℎ)𝜙(𝑔
−1ℎ)

=

∑
ℎ∈𝐺

𝑟∗𝑎𝑏 (𝑔ℎ)𝜙(ℎ)

=

∑
ℎ∈𝐺

𝑟∗𝑎𝑐 (𝑔)𝑟∗𝑐𝑏 (ℎ)𝜙(ℎ)

so that

�[𝐿𝑔𝜙]𝑟𝑎𝑏 = 𝑟∗𝑎𝑐 (𝑔)𝜙𝑟𝑐𝑏 .
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Similarly the right regular action

𝑅𝑔𝜙(ℎ) = 𝜙(ℎ𝑔)

would give

�[𝑅𝑔𝜙]𝑟𝑎𝑏 =

∑
ℎ∈𝐺

𝑟∗𝑎𝑏 (ℎ)𝜙(ℎ𝑔)

=

∑
ℎ∈𝐺

𝑟∗𝑎𝑏 (ℎ𝑔
−1)𝜙(ℎ)

=

∑
ℎ∈𝐺

𝑟∗𝑎𝑐 (ℎ)𝑟∗𝑐𝑏 (𝑔−1)𝜙(ℎ)

so that

�[𝑅𝑔𝜙]𝑟𝑎𝑏 = 𝜙𝑟𝑎𝑐𝑟
∗
𝑐𝑏 (𝑔−1)

So we see that the left and right regular actions act on the left and right indices

of the components. As with Fourier analysis, there is a complex conjugation when

we pass to the irreducible components.

12.2.14. Peter–Weyl theorem for finite groups

The decomposition (12.1.2) can be stated more explicitly: Every function on the

group can be decomposed uniquely as a sum of matrix elements of irreducible

representations. This is the completeness we seekd earlier.

Theorem 51. Peter-Weyl Theorem Let 𝜙 : 𝐺 → C be a function with Fourier

components in each irreducible representation 𝑟 ∈ 𝐺̃

𝜙𝑟𝑎𝑏 =

∑
𝑔∈𝐺

𝑟∗𝑎𝑏 (𝑔)𝜙(𝑔)

The Fourier series synthesizes 𝜙 from its components:

𝜙(𝑔) =
∑
𝑟 ∈𝐺̃

∑
𝑎𝑏

dim 𝑟

|𝐺 | 𝜙
𝑟
𝑎𝑏𝑟𝑎𝑏 (𝑔)

By choosing 𝜙(𝑔) = 𝛿ℎ (𝑔), last identity can also be written as a completeness

relation for the representation matrices:

𝛿ℎ (𝑔) =
∑
𝑟 ∈𝐺̃

∑
𝑎𝑏

dim 𝑟

|𝐺 | 𝑟
∗
𝑎𝑏 (ℎ)𝑟𝑎𝑏 (𝑔)
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12.2.15. Convolution on groups

Let𝐺 be a finite group: We no longer require it to be abelian. The space of functions

𝑙2 (𝐺) is a vector space of dimension equal to the number of elements |𝐺 | of the

group. This vector space becomes an algebra under the convolution

𝜙 ∗ 𝜓(𝑔) =
∑
ℎ∈𝐺

𝜙(ℎ)𝜓(ℎ−1𝑔)

If 𝐺 is not abelian, this convolution is not commutative: 𝜙 ∗ 𝜓 ≠ 𝜓 ∗ 𝜙 in

general. But it is always associative!

Proposition 52. The convolution product of functions on a group is associative:

(𝜙 ∗ 𝜓) ∗ 𝜂 = 𝜙 ∗ (𝜓 ∗ 𝜂)

Proof. Let us write

𝜙 ∗ 𝜓(𝑔) =
∑
ℎ1∈𝐺

𝜙(ℎ1)𝜓(ℎ−1
1 𝑔)

so that

[(𝜙 ∗ 𝜓) ∗ 𝜂] (𝑔) =
∑
ℎ2∈𝐺

[𝜙 ∗ 𝜓] (ℎ2)𝜂(ℎ−1
2 𝑔) =

∑
ℎ1 ,ℎ2∈𝐺

𝜙(ℎ1)𝜓(ℎ−1
1 ℎ2)𝜂(ℎ−1

2 𝑔)

In the last sum replace ℎ2 ↦→ ℎ1ℎ2 to get

[(𝜙 ∗ 𝜓) ∗ 𝜂] (𝑔) =
∑

ℎ1 ,ℎ2∈𝐺
𝜙(ℎ1)𝜓(ℎ2)𝜂( [ℎ1ℎ2]−1 𝑔)

OTOH, we can write

𝜓 ∗ 𝜂(𝑔) =
∑
ℎ∈𝐺

𝜓(ℎ2)𝜂(ℎ−1
2 𝑔)

and

[𝜙 ∗ (𝜓 ∗ 𝜂)] (𝑔) =
∑
ℎ1

𝜙(ℎ1) [𝜓 ∗ 𝜂] (ℎ−1
1 𝑔)

=

∑
ℎ1 ,ℎ2∈𝐺

𝜙(ℎ1)𝜓(ℎ2)𝜂
(
ℎ−1

2 ℎ−1
1 𝑔

)

Since [ℎ1ℎ2]−1
= ℎ−1

2
ℎ−1

1
we have the equality we need. �
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12.2.16. Decomposition of the convolution algebra into matrix algebras

Let us express the convolution in terms of the components of the functions.[�𝜙 ∗ 𝜓
]𝑟
𝑎𝑏

=

∑
ℎ∈𝐺

𝑟∗𝑎𝑏 (ℎ)𝜙 ∗ 𝜓(ℎ)

=

∑
ℎ,ℎ′∈𝐺

𝑟∗𝑎𝑏 (ℎ)𝜙(ℎ′)𝜓(ℎ
′−1ℎ)

Replace ℎ ↦→ ℎ′ℎ[�𝜙 ∗ 𝜓
]𝑟
𝑎𝑏

=

∑
ℎ,ℎ′∈𝐺

𝑟∗𝑎𝑏 (ℎ
′ℎ)𝜙(ℎ′)𝜓(ℎ)

=

∑
ℎ,ℎ′∈𝐺

dim 𝑟∑
𝑐=1

𝑟∗𝑎𝑐 (ℎ′)𝑟∗𝑐𝑏 (ℎ)𝜙(ℎ
′)𝜓(ℎ)

The sum factors into two separate sums:

=

dim 𝑟∑
𝑐=1

{ ∑
ℎ′∈𝐺

𝑟∗𝑎𝑐 (ℎ′)𝜙(ℎ′)
} {∑

ℎ∈𝐺
𝑟∗𝑐𝑏 (ℎ)𝜓(ℎ)

}

Thus [�𝜙 ∗ 𝜓
]𝑟
𝑎𝑏

=

dim 𝑟∑
𝑐=1

𝜙𝑟𝑎𝑐
˜𝜓𝑟
𝑐𝑏

Thus within each irreducible representation, the convolution reduces to a matrix

product. There is no mixing of different irreducible representations. This gives us

a new perspective on the harmonic analysis of function on a group:

Theorem 53. The convolution algebra on 𝑙2 (𝐺) decomposes into a direct sum of

matrix algebras labelled by irreducible representations

This explains in a natural why we have (dim𝑟)2 components for each 𝑟 ∈ 𝐺̃: that

is the number of independent components of a matrix in the representation space.

Thinking of the components as matrices also captures the non-commutativity of

the convolution product.

12.3. Central Functions

Of special importance are functions satisfying the condition

𝜉 (𝑔) = 𝜉 (ℎ𝑔ℎ−1),∀𝑔, ℎ ∈ 𝐺
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These are called central functions; the space of such functions will be denoted

by Z(𝐺). The reason for the name is the following proposition

Proposition 54. Central Functions commute with all functions under the convo-

lution: 𝜉 ∗ 𝜙 = 𝜙 ∗ 𝜉 for all 𝜉 ∈ Z(𝐺), 𝜙 ∈ 𝐶 (𝐺)

Proof. By replacing 𝑔 ↦→ ℎ−1𝑔, the definition of central function can also be

written as

𝜉 (ℎ−1𝑔) = 𝜉 (𝑔ℎ−1),∀𝑔, ℎ ∈ 𝐺
Now, setting ℎ = 𝑔ℎ′−1

𝜉 ∗ 𝜙(𝑔) =
∑
ℎ∈𝐺

𝜉 (ℎ)𝜙(ℎ−1𝑔) =
∑
ℎ′∈𝐺

𝜉 (𝑔ℎ′−1)𝜙(ℎ′)

Using the centrality of 𝜉,

𝜉 ∗ 𝜙(𝑔) =
∑
ℎ′∈𝐺

𝜉 (ℎ′−1𝑔)𝜙(ℎ′) = 𝜙 ∗ 𝜉 (𝑔)

The obvious examples of central functions are characters of representations. It

should not be surprising that �

Proposition 55. The functions 1√
|𝐺 |
𝜒𝑟 , 𝑟 ∈ 𝐺̃ provide an orthonormal basis for

the space of central functions

This is a corrolary of the Peter–Weyl Theorem: Just replace 𝜙 by 𝜉, put 𝑎 = 𝑏

and sum over 𝑎. Moreover,

Proposition 56. The Fourier components of a central function are multiples of

the identity in each irreducible representation

This is a simple consequence of Schur’s Lemma. The commutativity of central

functions fits nicely with this.

12.4. An Example: The Finite Heisenberg Group

Let Λ ≥ 2 be an integer and 𝑍Λ = Z/ΛZ the additive group of integers modulo Λ.

On the set 𝑍Λ × 𝑍Λ × 𝑍Λ define the product

(𝑚, 𝑛, 𝑐) (𝑚′, 𝑛′, 𝑐′) = (𝑚 + 𝑚′, 𝑛 + 𝑛′, 𝑐 + 𝑐′ − 𝑛𝑚′) mod Λ

This is not commutative, but is associative. We will call it the finite Heisenberg

group 𝐻𝑒𝑖𝑠(𝑍Λ). ( A similar group can be built out of any finite abelian group). If

𝑍Λ is replaced by the additive group of real numbers, we get the Heisenberg group

of quantum mechanics. Such finite “approximations” to quantum mechanics have

become of much interest in the context of quantum computing.
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12.4.1. Generators for 𝑯𝒆𝒊𝒔(𝒁𝚲)

Define

𝑋 = (1, 0, 0), 𝑌 = (0, 1, 0), 𝑍 = (0, 0, 1)

Then

𝑋𝑌 = (1, 1, 0) , 𝑌 𝑋 = (1, 1,−1)

𝑍𝑌𝑋 = (0, 0, 1) (1, 1,−1) = (1, 1, 0)

so that

𝑋𝑌 = 𝑍𝑌𝑋

With a little bit of work, we can see that the Heisenberg group is generated by

𝑋,𝑌, 𝑍:

𝐻𝑒𝑖𝑠(𝑍Λ) = 〈𝑋,𝑌, 𝑍 | 𝑋𝑌 = 𝑍𝑌𝑋, 𝑍𝑋 = 𝑋𝑍, 𝑍𝑌 = 𝑌𝑍, 𝑋Λ
= 1 = 𝑌Λ

= 𝑍Λ〉

Remark 57. A more economic choice of generators is just 𝑋 and𝑌 : We can iden-

tify 𝑍 = 𝑋𝑌𝑋−1𝑌−1. We just have to add the relations that 𝑋𝑌𝑋−1𝑌−1 commutes

with 𝑋 and 𝑌 . But we find it more convenient to retain 𝑍 as a generator.

12.4.2. Some automorphisms

Clearly

𝑋 ↦→ 𝑍𝑎𝑋, 𝑌 ↦→ 𝑍𝑏𝑌, 𝑎, 𝑏 ∈ 𝑍Λ

leaves the commutation relations unchanged. These are inner automorphisms as

𝑋𝑌𝑋−1
= 𝑍𝑌 =⇒ 𝑋𝑏𝑌𝑋−𝑏

= 𝑍𝑏𝑌

𝑌−1𝑋𝑌 = 𝑍𝑋 =⇒ 𝑌−𝑎𝑋𝑌 𝑎
= 𝑍𝑎𝑋

We now turn to studying representations of the group. We will denote the

matrix representing 𝑋 by 𝑋̂, and similarly for 𝑌 and 𝑍 .

Since it commutes with everything, 𝑍 is a multiple of the identity in any

irreducible representation:

𝑍̂ = 𝜁1, 𝜁 ∈ 𝑍Λ

Here we are viewing 𝑍Λ as the multiplicative, group of Λth roots of unity.

Hopefully it is clear from the context whether we mean addition or multiplication

as the group operation.
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Then, there is an equivalence transformation

𝑋̂ ↦→ 𝜁 𝑎 𝑋̂, 𝑦̂ ↦→ 𝜁𝑏𝑌̂

We can use this to simplify the phases of the representation matrices (see

below).

It is possible to generalize this a bit. Now, consider the more general

transformation

𝑋 ′
= 𝑋𝑎1𝑌𝑏1 , 𝑌 ′

= 𝑋𝑎2𝑌𝑏2 , 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝑍Λ

Then

𝑋 ′𝑌 ′
= 𝑋𝑎1𝑌𝑏1𝑋𝑎2𝑌𝑏2 = 𝑍−𝑏1𝑎2𝑋𝑎1+𝑎2𝑌𝑏1+𝑏2

𝑌 ′𝑋 ′
= 𝑋𝑎2𝑌𝑏2𝑋𝑎1𝑌𝑏1 = 𝑍−𝑏2𝑎1𝑋𝑎1+𝑎2𝑌𝑏1+𝑏2

So,

𝑋 ′𝑌 ′
= 𝑍𝑌 ′𝑋 ′ ⇐⇒ 𝑏2𝑎1 − 𝑏1𝑎2 = 1 mod Λ

This is analogous to a symplectic transformation in mechanics.In particular

𝑋 ↦→ 𝑌−1, 𝑌 ↦→ 𝑋 is an automorphism: Just choose 𝑎1 = 0, 𝑏1 = −1, 𝑎2 = 1,

𝑏2 = 0.

However, these are outer automorphisms: They cannot be written as conjuga-

tions 𝑋 ↦→ 𝑔𝑋𝑔−1, 𝑌 ↦→ 𝑔𝑌𝑔−1 for some 𝑔 ∈ 𝐻𝑒𝑖𝑠(𝑍Λ).
Our next task is to determine all the irreducible representations of 𝐻𝑒𝑖𝑠(𝑍Λ).

But before we do that it is useful to work out a simpler special case:

Exercise 58. Determine all the irreducible representations (up to equivalence) of

𝐻𝑒𝑖𝑠(𝑍Λ) when Λ is a prime number.

Solution

The representations of a finite group are unitary. Since 𝑋̂, 𝑍̂ commute they

have a simultaneous eigenvector 𝜓0.

𝑋̂𝜓0 = 𝜉𝜓0, 𝑍̂𝜓0 = 𝜁𝜓0

Choose 𝜓0 to have length one.

Since 𝑍̂Λ
= 1, we have 𝜁Λ = 1. Let us assume for now that 𝜁 a primitive root

Λth of unity. (This means that no smaller power of 𝜁 is equal to one; and hence

that any other root can be written as a power of 𝜁 ).
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Since Λ is a prime, any root which is not equal to one is primitive:

𝜁Λ = 1, 𝜁 ≠ 1.

This is one of the simplifications when Λ is prime. Since 𝑋̂Λ
= 1, 𝜉 is also a

root of unity. There must be an 𝑎 ∈ 𝑍Λ such that 𝜉 = 𝜁 𝑎.

Now,

𝑋̂𝑌̂ 𝑘𝜓0 = 𝑍̂ 𝑘𝑌̂ 𝑘 𝑋̂𝜓0 = 𝜉𝜁 𝑘𝑌̂ 𝑘𝜓0

Thus 𝑌̂ 𝑘𝜓0 are also eigenvectors of 𝑋̂ and 𝑍̂ . The eigenvalues 𝜉𝜁 𝑘 , 𝑘 =

0, 1, · · ·Λ − 1 are distinct, since 𝜁 is primitive and Λ is prime. So, 𝑌̂ 𝑘𝜓0 are

orthogonal to each other and each of length one. (We also use the fact that 𝑌̂ is

unitary).

Thus, in the Λ dimensional space spanned by 𝑌 𝑘𝜓0, 𝑘 = 0, . . . ,Λ − 1, 𝑋̂ is a

diagonal matrix:

𝑋̂ = 𝜉

��������

1 0 0 · · · 0

0 𝜁 0 · · · 0

0 0 𝜁2 · · · 0

· · · · · · · · · · · · · · ·

0 0 0 · · · 𝜁Λ−1

�������
 
, 𝑍 = 𝜁1Λ

Also,

𝑌𝑌̂ 𝑘𝜓0 = 𝑌̂ 𝑘+1𝜓0, 𝑘 = 0, 1, . . .Λ − 2

𝑌𝑌̂Λ−1𝜓0 = 𝜓0

So 𝑌̂ is a cyclic permutation:

𝑌 =

��������

0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · ·

0 0 · · · 1 0

�������
 

We can now make the equivalence transformation

𝑋̂ ↦→ 𝑌̂−𝑎 𝑋̂𝑌̂ 𝑎, 𝜉 = 𝜁 𝑎

to set 𝜉 = 1. This simplifies our analysis: 𝜉 is not a relevant parameter; it can be

removed by an equivalence transformation.
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To summarize, for each choice of a primitive root 𝜁 we have a representation

of dimension Λ:

𝑋̂ =

��������

1 0 0 · · · 0

0 𝜁 0 · · · 0

0 0 𝜁2 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · 𝜁Λ−1

�������
 
, 𝑌̂ =

��������

0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · ·
0 0 · · · 1 0

�������
 
,

𝑍̂ = 𝜁1Λ, 𝜁Λ = 1, 𝜁 ≠ 1

There are Λ − 1 such choices of 𝜁 .

It remains to consider the case where 𝜁 = 1; i.e.,when 𝑍 is in the kernel.So these

representations factor through the commutative group 𝑍Λ × 𝑍Λ = 𝐻𝑒𝑖𝑠(𝑍Λ)/𝑍Λ
where we quotient out the center. The equivalence classes of irreducible represen-

tations of this group (its dual) is again 𝑍Λ × 𝑍Λ: there are Λ2 such representations,

all of which are one dimensional:

𝑋̂ = 𝜉, 𝑌̂ = 𝜂 𝜉Λ = 1 = 𝜂Λ

This time we cannot remove 𝜉 or 𝜂 by equivalence transformations: All the

representations are one dimensional and so conjugations have no effect.

Recall that if 𝐺̃ is the set of equivalence classes of irreducible representations

of a group 𝐺, ∑
𝑟 ∈𝐺̃

(dim 𝑟)2
= |𝐺 |.

There areΛ−1 choices of a primitive root 𝜁 giving dimensionΛ representations,

and Λ
2 one dimensional representations. Summing over all the representations we

have so far gets us

(Λ − 1)Λ2 + Λ
2
= Λ

3.

This proves that, we have found all the irreducible representations of𝐻𝑒𝑖𝑠(𝑍Λ)

when Λ is prime.

Representations of this type are studied further in the delightful book by Terras

[25].

12.4.3. Irreducible representations of 𝑯𝒆𝒊𝒔(𝒁𝚲)

Since 𝑍 is central, in any irreducible representation it will be a multiple of the

identity:

𝑍̂ = 𝜁1𝐷
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where 𝐷 is the dimension of the representation. Since 𝑍Λ
= 1 we must have

𝜁Λ = 1. Let 𝑑 be the smallest number such that 𝜁 𝑑 = 1; i.e., 𝜁 is a primitive root

of unity, of order 𝑑. Then 𝑑 is a divisor of Λ. Now,

𝑋𝑌 = 𝑍𝑌𝑋 =⇒ 𝑋𝑌 𝑑
= 𝑍𝑑𝑌 𝑑𝑋

Thus, 𝑋̂ and 𝑌 𝑑 commute with each other. So, 𝑌̂ 𝑑 commutes with all the

representation matrices, and must be a multiple of the identity:

𝑌̂ 𝑑
= 𝜂1𝐷

Since
(
𝑌 𝑑

) Λ

𝑑 = 1 we must have

𝜂
Λ

𝑑 = 1.

Let 𝜓0 be an eigenvector of 𝑋̂:

𝑋̂𝜓0 = 𝜉1𝜓0

Choose 𝜓0 to be of unit length. Then 𝑌̂ 𝑘𝜓0 is also an eigenvector of 𝑋̂:

𝑋̂ (𝑌 𝑘𝜓0) = 𝜁 𝑘𝑌̂ 𝑘 𝑋̂𝜓0 = 𝜉1𝜁
𝑘 (𝑌̂ 𝑘𝜓0)

The eigenvalues 𝜉1𝜁
𝑘 are distinct from each other for 𝑘 = 0, 1, . . . , 𝑑 − 1

(since 𝜁 is primitive root of order 𝑑). So 𝜓𝑘 ≡ 𝑌̂ 𝑘𝜓0 are mutually orthogonal for

𝑘 = 0, 1, . . . , 𝑑 − 1. They are all also of length one as 𝑌̂ is unitary. Thus there is a

vector space 𝑉 of dimension 𝑑 for with 𝑌̂ 𝑘𝜓 is an orthonormal basis.

In this basis

𝑌̂𝜓𝑘 = 𝜓𝑘+1 𝑘 = 0, 1, . . . , 𝑑 − 2

and

𝑌̂𝜓𝑑−1 = 𝜂𝜓0

since 𝑌̂𝜓𝑑−1 = 𝑌̂ 𝑑𝜓0. As matrices

𝑋̂ = 𝜉1

�������
�

1 0 0 · · · 0

0 𝜁 0 · · · 0

0 0 𝜁2 · · · 0

· · · · · · 0

0 0 0 · · · 𝜁 𝑑−1

�������
 
, 𝑌̂ =

�������
�

0 0 0 · · · 𝜂

1 0 0 · · · 0

0 1 0 · · · 0

· · · · · · 0

0 0 0 · · · 0

�������
 
,

𝑍̂ = 𝜁

�������
�

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · 0

0 0 0 · · · 1

������� 



HARMONIC ANALYSIS ON FINITE GROUPS 247

Since only multiples of identity commute with 𝑋̂ and 𝑌̂ it is an irreducible

representation of dimension 𝑑, the chosen divisor of Λ.

Since

𝑌−𝑎 𝑋̂𝑌 𝑎 = 𝜁 𝑎 𝑋̂,

we can transform 𝜉 ↦→ 𝜉𝜁 𝑎 by an equivalence transformation. Two different repre-

sentations with parameters 𝜉1 and 𝜉 ′
1

which are related by 𝜉 ′
1
= 𝜁 𝑎𝜉1 are equivalent

for 𝑎 ∈ 𝑍𝑑 . The equivalence class is labelled by 𝑍Λ/𝑍𝑑 = 𝑍 Λ

𝑑
. The projection

𝑍Λ → 𝑍 Λ

𝑑
is given by 𝜉𝑑

1
. In other words, two representations are equivalent if

𝜉𝑑
1
= 𝜉 ′𝑑

1
.Let us denote 𝜉 = 𝜉𝑑

1
.

To summarize, the representation we found is determined by three parameters7

(𝜉, 𝜂, 𝜁 ) with8

𝜉, 𝜂 ∈ 𝑍 Λ

𝑑
, 𝑑 | Λ

and 𝜁 is a primitive root of order 𝑑.

Recall that for any finite group 𝐺

|𝐺 | =
∑
𝑟 ∈𝐺̃

(dim 𝑟)2

where 𝐺̃ is the set of equivalence classes of irreducible representations. If we form

this sum for the representations we have found,∑
𝑑 |Λ

∑
𝜉 ,𝜂∈𝑍 Λ

𝑑

∑
𝜁

𝑑2
=

∑
𝑑 |Λ

Λ

𝑑
×
Λ

𝑑
× 𝜏(𝑑) × 𝑑2

The factors of Λ

𝑑
account for the choices of 𝜉 and 𝜂. Also, 𝜏(𝑑) is the number of

primitive roots 𝜁 of unity of order 𝑑. This is equal to the number 𝜏(𝑑) of integers

co-prime to 𝑑, called the Euler totient function. So,∑
𝑑 |Λ

∑
𝜉 ,𝜂∈𝑍 Λ

𝑑

∑
𝜁

𝑑2
= Λ

2
∑
𝑑 |Λ

𝜏(𝑑)

Now, it is a well-known identity9 that∑
𝑑 |Λ

𝜏(𝑑) = Λ

7No need to list 𝑑 separately, as it is determined by 𝜁 : it is the smallest number such that 𝜁 𝑑
= 1.

8We use a notation common in number theory: 𝑑 | Λ means that 𝑑 is a divisor of Λ. That is, Λ

𝑑
is an

integer.
9The proof is elementary. The rhs is the number of roots of unity of order Λ; we can partition them

into sets of primitive roots of order 𝑑, for each divisor of Λ. The number of elements in each set is

𝜏 (𝑑).
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Thus, ∑
𝜉 ,𝜂∈𝑍 Λ

𝑑

∑
𝜁

𝑑2
= Λ

3

Thus, we have found all the irreducible representations of 𝐻𝑒𝑖𝑠(𝑍Λ).

Remark 59. In particular, only the representations where 𝜁 is a primitiveΛth root

of unity are faithful. There are 𝜏(Λ) such inequivalent representations, each of

dimensionΛ. In this case, 𝜉 and 𝜂 are both equal to one: The choice of 𝜁 determines

the representation up to equivalence. This is the finite analogue of the Stone–von

Neumann theorem for the continuous Heisenberg group of quantum mechanics:

The analogue of 𝜁 is the choice of a value of Planck’s constant. Given this, there is a

unique equivalence class of faithful irreducible representations for that Heisenberg

group. The discrete Heisenberg group we studied arises in approximating quantum

systems using “qudit” systems; there are hopes that quantum computers can be

built out of these.

12.4.4. Characters

Let us compute the character of the representation labelled by (𝜉, 𝜂, 𝜁 ) .

We need the sum of diagonal elements of 𝑋̂𝑚𝑌̂𝑛. But 𝑌̂𝑛 has diagonal elements

only if 𝑑 | 𝑛. Then

𝑋̂𝑚𝑌̂𝑛 𝑍̂𝑐
= 𝜁 𝑐𝜉𝑚1 𝜂

𝑛
𝑑

��������

1 0 0 · · · 0

0 𝜁𝑚 0 · · · 0

0 0 𝜁2𝑚 · · · 0

· · · · · · 0

0 0 0 · · · 𝜁𝑚(𝑑−1)

�������
 

Recalling that 𝜁 𝑑 = 1, the geometric series

1 + 𝜁𝑚 + 𝜁2𝑚 + · · · 𝜁𝑚(𝑑−1)
=

1 − 𝜁𝑚𝑑

1 − 𝜁𝑚

vanishes if 𝑑 ∤ 𝑚; if 𝑑 | 𝑚 each terms is equal to one so it sums to 𝑑. So, the

character is

𝜒( 𝜉 ,𝜂,𝜁 ) (𝑚, 𝑛, 𝑐) = tr𝑋̂𝑚𝑌̂𝑛 𝑍̂𝑐
= 𝑑𝜁 𝑐𝜉𝑚1 𝜂

𝑛
𝑑 𝛿(𝑑 | 𝑚)𝛿(𝑑 | 𝑛)

Since 𝜉𝑑
1
= 𝜉 we can write this as

𝜒( 𝜉 ,𝜂,𝜁 ) (𝑚, 𝑛, 𝑐) = 𝑑𝜁
𝑐𝜉

𝑚
𝑑 𝜂

𝑛
𝑑 𝛿(𝑑 | 𝑚)𝛿(𝑑 | 𝑛)

As expected the answer is symmetric under the interchange 𝑚 ↔ 𝑛, 𝜉 ↔ 𝜂.
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12.4.4.1. Orthonormality of characters

Recall the general formula

〈𝜒𝑟 , 𝜒𝑠〉 ≡
∑
ℎ∈𝐺

𝜒∗𝑟 (ℎ)𝜒𝑠 (ℎ) = |𝐺 |𝛿𝑟𝑠 , 𝑟, 𝑠 ∈ 𝐺̃

Let us verify this by calculating

〈𝜒∗( 𝜉 ,𝜂,𝜁 ) , 𝜒( 𝜉 ,′𝜂′,𝜁 ′)〉 =
∑

𝑚,𝑛,𝑐∈𝑍Λ

𝑑𝜁 ∗𝑐𝜉∗
𝑚
𝑑 𝜂∗

𝑛
𝑑 𝛿(𝑑 | 𝑚)𝛿(𝑑 | 𝑛)𝑑 ′𝜁 ′𝑐

× 𝜉′ 𝑚𝑑′ 𝜂′ 𝑛
𝑑′ 𝛿(𝑑 ′ | 𝑚)𝛿(𝑑 ′ | 𝑛)

The sums factorize

〈𝜒∗( 𝜉 ,𝜂,𝜁 ) , 𝜒( 𝜉 ,′𝜂′,𝜁 ′)〉 = 𝑑𝑑 ′
∑
𝑚∈𝑍Λ

𝜉∗
𝑚
𝑑 𝜉

′ 𝑚
𝑑′ 𝛿(𝑑 | 𝑚)𝛿(𝑑 ′ | 𝑚)

×
∑
𝑛∈𝑍Λ

𝜂∗
𝑛
𝑑 𝜂

′ 𝑛
𝑑′ 𝛿(𝑑 | 𝑛)𝛿(𝑑 ′ | 𝑛)

∑
𝑐∈𝑍Λ

𝜁 ∗𝑐𝜁 ′𝑐

Since 𝜁 , 𝜁 ′ are Λthroots of unity we know that∑
𝑐∈𝑍Λ

𝜁 ∗𝑐𝜁 ′𝑐 = Λ𝛿𝜁 𝜁 ′

Since 𝑑 is the smallest number such that 𝜁 𝑑 = 1 and similarly 𝑑 ′ is for 𝜁 ′, it

follows that when 𝜁 = 𝜁 ′, we have also 𝑑 = 𝑑 ′. Then we have

𝛿(𝑑 | 𝑚)𝛿(𝑑 ′ | 𝑚 = 𝛿(𝑑 | 𝑚)

The sum over 𝑚 becomes, after the change of variables 𝜇 =
𝑚
𝑑

, (remembering

that 𝜉, 𝜉 ′ are roots of unity of order Λ

𝑑
)

∑
𝑚∈𝑍Λ

𝜉∗
𝑚
𝑑 𝜉

′ 𝑚
𝑑 𝛿(𝑑 | 𝑚) =

∑
𝜇∈𝑍 Λ

𝑑

𝜉∗𝜇𝜉
′𝜇

=
Λ

𝑑
𝛿𝜉 , 𝜉 ′

and similarly for the sum over 𝑛. Thus,

〈𝜒∗( 𝜉 ,𝜂,𝜁 ) , 𝜒( 𝜉 ,′𝜂′,𝜁 ′)〉 = 𝑑2Λ

𝑑
𝛿𝜉 , 𝜉 ′

Λ

𝑑
𝛿𝜂,𝜂′Λ𝛿𝜁 𝜁 ′ = Λ

3𝛿𝜉 , 𝜉 ′𝛿𝜂,𝜂′𝛿𝜁 𝜁 ′ .

as was to be proved (since |𝐺 | = Λ
3).

For a beautiful application of this representation theory to understand random

walks on the Heisenberg group, see [26].
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Chapter 13

HARMONIC ANALYSIS ON COMPACT

LIE GROUPS

13.1. Compact?

The abstract definition of compactness is somewhat obscure and not of direct utility

to us.

Definition 60. An open cover of a topological space 𝑋 is a family Φ of open

subsets such that 𝑋 =
⋃

𝑆∈Φ 𝑆. If every open cover has a finite subcover 𝐹 ⊆ Φ we

say that 𝑋 is compact.

There are many familiar examples, though:

• Any finite set is compact

• The real line is not compact. But a subset of it is compact iff it is closed bounded

• Vector spaces are not compact. But for finite dimensional vector spaces, a subset

is compact iff it is closed bounded

• In infinite dimensional vector spaces, there are closed bounded subsets that are

not compact. For example the unit ball in a Hilbert space is not compact

• An ellipsoid whose principal axes is a sequence that converges to zero is a

compact subset of an infinite dimensional Hilbert space

• A closed subset of a compact set is again compact

• Many familiar shapes such as a circle or a sphere are therefore compact spaces

It is useful to understand compactness in terms of its implication for continuous

functions. A continuous function on a compact space is bounded; moreover it

achieves its lowest upper bound.In many situations, compactness is a substitute

for finiteness. This is true of groups: Much of the theory of finite groups can be

generalized to compact Lie groups.

251
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13.1.1. Compact Lie groups?

When it comes to groups,

𝑈 (𝑛), 𝑆𝑈 (𝑛), 𝑂 (𝑛)

are compact for any 𝑛. Examples of non-compact Lie groups are

• The real line

• The Lorentz group 𝑂 (1, 3)
• 𝐺𝐿(𝑛), 𝑆𝐿𝑛(𝑅), 𝑆𝐿𝑛 (𝐶)

The point is that in these groups we can “off to infinity” along a one-parameter

subgroup.

13.2. Non-Compact Lie Groups

Before we get going, let us note an important fact about non-compact groups:

Theorem 61. A non-compact Lie group has no faithful1finite dimensional unitary

representation

The point is that a continuous map cannot take a non-compact set to a compact

set. The finite dimensional unitary group 𝑈 (𝑛) is compact. So it cannot contain

the image of a faithful representation of a non-compact Lie group. So, unitary rep-

resentations of non-compact Lie groups are infinite dimensional and so are much

more subtle. The mathematics, pioneered by Gelfand and Bargmann and devel-

oped fully by Harish-Chandra, is exquisite. But has not found much application in

physics as yet, apart from the work of Wigner on the Poincare’ group. There are

many excellent discussions of this, including Wigner’s original papers.

13.3. A Tale of Two Hilbert Spaces: 𝒍2(Z) and 𝑳
2 (𝑼(1))

We begin with the simplest case of a compact Lie group, 𝑈 (1).
A Hilbert space is a vector space with an inner product (hence a norm) that

satisfies two additional conditions:

• It is complete; i.e., every Cauchy sequence of vectors 𝑣𝑘 ∈ H has a limit which

is also in H
• It has a countable orthonormal basis 𝑒𝑚

1Faithful means that the kernel is trivial: the representation matrix 𝑅 (𝑔) determines 𝑔.
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Obviously any finite dimensional vector space with positive inner product

satisfies these conditions. So the interesting cases are infinite dimensional.

13.3.1. 𝒍
2(Z)

The additive group of integers yields our first example of an infinite dimensional

Hilbert space. A function 𝜙 : Z→ C is simply a sequence 𝜙𝑚 of numbers indexed

by the integers. Define the space 𝑙2 (Z) to be the set of all square-summable

sequences:

𝑙2 (Z) =
{
𝜙 : Z→ C

�����
∑
𝑚∈Z

����� 𝜙𝑚 |2 < ∞
}

If the function vanish fast enough for large |𝑚 | this sum will converge. We

define the norm | |𝜙 | | of 𝜙 ∈ 𝑙2 (Z) by

| |𝜙 | |2 =

∑
𝑚∈Z

|𝜙𝑚 |2

For two functions in 𝑙2 (Z) we can define an inner product

〈𝜙, 𝜓̃〉 =
∑
𝑚∈Z

𝜙∗
𝑚𝜓̃𝑚

This will converge because of the Schwarz inequality:

| 〈𝜙, 𝜓̃〉 |≤ ||𝜙 | | | |𝜓̃ | |

It is not hard to show that 𝑙2 (Z) is indeed complete: That is, Cauchy sequences

converge to a limit in 𝑙2 (Z). And that there is a countable orthonormal basis. For

example the functions 𝛿𝑚 concentrated at each point of Z:

𝛿𝑚(𝑛) =
{

1 𝑚 = 𝑛

0 𝑚 ≠ 𝑛

is such a basis.

13.3.2. 𝑳
2(𝑼(1))

The simplest compact Lie group is 𝑈 (1); also called the circle group.Functions

𝜙 : 𝑈 (1) → R are simply periodic functions of period 2𝜋 of the angular co-

ordinate 𝜃.
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The space of continuous periodic functions admit an inner product

〈𝜙, 𝜓〉 =
∫ 𝜋

−𝜋
𝜙∗(𝜃)𝜓(𝜃) 𝑑𝜃

2𝜋

This inner product is much like the dot product in Euclidean space; instead of

a sum over products of components, we have an integral. This allows us to define

a metric; i.e., a notion of distance between two continuous functions.

| |𝜙 − 𝜓 | | =

√∫ 𝜋

−𝜋
| 𝜙(𝜃) − 𝜓(𝜃) |2 𝑑𝜃

2𝜋

Alas, the space of continuous functions is not complete in this metric. Here is

an example:

Exercise 62. Define the “pyramid” function

𝑓 (𝜃) =
{√

3𝜋 (1 − |𝜃 |) |𝜃 | < 1

0 otherwise

It is continuous on the interval [−𝜋, 𝜋]. (It can be extended to a continuous

periodic function of period 2𝜋 on the real line. )Show that the sequence 𝑓𝑘 (𝜃) =√
𝑘 𝑓 (𝑘𝜃), 𝑘 = 1, 2, . . . is a Cauchy sequence; i.e., that | | 𝑓𝑘+1 − 𝑓𝑘 | | → 0 as

𝑘 → ∞. But that the limit is not itself a continuous function.

Solution

The constant
√

3𝜋 and the factor
√
𝑘 are chosen so that | | 𝑓𝑘 | | = 1. (Verify by

calculating the integral using Mathematica).

The integral
∫ 𝜋

−𝜋 ( 𝑓𝑘+1(𝜃) − 𝑓𝑘 (𝜃))2 𝑑𝜃
2𝜋

can be evaluated using Mathematica

to get a complicated formula for | | 𝑓𝑘+1 − 𝑓𝑘 | |. We need only the limiting behavior

| | 𝑓𝑘+1 − 𝑓𝑘 | | =
√

5

2
4
√

3𝜋
𝑘−

3
4 + O(𝑘−1)

which tends to zero. The limit of 𝑓𝑘 (𝜃) is not a continuous function. For example,

𝑓𝑘 (0) =
√

3𝜋𝑘 tends to infinity. In fact the functions become more peaked at the

origin and the support tends to a vanishingly small interval of length 2
𝑘

for large

𝑘. See the figure.

This leads to some technical complications which have been largely resolved by

mathematicians. The field of functional analysis is about this and related matters.

We will not delve into these matters much. We will just mention (without proof
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or even a precise statement sometimes) some of the ideas involved; and give some

examples.

13.3.2.1. 𝐿2 (𝑈 (1)) as a completion

Recall that a Cauchy sequence in a metric space is a sequence which approach

each other in distance: | |𝜙𝑘+1 − 𝜙𝑘 | | is as small as you want for large enough 𝑘. In

this language, what we are saying is that the space of continuous functions is not

complete. This phenomenon also occurs in the space of rational numbersQ: There

are Cauchy sequences of rational numbers whose limit is not rational. An example

is the sequence of decimal approximations for
√

2:

1, 1.4, 1.41, 1.414, . . .

We can remedy this situation by enlargingQ by passing to space of equivalence

classes of Cauchy sequences of rationals. The notion of equivalence is this: Given

two sequences 𝜙𝑘 and 𝜓𝑘 , we can make a new sequence by interlacing them:

𝜙1, 𝜓1, 𝜙2, 𝜓2, . . .

If this interlaced sequence is also Cauchy, we say they are equivalent. The idea

is that equivalent sequences “tend to the same limit”. The set of such equivalence

classes is again a metric space; but one that is complete.This is one way to construct

real numbers. It is just a precise way of saying that real numbers are those that can

be approximated as close as you wish by sequences of rational numbers.

A similar process can be put through for smooth functions on the circle with

the above notion of metric. 𝐿2(𝑈 (1)) is the completion of the space of continuous
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functions by in the metric | |𝜙 − 𝜓 | |. A typical element of 𝐿2(𝑈 (1)) is not a

continuous function on 𝑈 (1): But it can be approximated by continuous functions

as closely as we want.

13.3.3. An orthonormal set in 𝑳
2(𝑼(1))

Examples of continuous functions on the circle are exponentials such as

. . . , 𝑒−2𝑖 𝜃 , 𝑒−𝑖 𝜃 , 1, 𝑒𝑖 𝜃 , 𝑒2𝑖 𝜃 , . . .

We will denote them by 𝑒𝑚:

𝑒𝑚(𝜃) = 𝑒𝑖𝑚𝜃 , 𝑚 ∈ Z.

Proposition 63. The exponential functions form an orthonormal set:∫ 𝜋

−𝜋
𝑒∗𝑚(𝜃)𝑒𝑛 (𝜃)

𝑑𝜃

2𝜋
= 𝛿𝑚,𝑛, 𝑚, 𝑛 ∈ Z.

Proof. When 𝑚 = 𝑛 this is obvious, as the exponentials in the integrand cancel

and the statement reduces to
∫ 𝜋

−𝜋
𝑑𝜃
2𝜋

= 1. When 𝑚 ≠ 𝑛 the lhs is equal to

∫ 𝜋

−𝜋
𝑒𝑖 (𝑛−𝑚) 𝜃 𝑑𝜃

2𝜋
= 𝐼𝑛−𝑚 =

[
𝑒𝑖 (𝑛−𝑚) 𝜃

𝑖(𝑛 − 𝑚)

] 𝜃=𝜋
𝜃=−𝜋

.

This is zero since the exponential has the same value at 𝜃 = 𝜋 and 𝜃 = −𝜋. �

13.3.4. The duality of 𝑳2(𝑼(1)) and 𝒍
2(Z)

Given any element of 𝐿2 (𝑈 (1)) we can find its components along the exponentials:

𝜙𝑚 = 〈𝑒𝑚, 𝜙〉 =
∫

𝑒∗𝑚(𝜃)𝜙(𝜃)
𝑑𝜃

2𝜋

The integral converges because of the Schwarz inequality.

It is fair to ask if these components can be used to reconstruct the original

function from these components. We now state a few results which allow this

reconstruction. The proofs can be skipped in a first reading. The proofs of these

results (under slightly weaker assumptions) are detailed in the classic book [27].

They are summarized in subsections below.

From orthonormality we can conclude already the following:

Proposition 64. Bessel’s inequality∑
𝑚∈Z

| 𝜙𝑚 |2 ≤
∫
𝑈 (1)

| 𝜙(𝜃) |2 𝑑𝜃
2𝜋
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The remaining question is whether there is some information about 𝜙 missing

in the components 𝜙𝑚. Can we prove

𝜙(𝜃) = ∑
𝑚∈Z 𝜙𝑚𝑒𝑖𝑚𝜃? A systematic approach to studying this infinite sum is

to start with the partial sums

𝑆Λ =

∑
|𝑚 |≤Λ

𝜙𝑚𝑒𝑚

and study the limit Λ → ∞. It turns out that the sequence 𝑆Λ(𝜃) may not converge

to 𝜙(𝜃) for individual values of 𝜃, for 𝜙 ∈ 𝐿2 (𝑈 (1)). But we don’t need that. We

do have convergence in the norm of 𝐿2(𝑈 (1)):

Proposition 65. Convergence in 𝐿2 (𝑈 (1)). If 𝜙 is a continuous function on the

circle, limΛ→∞ | |𝜙 − 𝑆Λ | | = 0

This guarantees that 𝑒𝑚, 𝑚 ∈ Z is a basis for 𝐿2 (𝑈 (1)); the components 𝜙𝑚

contain all the information contained in the element 𝜙 of 𝐿2 (𝑈 (1)) at least for

continuous functions. And since any element of 𝐿2 (𝑈 (1)) can be approximated

by continuous functions, this extends to all of 𝐿2(𝑈 (1)). So, 𝐿2(𝑈 (1)) is a Hilbert

space.

Theorem 66. The set 𝑒𝑚, 𝑚 ∈ Z is an orthonormal basis in 𝐿2 (𝑈 (1))

Moreover,

Theorem 67. Plancherel Formula a.k.a. Parseval identity

∑
𝑚∈Z

| 𝜙𝑚 |2 =

∫
𝑈 (1)

| 𝜙(𝜃) |2 𝑑𝜃
2𝜋

This says that Fourier transform is a unitary map from 𝐿2 (𝑈 (1)) to 𝑙2 (Z). In

some applications (signal processing) the rhs has the meaning of energy; then this

says that all the energy can be accounted for by adding up the energies of the

Fourier components. In quantum mechanics, probability-rather than energy-is the

meaning of the rhs.

13.3.5. Proof of Bessel’s inequality

Given any orthonormal set (not necessarily a basis) 𝑒𝑚 we can find the components

𝜙𝑚 = 〈𝑒𝑚, 𝜙〉 =
∫

𝑒∗𝑚 (𝜃)𝜙(𝜃) 𝑑𝜃2𝜋
and form the series 𝑆 =

∑
𝑚∈Z 𝜙𝑚𝑒𝑚. It follows
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that

〈𝜙, 𝑆〉 =
∑
𝑚∈Z

| 𝜙𝑚 |2

Also,

| |𝑆 | |2 =

∑
𝑚,𝑛

𝜙∗
𝑚𝜙𝑛〈𝑒𝑚, 𝑒𝑛〉 =

∑
𝑚

| 𝜙𝑚 |2

which is a version of Pythagoras’ theorem. Therefore

〈𝑆, 𝜙 − 𝑆〉 = 0.

Thus

𝜙 = 𝑆 + (𝜙 − 𝑆)

is an orthogonal decomposition. By Pythagoras,

| |𝜙 | |2 = | |𝑆 | |2 + ||𝜙 − 𝑆 | |2 ≥ ||𝑆 | |2

This is Bessel’s inequality.

13.3.6. Proof of Convergence in 𝑳
2(𝑼(1))

This relies on a basic result of analysis (a version of the Weierstrass approximation

theorem) that continuous functions on a circle can be approximated by trigono-

metric polynomials (i.e., finite series of the form 𝑃(𝜃) = ∑
𝑚 𝑃̃𝑚𝑒𝑖𝑚𝜃 ) as closely

as desired:

For any 𝜖 > 0 there is a trig polynomial 𝑃(𝜃) such that

|𝜙(𝜃) − 𝑃(𝜃) | < 𝜖

for all 𝜃. Let 𝑀 be the degree (the largest value of |𝑚 | for which 𝑃̃𝑚 ≠ 0) of this

polynomial. Integrating the square of the above inequality, and then taking square

root, we get

| |𝜙 − 𝑃 | | < 𝜖.

Another fact we need is that

〈𝑒𝑚, 𝜙 − 𝑆Λ〉 = 0, |𝑚 | ≤ Λ

(It follows from 〈𝑒𝑚, 𝜙〉 = 𝜙𝑚 and 𝑆Λ =
∑

|𝑚 |≤Λ 𝜙𝑚𝑒𝑚). In other words, 𝜙 − 𝑆Λ

is orthogonal to the subspace of trig polynomials of degree ≤ Λ. If we choose
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Λ ≥ 𝑀 , the approximation 𝑃, will lie in this subspace. Since 𝑆Λ − 𝑃 is orthogonal

to 𝜙 − 𝑆Λ, and 𝜙 − 𝑃 = (𝜙 − 𝑆Λ) + (𝑆Λ − 𝑃), Pythagoras says

| |𝜙 − 𝑃 | |2 = | |𝜙 − 𝑆Λ | |2 + ||𝑆Λ − 𝑃 | |2

Therefore,

| |𝜙 − 𝑆Λ | | ≤ | |𝜙 − 𝑃 | | < 𝜖

Thus, given any 𝜖 > 0, we can find a Λ such that | |𝜙 − 𝑆Λ | | < 𝜖 . This is the

convergence we seek.

13.3.7. Proof of Parseval’s identity

This is a consequence of the above convergence. The orthogonal decomposition

𝜙 = 𝑆Λ + (𝜙 − 𝑆Λ)

gives, by Pythagoras,

| |𝜙 | |2 = | |𝑆Λ | |2 + ||𝜙 − 𝑆Λ | |2

As Λ → ∞ the second term tends to zero; and the first term tends to
∑

𝑚 |𝜙𝑚 |2.

Exercise 68. For the “pyramid” function

𝑓 (𝜃) =
{√

3𝜋 (1 − |𝜃 |) |𝜃 | < 1

0 otherwise

show that

〈𝑒𝑚, 𝑓 〉 = 2

√
3

𝜋

(
sin 𝑚

2

𝑚

)2

.

13.3.8. Convolution

Define a multiplication operation on continuous functions

𝜙 ∗ 𝜓(𝜃) =
∫

𝜙(𝜃 − 𝜃 ′)𝜓(𝜃 ′) 𝑑𝜃
′

2𝜋

called convolution. This is commutative:

𝜓 ∗ 𝜙(𝜃) =
∫

𝜓(𝜃 − 𝜃 ′)𝜙(𝜃 ′) 𝑑𝜃
′

2𝜋

Making the change of variables 𝜃 ′ ↦→ 𝜃 − 𝜃 ′ we see that it is equal to 𝜙 ∗𝜓(𝜃).
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Proposition 69. The Fourier components of a convolution is the product of

Fourier components. That is,∫
𝑒−𝑖𝑚𝜃𝜙 ∗ 𝜓(𝜃) 𝑑𝜃

2𝜋
= 𝜙𝑚𝜓̃𝑚

The proof is simply to evaluate the double integral:∫
𝑒−𝑖𝑚𝜃𝜙 ∗ 𝜓(𝜃) 𝑑𝜃

2𝜋
=

∫
𝑒−𝑖𝑚𝜃𝜙(𝜃 − 𝜃 ′)𝜓(𝜃 ′) 𝑑𝜃

2𝜋

𝑑𝜃 ′

2𝜋

We change variables 𝜃 ↦→ 𝜃 + 𝜃 ′ :

=

∫
𝑒−𝑖𝑚[𝜃+𝜃′ ]𝜙(𝜃)𝜓(𝜃 ′) 𝑑𝜃

2𝜋

𝑑𝜃 ′

2𝜋

and notice that the integral factorizes as the product of two integrals:

=

∫
𝑒−𝑖𝑚𝜃𝜙(𝜃) 𝑑𝜃

2𝜋

∫
𝑒−𝑖𝑚𝜃′𝜓(𝜃 ′) 𝑑𝜃

′

2𝜋
= 𝜙𝑚𝜓̃𝑚

Fourier developed his analysis to solve partial differential equations arising

from engineering. In this context, the following exercise is interesting.

Exercise 70. Solve the Laplace equation in the unit disc, given the boundary

value at the unit circle: In polar co-ordinates

𝜕2

𝜕𝑟2
Φ(𝑟, 𝜃) + 1

𝑟

𝜕

𝜕𝑟
Φ(𝑟, 𝜃) + 1

𝑟2

𝜕2

𝜕𝜃2
Φ(𝑟, 𝜃) = 0, lim

𝑟→1−
Φ(𝑟, 𝜃) = 𝜙(𝜃)

Solution

If the solution is continuous inside the disc, lim𝑟→0+ Φ(𝑟, 𝜃) must be indepen-

dent of 𝜃(since all values of 𝜃 describe the origin when 𝑟 = 0). We can choose this

value to be zero without any loss of generality (a constant can always be added to

the electrostatic potential).

Fourier analysis

Φ(𝑟, 𝜃) =
∑
𝑛∈Z

Φ̃𝑛 (𝑟)𝑒𝑖𝑛𝜃 , 𝜙(𝜃) =
∑
𝑛∈Z

𝜙𝑛𝑒
𝑖𝑛𝜃 ,

gives

𝑑2

𝑑𝑟2
Φ̃𝑛 (𝑟) +

1

𝑟

𝑑

𝑑𝑟
Φ̃𝑛 (𝑟) −

𝑛2

𝑟2
Φ̃𝑛 (𝑟) = 0, lim

𝑟→1−
Φ̃𝑛 (𝑟) = 𝜙𝑛, lim

𝑟→0+
Φ̃𝑛 (𝑟) = 0.

The solution is Φ̃𝑛 (𝑟) = 𝑟 |𝑛 |𝜙𝑛. Thus

Φ(𝑟, 𝜃) =
∑
𝑛∈Z

𝑟 |𝑛 |𝜙𝑛𝑒
𝑖𝑛𝜃
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Equivalently we have the convolution

Φ(𝑟, 𝜃) =
∫

𝑃𝑟 (𝜃 − 𝜃 ′)𝜙(𝜃 ′) 𝑑𝜃
′

2𝜋

where the Poisson kernel 𝑃𝑟 is defined by

𝑃𝑟 (𝜃) =
∑
𝑚∈Z

𝑟 |𝑚 |𝑒𝑖𝑚𝜃

Summing the geometric series for 𝑚 ≥ 0 and 𝑚 < 0 and recombining we get

the explicit formula

𝑃𝑟 (𝜃) =
1 − 𝑟2

1 − 2𝑟 cos 𝜃 + 𝑟2

Note that in this case the solution in the interior is smoother than the boundary

data on the unit circle: The factor 𝑟 |𝑛 | in the sum
∑

𝑛∈Z 𝑟
|𝑛 |𝜙𝑛𝑒

𝑖𝑛𝜃 provides a

nice convergence factor. Incidentally, we can deduce the mean value property of

solutions of the Laplace equation:∫
Φ(𝑟, 𝜃) 𝑑𝜃

2𝜋

is independent of 𝑟. If we insert the series
∑

𝑛∈Z 𝑟
|𝑛 |𝜙𝑛𝑒

𝑖𝑛𝜃 into the integral, only

the term 𝑛 = 0 survives.

Fourier Analysis also gives a formula with far reaching applications in number

theory and physics:

Exercise 71. Poisson Sum Formula Let 𝑓 : R → C be a (necessarily not

periodic) function on the real line that vanishes at infinity along with all of its

derivatives. Define 𝑓 (𝜉) =
∫

𝑓 (𝑥)𝑒−2𝜋𝑖𝜉 𝑥𝑑𝜉. Then∑
𝑛∈Z

𝑓 (𝑛) =
∑
𝑛∈Z

𝑓 (𝑛).

Apply to the special case 𝑓 (𝑥) = 𝑒−𝑡 𝑥
2

with 𝑡 > 0.

Solution

The trick is to build a periodic function by averaging 𝑓 :

𝜙(𝜃) =
∑
𝑛∈Z

𝑓

(
𝜃

2𝜋
+ 𝑛

)



262 PHYSICS THROUGH SYMMETRIES

The sum converges because 𝑓 and all its derivatives vanish at infinity.Clearly

𝜙(0) =
∑
𝑛

𝑓 (𝑛)

On the other hand we know from Fourier synthesis that

𝜙(0) =
∑
𝑚∈Z

𝜙𝑚

where

𝜙𝑚 =

∫
𝑒−𝑖 𝜃𝑚𝜙(𝜃) 𝑑𝜃

2𝜋

The Poisson sum formula is proved if we can show that 𝑓 (𝑚) = 𝜙(𝑚).
We can calculate

𝜙𝑚 =

∫ 𝜋

−𝜋
𝑒−𝑖 𝜃𝑚

∑
𝑛∈Z

𝑓

(
𝜃

2𝜋
+ 𝑛

)
𝑑𝜃

2𝜋

make the change of variables 𝑥 =
𝜃

2𝜋
+ 𝑛

𝜙𝑚 =

∑
𝑛∈Z

∫ 1
2
+𝑛

− 1
2+𝑛

𝑒−𝑖2𝜋 [𝑥−𝑛]𝑚 𝑓 (𝑥) 𝑑𝑥

Since 𝑒2𝜋𝑖 [𝑛𝑚] = 1

𝜙𝑚 =

∑
𝑛∈Z

∫ 1
2+𝑛

− 1
2
+𝑛

𝑒−2𝜋𝑖𝑚𝑥 𝑓 (𝑥) 𝑑𝑥

=

{
· · · +

∫ 1
2
−1

− 1
2
−1

+
∫ 1

2

− 1
2

+
∫ 1

2
+1

− 1
2
+1

+ · · ·
}
𝑒−2𝜋𝑖𝑚𝑥 𝑓 (𝑥) 𝑑𝑥

=

∫ ∞

−∞
𝑒−2𝜋𝑖𝑚𝑥 𝑓 (𝑥) 𝑑𝑥 = 𝑓 (𝑚)

as needed.

If 𝑓 (𝑥) = 𝑒−𝑡 𝑥
2

with 𝑡 > 0, the Fourier transform can be calculated using

simple methods (completing the square in the exponent):

𝑓 (𝜉) =
√
𝜋

√
𝑡
𝑒−

𝜋
2 𝜉2

𝑡 .

Thus ∑
𝑛∈Z

𝑒−𝑡𝑛
2

=

√
𝜋

√
𝑡

∑
𝑛∈Z

𝑒−
𝜋2𝑛2

𝑡
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The point of this formula is that the lhs converges fast for large 𝑡 while the rhs

does so for small 𝑡. This leads to an inversion symmetry for the elliptic modular

function 𝜗(𝑡) = ∑
𝑛∈Z 𝑒

−𝑡𝑛2

:

𝜗(𝑡) =
√

𝜋

𝑡
𝜗

(
𝜋2

𝑡

)

This function arises in the study of lattices and in string theory.

13.4. Invariant Integrals on Lie Groups

Our task is to generalize Fourier analysis to compact Lie groups. In other words,

replace 𝑈 (1) by a possibly non-abelian Lie group in the theory of the last section.

Alternatively, we want to generalize the harmonic analysis on finite non-abelian

groups (the last chapter) to compact Lie groups. An essential tool of that chapter

were sums of the type ∑
𝑔∈𝐺

𝜙(𝑔)

These sums are invariant under the left or right action of the group:∑
𝑔∈𝐺

𝐿ℎ𝜙(𝑔) =
∑
ℎ∈𝐺

𝜙
(
ℎ−1𝑔

)
=

∑
𝑔

𝜙(𝑔)

∑
𝑔∈𝐺

𝑅ℎ𝜙(𝑔) =
∑
ℎ∈𝐺

𝜙 (𝑔ℎ) =
∑
𝑔

𝜙(𝑔)

It turns out that there is an analogue of this on connected compact Lie groups;

there is a volume form 𝑑𝑔 such that∫
𝐿ℎ𝜙(𝑔)𝑑𝑔 =

∫
𝜙(𝑔)𝑑𝑔 =

∫
𝑅ℎ𝜙(𝑔)𝑑𝑔

Moreover, this volume form is unique up to an overall constant.

If the Lie group is not compact, but still finite dimensional, there are two

different volume forms 𝑑𝐿𝑔 and 𝑑𝑅𝑔 which are left and right invariant respectively;

they might differ by a non-trivial function.

We will construct left and right volume elements 𝑑𝐿𝑔 and 𝑑𝑅𝑔 in the general

case of non-compact (finite dimensional) Lie groups. Then we will see why they

are proportional to each other in the case of compact groups.

Remark 72. Haar constructed a left-invariant measure on topological groups

(i.e., without assuming they are differential manifolds), using only local
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compactness. We do not need this more general and much more subtle concept.

Even so, the invariant volume element is still often called “the Haar measure”.

As always, the best practice is to work out a couple of examples before we

work out the general case.

13.4.1. Example: 𝑮𝑳(𝒏, 𝑹)

In some ways the general linear group is the easiest case. So let us start with

that. The matrix elements themselves provide a natural co-ordinate system on

𝐺𝐿(𝑛, 𝑅); the only condition is that the determinant be non-zero. This cuts out

a one-dimensional sub-set out of R𝑛
2

. The co-ordinates are transformed by left

multiplication 𝑔 ↦→ ℎ−1𝑔

𝑔𝑖 𝑗 ↦→
∑
𝑘

[ℎ−1]𝑖𝑘𝑔𝑘 𝑗

The volume element 𝑑𝑔11𝑑𝑔21 · · · 𝑑𝑔𝑛1 𝑑𝑔12𝑑𝑔22 · · · 𝑑𝑔𝑛2 · · · 𝑑𝑔1𝑛 · · · 𝑑𝑔𝑛𝑛 is

transformed by the magnitude of the Jacobian determinant of this transformation.

The first column of co-ordinates

𝑔11, 𝑔21, . . . , 𝑔𝑛1

are transformed linearly by the matrix ℎ−1. This means that

𝑑𝑔11𝑑𝑔21 · · · 𝑑𝑔𝑛1 ↦→
��det ℎ−1

�� 𝑑𝑔11𝑑𝑔21 · · · 𝑑𝑔𝑛1

The next column similarly changes by

𝑑𝑔12𝑑𝑔22 · · · 𝑑𝑔𝑛2 ↦→
��det ℎ−1

�� 𝑑𝑔12𝑑𝑔22 · · · 𝑑𝑔𝑛2

and so on. Putting all the changes from the columns together,

𝑑𝑔11𝑑𝑔21 · · · 𝑑𝑔𝑛1 𝑑𝑔12𝑑𝑔22 · · · 𝑑𝑔𝑛2 · · ·

𝑑𝑔1𝑛 · · · 𝑑𝑔𝑛𝑛 →
��det ℎ−1

��𝑛 𝑑𝑔11𝑑𝑔21 · · · 𝑑𝑔𝑛1 𝑑𝑔12𝑑𝑔22 · · · 𝑑𝑔𝑛2 · · · 𝑑𝑔1𝑛 · · · 𝑑𝑔𝑛𝑛
Now, the determinant of 𝑔 transforms as

det 𝑔 ↦→ (det ℎ−1) det 𝑔

so that its magnitude transforms as

|det 𝑔 | ↦→
��det ℎ−1

�� |det 𝑔 |

Thus the combination

𝑑𝐿𝑔 =
𝑑𝑔11𝑑𝑔21 · · · 𝑑𝑔𝑛1 𝑑𝑔12𝑑𝑔22 · · · 𝑑𝑔𝑛2 · · · 𝑑𝑔1𝑛 · · · 𝑑𝑔𝑛𝑛

|det 𝑔 |𝑛
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is invariant under left translations. Exactly the same argument (applied to rows

instead of columns) shows that the same expression is also invariant under right

translations. So we have the left and right invariant volume element

𝑑𝑔 =
𝑑𝑔11𝑑𝑔21 · · · 𝑑𝑔𝑛1 𝑑𝑔12𝑑𝑔22 · · · 𝑑𝑔𝑛2 · · · 𝑑𝑔1𝑛 · · · 𝑑𝑔𝑛𝑛

|det 𝑔 |𝑛

on 𝐺𝐿(𝑛, 𝑅). This group is not compact; so the volume of the group
∫

𝑑𝑔 is

infinite. So even for some non-compact groups the left and right invariant volume

elements coincide.

We now turn to another example that illustrates phenomena of a different sort.

13.4.2. Example: The upper triangular group

Consider the group of matrices of the form 𝑔 =

(
𝑎0 𝑎1

0 1

)
with 𝑎0 > 0 and 𝑎1 ∈ R.

In this case 𝑎0, 𝑎1 are themselves co-ordinates on the group. The Lie algebra has

basis

𝑡0 =

(
1 0

0 0

)
, 𝑡1 =

(
0 1

0 0

)
.

Consider the combinations

𝑔−1 𝜕𝑔

𝜕𝑎𝑖 𝑑𝑎
𝑖 =

(
𝑎−1

0
− 𝑎1

𝑎0

0 1

) (
𝑑𝑎0 𝑑𝑎1

0 0

)
=

(
𝑑𝑎0

𝑎0

𝑑𝑎1

𝑎0

0 0

)
≡ 𝜆0𝑡0 + 𝜆1𝑡1

𝜆0 =
𝑑𝑎0

𝑎0
, 𝜆1 =

𝑑𝑎1

𝑎0

Under a left translation by ℎ =

(
𝑏0 𝑏1

0 1

)
we have

ℎ−1𝑔 =
��
�
𝑎0

𝑏0

𝑎1−𝑏1

𝑏0

0 1

���
Treating ℎ, 𝑏0, 𝑏1 as constants, we can vary 𝑔, 𝑎0, 𝑎1:

𝜆0 ↦→
𝑑
(
𝑎0

𝑏0

)
𝑎0

𝑏0

= 𝜆0, 𝜆1 ↦→
𝑑
[
𝑎1−𝑏1

𝑏0

]
𝑎0

𝑏0

= 𝜆1

Thus, 𝜆0, 𝜆1are left-invariant differentials.



266 PHYSICS THROUGH SYMMETRIES

Similarly,

𝜕𝑔

𝜕𝑎𝑖 𝑑𝑎
𝑖𝑔−1 =

(
𝑑𝑎0 𝑑𝑎1

0 0

) (
𝑎−1

0
− 𝑎1

𝑎0

0 1

)
=

(
𝑑𝑎0

𝑎0
𝑑𝑎1 − 𝑎1

𝑎0
𝑑𝑎0

0 0

)
≡ 𝜌0𝑡0 + 𝜌1𝑡1

𝜌0 =
𝑑𝑎0

𝑎0
, 𝜌1 = 𝑑𝑎1 − 𝑎1

𝑎0
𝑑𝑎0

Under a right translation

𝑔ℎ =

(
𝑎0𝑏0 𝑎1 + 𝑎0𝑏1

0 1

)

𝜌0 ↦→ 𝑑 [𝑎0𝑏0]
𝑎0𝑏0

= 𝜌0,

𝜌1 ↦→ 𝑑 [𝑎1 + 𝑎0𝑏1] −
𝑎1 + 𝑎0𝑏1

𝑎0𝑏0

𝑑 [𝑎0𝑏0] = 𝑑𝑎1 + 𝑏1𝑑𝑎0 −
𝑎1

𝑎0

𝑑𝑎0 − 𝑏1𝑑𝑎0 = 𝜌1

We see that 𝜌0 and 𝜌1 are right invariant differentials. Thus,2

𝑑𝐿𝑔 =
𝑑𝑎0𝑑𝑎1

𝑎2
0

, 𝑑𝑅𝑔 =
𝑑𝑎0𝑑𝑎1

𝑎0

are left and right invariant volume elements respectively. Note that they are not the

same:

𝑑𝐿𝑔 = Δ(𝑔)𝑑𝑅𝑔, Δ(𝑔) = 1

𝑎0

The ratio
𝑑𝐿𝑔

𝑑𝑅𝑔
≡ Δ : 𝐺 → R+ is a group homomorphism.

13.4.3. Invariant differentials

In a more complicated matrix group (such as 𝑆𝑂 (𝑛) ) we cannot argue as for

𝐺𝐿(𝑛, 𝑅), as the matrix elements are not independent of each other. The second

example suggests that we must use invariant differential 1−forms; and take their

wedge product (a kind of determinant) to get the invariant volume element.

The matrix elements are functions of some independent co-ordinates

𝜉1, . . . , 𝜉𝐷 where 𝐷 is the dimension of the group. Under an infinitesimal change

of the co-ordinates, the matrix elements will change by
∑

𝑘
𝜕𝑔

𝜕𝜉 𝑘 𝑑𝜉
𝑘 . It is more

2For brevity, we are using the idea of a wedge product in differential geometry. The same result can

be obtained by taking the determinant of the components of 𝜆 and 𝜌.
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natural to consider the products with 𝑔−1

𝑔−1 𝜕𝑔

𝜕𝜉𝑘

as they belong to the Lie algebra of the group. (Recall our discussion of the Baker–

Campbell–Hausdorff lemma where we saw that derivatives such as 𝑔−1(𝑡) 𝑑𝑔 (𝑡)
𝑑𝑡

belong to the Lie algebra). Under a transformation 𝑔 ↦→ ℎ−1𝑔 (where ℎ is indepen-

dent of 𝑔) this is invariant.

Choosing a basis for the Lie algebra 𝑡𝑎, 𝑎 = 1, . . . 𝐷 we can define a 𝐷 × 𝐷

matrix 𝜆 whose components are 𝜆𝑎𝑘 :

∑
𝑎

𝜆𝑎𝑘 (𝑔)𝑡𝑎 = 𝑔−1 𝜕𝑔

𝜕𝜉𝑘

By using the chain rule of differentiation, under a change of coordinates 𝜉𝑘 ↦→
𝜂𝑘 the matrix 𝜆 transforms as

𝜆𝑎𝑘 ↦→
∑
𝑙

𝜆𝑎𝑙
𝜕𝜂𝑙

𝜕𝜉𝑘
.

Thus its determinant transforms as

det𝜆 ↦→ det𝜆 det
𝜕𝜂

𝜕𝜉

So the combination

det𝜆𝑑𝜉1 · · · 𝑑𝜉𝐷

transforms as a volume element invariant under these co-ordinate transformations.

A change of basis in the Lie algebra

𝑡𝑎 ↦→ 𝑆𝑎𝑏𝑡𝑏

will only change det𝜆𝑑𝜉1 · · · 𝑑𝜉𝐷 by a constant multiple:

det𝜆𝑑𝜉1 · · · 𝑑𝜉𝐷 ↦→ det 𝑆 det𝜆𝑑𝜉1 · · · 𝑑𝜉𝐷 .

Thus we see that:

𝑑𝐿𝑔 = | det𝜆| 𝑑𝜉1 · · · 𝑑𝜉𝑑

is invariant under left translations, as well as changes of basis and co-ordinates (up

to a constant multiple).
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In the same spirit, we can get a right-invariant volume element from the

matrix 𝜌: ∑
𝑎

𝜌𝑎𝑖𝑡𝑎 =
𝜕𝑔

𝜕𝜉𝑖
𝑔−1

𝑑𝑅𝑔 = | det 𝜌 | 𝑑𝜉1 · · · 𝑑𝜉𝑑

These 𝑑𝐿𝑔 and 𝑑𝑅𝑔 may not coincide.

Exercise 73. Show that inversion 𝑔 ↦→ 𝑔−1 takes the left invariant volume element

to the right invariant one:

𝑑𝐿𝑔
−1

= 𝑑𝑅𝑔

Solution Note that
𝜕𝑔−1

𝜕𝜉 𝑖 = −𝑔−1 𝜕𝑔

𝜕𝜉 𝑖 𝑔
−1 so that

𝑔
𝜕𝑔−1

𝜕𝜉𝑖
= − 𝜕𝑔

𝜕𝜉𝑖
𝑔−1

=⇒

𝜆𝑎𝑖 (𝑔
−1)𝑡𝑎 = −𝜌𝑎𝑖 (𝑔)𝑡𝑎

and

| det𝜆(𝑔−1) |=| det 𝜌(𝑔) | .

So, if the left and right invariant volume elements coincide, they are also

invariant under inversion.

13.4.4. The modular homomorphism

Since

𝜕𝑔

𝜕𝜉𝑘
𝑔−1

= 𝑔

(
𝑔−1 𝜕𝑔

𝜕𝜉𝑘

)
𝑔−1

we have a relation between 𝜆 and 𝜌:

∑
𝑎𝑘

𝜌𝑎𝑘 𝑡𝑎 = 𝑔

(∑
𝑎𝑘

𝜆𝑎𝑘 𝑡𝑎

)
𝑔−1

Since

𝑔𝑡𝑎𝑔
−1

= 𝑔̂𝑎𝑏𝑡𝑏

where 𝑔̂𝑎𝑏 is the matrix of 𝑔 in the adjoint representation, we have

𝜌𝑎𝑘 = 𝑔̂𝑏𝑎𝜆𝑏𝑘
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Thus, the ratio

Δ(𝑔) = 𝑑𝑅𝑔

𝑑𝐿𝑔
=

| det 𝜌(𝑔) |
| det𝜆(𝑔) |

is simply the magnitude of the determinant of the matrix representing 𝑔 in the

adjoint representation:

Δ(𝑔) =| det 𝑔̂ |

In particular, it is a continuous homomorphism Δ : 𝐺 → R+:

Δ(𝑔ℎ) = Δ(𝑔)Δ(ℎ)

This is called the modular homomorphism. If Δ(𝑔) = 1 the left and right

invariant volume elements are equal. Such groups are said to be unimodular.

13.4.4.1. Unimodular groups

There are many examples of unimodular groups:

• For compact groups Δ(𝑔) = 1: The left and right invariant measures are the

same.

For, suppose there were a 𝑔 ∈ 𝐺 with Δ(𝑔) ≠ 1. Then either Δ(𝑔𝑟 ) or Δ(𝑔−𝑟 )
would tend to infinity for large 𝑟. But continuous functions on a compact group

are bounded. So this can’t happen.

In particular, groups such as 𝑆𝑈 (𝑛) or 𝑆𝑂 (𝑛) are unimodular, being compact.

• If 𝐺 is a simple Lie group (i.e.,the only normal Lie subgroup is the trivial one)

again Δ(𝑔) = 1

Even if there are normal subgroups that are discrete (i.e., not Lie subgroups)

unimodularity holds. For, the kernel of Δ would be a normal Lie subgroup. For

example, 𝑆𝐿2(𝑅) is unimodular; because its normal subgroups are discrete.

We saw earlier that

• 𝐺𝐿(𝑛, 𝑅) is unimodular; although it is neither simple nor compact.

Obviously,

• Abelian groups (compact or not) are unimodular: There is no difference between

left and right translations

In these cases we will denote by 𝑑𝐿𝑅𝑔 a volume element that is both left and right

invariant. Note that our construction only determines it up to an overall constant:

a change of basis in the Lie algebra can change it by a constant multiple.
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13.4.5. Example: 𝑺𝑼(2) in exponential co-ordinates

Let us work out an example in detail. Recall that the group 𝑆𝑈 (2) can be described

by exponential co-ordinates 𝑔 = 𝑒𝑎 with 𝑎 being a trace-less anti-hermitian 2 × 2

matrix. Explicitly,

𝑔 = cos

(
|a|
2

)
+ a · s

sin
(
|a |
2

)
|a |
2

, a ∈ R3, |a| < 2𝜋

where 𝑠1, 𝑠2, 𝑠3 is a specific basis in the Lie algebra. The co-ordinate system breaks

down at |a| = 2𝜋; all the points with |a| = 2𝜋 correspond to 𝑔 = −1.

Using

𝑑𝑓 (|a|) = 𝑓 ′ (|a|) a · 𝑑a

|a|
we get

𝑑𝑔 =

⎡⎢⎢⎢⎢⎢⎣
−1

2
sin

|a|
2

+ a · s

⎧⎪⎪⎨
⎪⎪⎩
|a| cos

(
|a |
2

)
− 2 sin

(
|a |
2

)
|a|2

⎫⎪⎪⎬
⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦

a · 𝑑a

|a| + 𝑑a · s
sin

(
|a |
2

)
|a |
2

Since

𝑔−1
= cos

(
|a|
2

)
− a · s

sin
(
|a |
2

)
|a |
2

we get

𝑔−1𝑑𝑔 = cos

(
|a|
2

) ⎡⎢⎢⎢⎢⎢⎣
−1

2
sin

|a|
2

+ a · s

⎧⎪⎪⎨
⎪⎪⎩
|a| cos

(
|a |
2

)
− 2 sin

(
|a |
2

)
|a|2

⎫⎪⎪⎬
⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦

a · 𝑑a

|a|

+ 𝑑a · s
sin

(
|a |
2

)
cos

(
|a |
2

)
|a |
2

+
⎡⎢⎢⎢⎢⎢⎣
1

2
a · s

sin
(
|a |
2

)
|a |
2

sin
|a|
2

− (a · s)2
sin

(
|a |
2

)
|a |
2

×
⎧⎪⎪⎨
⎪⎪⎩
|a| cos

(
|a |
2

)
− 2 sin

(
|a |
2

)
|a|2

⎫⎪⎪⎬
⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦

a · 𝑑a

|a| − a · s𝑑a · s

⎡⎢⎢⎢⎢⎢⎣
sin

(
|a |
2

)
|a |
2

⎤⎥⎥⎥⎥⎥⎦

2
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Using (4.3.1) and some trig identities we can simplify this to

𝑔−1𝑑𝑔 =

[
|a| − sin |a|

|a|3

]
a · s a · 𝑑a + 𝑑a · s

sin |a|
|a|

+ (a × 𝑑a) · s

[
1 − cos |a|

|a|2

]

Or,

𝑔−1𝑑𝑔 = s𝑇
{
|a| − sin |a|

|a|3
a ⊗ a + 13

sin |a|
|a| + â

1 − cos |a|
|a|2

}
𝑑a

where â =

(
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

)
and a ⊗ a =

(
𝑎2

1
𝑎1𝑎2 𝑎1𝑎3

𝑎1𝑎2 𝑎2
2

𝑎2𝑎3

𝑎1𝑎3 𝑎2𝑎3 𝑎2
3

)
as before. The matrix in the

curly brackets is

𝜆(𝑔) = |a| − sin |a|
|a|3

a ⊗ a + 13
sin |a|
|a| + â

1 − cos |a|
|a|2

Then,

det𝜆(𝑔) =
4 sin2 |a |

2

|a|2

The left-invariant volume element in exponential co-ordinates is thus,

𝑑𝐿𝑔 =
4 sin2 |a |

2

|a|2
𝑑𝑎1𝑑𝑎2𝑑𝑎3

The volume of the group 𝑆𝑈 (2) in these conventions is

4𝜋

∫ 2𝜋

0

4 sin2 |a|
2

𝑑 |a| = 16𝜋2

The 4𝜋 comes from the “angular co-ordinates”, leaving an integral over the

“radial” co-ordinate |a|.

13.5. Representations of a Compact Lie Group

The fundamental work of Peter and Weyl developed the harmonic analysis on

compact Lie groups. They showed that 𝐿2 (𝐺) can be decomposed into direct sums

of finite dimensional unitary representations. The whole theory is remarkably

similar to that of finite groups: Compactness is a good substitute for finiteness.

The basic reason is that the integral of any continuous function on a compact group
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is finite. In particular, the integral
∫

𝑑𝑔 = vol(𝐺) is finite. This volume plays a

role analogous to the number of elements |𝐺 | in the case of finite groups.

One important difference with the case finite groups is that the left regular

representation is infinite dimensional. In particular, it does not have a character:

The trace diverges. Peter and Weyl found a way around using this character.

13.5.1. Finite dimensional representations of a compact group are unitary

The trick is again, “averaging” over the group. Let 𝜌 : 𝐺 → 𝐺𝐿(𝑉) be a continuous

finite dimensional representation on some vector space𝑉 . Pick some inner product

((, )) on this vector space. Then define

(𝑎, 𝑏) =
∫

((𝜌(𝑔)𝑎, 𝜌(𝑔)𝑏)) 𝑑 (𝑔), 𝑎, 𝑏 ∈ 𝑉

Now,

(𝜌(ℎ)𝑎, 𝜌(ℎ)𝑏) =
∫

((𝜌(𝑔)𝜌(ℎ)𝑎, 𝜌(𝑔)𝜌(ℎ)𝑏))𝑑𝑔

=

∫
((𝜌(𝑔ℎ)𝑎, 𝜌(𝑔ℎ)𝑏))𝑑𝑔

using the invariance under 𝑔 ↦→ 𝑔ℎ−1 we get

(𝜌(ℎ)𝑎, 𝜌(ℎ)𝑏) =
∫

( (𝜌(𝑔)𝑎, 𝜌(𝑔)𝑏)) 𝑑 (𝑔) = (𝑎, 𝑏)

proving unitarity.

Now recall that we already proved in the earlier chapter that

13.5.2. Finite dimensional unitary representations are completely

reducible

This means that any finite dimensional representation can be decomposed as direct

sum

𝜌 =

⊕
𝑟 ∈𝐺̃

𝑚𝑟 𝑟

where 𝐺̃ is the set of equivalence classes of irreducible representations; and 𝑚𝑟 is

the multiplicity (i.e., the number of copies of 𝑟 contained in 𝜌).

The proof of Schur’s Lemma and its corollaries are also essentially the same:
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13.5.3. Schur’s lemma

Lemma. Let 𝑟 and 𝑠 be two irreducible representations, on vector spaces 𝑉 and

𝑊 respectively, of a compact group 𝐺; and 𝑇 is a linear map 𝑇 : 𝑉 → 𝑊 such

that

𝑇 [𝑟 (𝑔)𝑣] = 𝑠(𝑔) [𝑇𝑣],∀𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉 (13.5.1)

Then either 𝑇 is an isomorphism or it is zero.

Corollary. If an operator commutes with all the representation matrices of an

irreducible representation, it is a multiple of the identity.

Also,

Corollary. Any irreducible representation of an abelian group is one dimensional.

13.5.4. The character of a finite dimensional representation

The character of a representation remains a powerful tool in the theory of compact

groups. If 𝜌 : 𝐺 → 𝐺𝐿(𝑉) is a finite dimensional representation of a compact

group, its character is the trace:

𝜒𝜌 (𝑔) = tr𝜌(𝑔)

𝜌 being finite dimensional, the trace converges for any 𝑔. In particular

𝜒𝜌(1) = dim 𝜌

We also have the notion of direct sum of representations

𝜌 ⊕ 𝜎(𝑔) =
(
𝜌(𝑔) 0

0 𝜎(𝑔)

)

with

𝜒𝜌⊕𝜎 (𝑔) = 𝜒𝜌 (𝑔) + 𝜒𝜎 (𝑔)

More generally, if

𝜌 =

⊕
𝑟 ∈𝐺̃

𝑚𝑟 𝑟

we have

𝜒𝜌 (𝑔) =
∑
𝑟 ∈𝐺̃

𝑚𝑟 𝜒𝑟 (𝑔)
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We will have to work a bit harder to understand the characters of infinite

dimensional unitary representations.

13.5.5. Inner product space 𝑪(𝑮)

We can define an inner product in the vector space of continuous functions

〈𝜙, 𝜓〉 =
∫

𝜙∗(𝑔)𝜓(𝑔)𝑑𝑔

This is not quite a Hilbert space: We cannot yet prove that it has a countable

basis. Indeed, this completeness is a direct consequence of the Peter–Weyl theorem

which we have not proved yet. Still this inner product is a powerful tool when

combined with Schur’s lemma.

13.5.6. Orthogonality of representation matrix elements

Exactly as in the case of finite groups, we can define the quantities

𝑇
(𝑏 𝑗)
𝑖𝑎

=

∫
𝑟𝑏𝑎 (ℎ−1)𝑠𝑖 𝑗 (ℎ)𝑑ℎ

Here, 𝑟 and 𝑠 are two inequivalent unitary representations and 𝑟𝑎𝑏 and 𝑠𝑖 𝑗 are

their matrix elements in orthogonal bases.

The invariance of the volume element can be used to prove that, for each choice

of 𝑏 𝑗 , this is an intertwining operator between the representations 𝑟 and 𝑠. Since

they are not equivalent, Schur’s lemma says this is zero:

Proposition 74. Matrix elements of inequivalent irreducible representations are

orthogonal

Also, defining

𝑇
(𝑏𝑏′)
𝑎′𝑎 =

∫
𝑟𝑏𝑎 (ℎ−1)𝑟𝑎′𝑏′ (ℎ)𝑑ℎ

we again have (for each choice of 𝑏𝑏′ ) an intertwining operator of 𝑟 to itself. This

time Schur’s Lemma gives,

〈𝑟𝑎𝑏 , 𝑟𝑎′𝑏′〉 = 𝐶𝑟𝛿𝑎𝑎′𝛿𝑏𝑏′ (13.5.2)

for some 𝐶𝑟 . We can determine it by putting 𝑎 = 𝑎′ and summing over 𝑎. On the

lhs we get ∑
𝑎

∫
𝑟∗𝑎𝑏 (𝑔)𝑟𝑎𝑏′ (𝑔)𝑑𝑔 =

∫ [
𝑟† (𝑔)𝑟 (𝑔)

]
𝑏𝑏′ 𝑑𝑔
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Using unitarity of 𝑟 ∑
𝑎

〈𝑟𝑎𝑏 , 𝑟𝑎′𝑏′〉 = vol(𝐺)𝛿𝑏𝑏′ .

Here vol(𝐺) =
∫

𝑑𝑔 is the volume of the group. It depends on the choice of

invariant volume element. The rhs of (13.5.2) is, upon putting 𝑎 = 𝑎′ and summing

over 𝑎, equal to 𝐶𝑟 dim 𝑟 𝛿𝑏𝑏′ . Thus 𝐶𝑟 =
vol (𝐺)
dim 𝑟

.

Proposition 75. Matrix elements of an irreducible representation satisfy

〈𝑟𝑎𝑏 , 𝑟𝑎′𝑏′〉 =
vol(𝐺)
dim 𝑟

𝛿𝑎𝑎′𝛿𝑏𝑏′

We can combine these two statements to

Proposition 76. The functions
√

dim 𝑟
vol(𝐺) 𝑟𝑎𝑏 form an orthogonal family when 𝑟

runs over the set of equivalence classes of unitary irreducible representations and

𝑎, 𝑏 label an orthonormal basis in the vector space of each such 𝑟

What we do not have as yet is the completeness of this family: That any

continuous can be expanded as a linear combination of functions in this family.This

is the content of the Peter–Weyl theorem (see below).

13.5.7. Fourier components of a function

We can, as in the case of finite groups, define the components of a function

𝜙 : 𝐺 → C along this orthogonal family:

𝜙𝑟𝑎𝑏 =

∫
𝑟∗𝑎𝑏 (ℎ)𝜙(ℎ)𝑑ℎ

Just from the orthonormality of the family, we have3

Proposition 77. Bessel’s inequality

∑
𝑟 ∈𝐺̃

dim 𝑟∑
𝑎𝑏=1

dim 𝑟

vol(𝐺) | 𝜙𝑟𝑎𝑏 |2≤
∫

𝜙∗(ℎ)𝜙(ℎ)𝑑ℎ

Once we have completeness (that any continuous function can be expanded

in the above basis with these components) we can get the Plancherel theo-

rem/Parseval’s formula.

3The factor dim 𝑟
vol(𝐺) comes from the fact that its is

√
dim 𝑟

vol(𝐺) 𝑟𝑎𝑏 that is the orthonormal family; not 𝑟𝑎𝑏

which appears in the definition of the components.If we had defined components w.r.t. the orthonormal

family, there would be some factors of dim𝑟
vol(𝐺) in other places.



276 PHYSICS THROUGH SYMMETRIES

For each 𝑟 ∈ 𝐺̃ the components form a matrix 𝜙𝑟
𝑎𝑏

. The sum
∑

𝑎𝑏 | 𝜙𝑟
𝑎𝑏

|2
for each fixed 𝑟 is the trace of the matrix 𝜙𝑟†𝜙𝑟 . (This trace is also called the

Hilbert-Schmidt norm of the matrix 𝜙𝑟 ). The matrix 𝜙𝑟†𝜙𝑟 is therefore of some

interest.

13.5.8. The convolution algebra

Given two continuous functions, define the convolution

𝜙 ◦ 𝜓(𝑔) =
∫

𝜙(𝑔ℎ−1)𝜓(ℎ)𝑑ℎ

Using the invarianceof the volume element we can see that this is an associative

multiplication; although not commutative if 𝐺 is not abelian.

Proposition 78. Fourier components of a convolution are the matrix products4

of the Fourier components of each function:

(/𝜙 ◦ 𝜓
)𝑟
𝑎𝑏

=

∑
𝑐

𝜙𝑟𝑎𝑐𝜓̃
𝑟
𝑐𝑏

Proof. For,

(/𝜙 ◦ 𝜓
)𝑟
𝑎𝑏

=

∫
𝑟∗𝑎𝑏 (𝑔)𝑑𝑔

∫
𝜙(𝑔ℎ−1)𝜓(ℎ)𝑑ℎ =

∫
𝑟∗𝑎𝑏 (𝑔)𝜙(𝑔ℎ−1)𝜓(ℎ)𝑑𝑔𝑑ℎ

Using the invariance of the volume element under the change 𝑔 ↦→ 𝑔ℎ

(/𝜙 ◦ 𝜓
)𝑟
𝑎𝑏

=

∫
𝑟∗𝑎𝑏 (𝑔ℎ)𝜙(𝑔)𝜓(ℎ)𝑑𝑔𝑑ℎ

Using the representation property of 𝑟

(/𝜙 ◦ 𝜓
)𝑟
𝑎𝑏

=

dim 𝑟∑
𝑐=1

∫
𝑟∗𝑎𝑐 (𝑔)𝑟∗𝑐𝑏 (ℎ)𝜙(𝑔)𝜓(ℎ)𝑑𝑔𝑑ℎ

The integral factorizes into one over 𝑔 and another over ℎ:(/𝜙 ◦ 𝜓
)𝑟
𝑎𝑏

=

∑
𝑐

𝜙𝑟𝑎𝑐𝜓̃
𝑟
𝑐𝑏

�

4This accounts for the non-commutativity of the convolution.



HARMONIC ANALYSIS ON COMPACT LIE GROUPS 277

13.6. The Peter–Weyl Theorem

A function of the form ∑
𝑟 ∈𝐺̃

∑
𝑎𝑏

𝑐𝑟𝑎𝑏𝑟𝑎𝑏 (𝑔)

with only a finite number of non-zero terms is the non-commutative analogue of

a trigonometric polynomial: The matrix elements 𝑟𝑎𝑏 (𝑔) generalize the exponen-

tial functions on 𝑈 (1). Let 𝐿2
alg
(𝐺) be the space of these “algebraic” functions.

Then the abstract version of the Peter–Weyl theorem is that 𝐿2(𝐺) is the comple-

tion 𝐿2
alg
(𝐺) of this space of algebraic functions. But we can be more concrete:

Determine the coefficients 𝑐𝑟
𝑎𝑏

.

Exercise 79. Show that of all linear combinations of the form
∑

𝑟 ,𝑎𝑏 𝑐𝑟
𝑎𝑏

𝑟𝑎𝑏 (𝑔)
the one that minimizes the distance | |𝜙 −∑

𝑟 ,𝑎𝑏 𝑐𝑟
𝑎𝑏

𝑟𝑎𝑏 | | has

𝑐𝑟𝑎𝑏 =
dim 𝑟

vol(𝐺) 𝜙
𝑟
𝑎𝑏

Solution Minimize
∫

| 𝜙(𝑔) −∑
𝑟 ,𝑎𝑏 𝑐𝑟

𝑎𝑏
𝑟𝑎𝑏 (𝑔) |2 𝑑𝑔 with respect to 𝑐𝑟

𝑎𝑏
and use

orthonormality of
√

dim 𝑟
vol (𝐺) 𝑟𝑎𝑏 (𝑔) .

Theorem 80. Peter–Weyl Let 𝜙 : 𝐺 → C be a continuous function with Fourier

components in each irreducible representation 𝑟 ∈ 𝐺̃

𝜙𝑟𝑎𝑏 =

∫
𝑟∗𝑎𝑏 (𝑔)𝜙(𝑔)𝑑𝑔.

Then the Fourier series converges in the 𝐿2- norm, synthesizing 𝜙 from its

components:

𝜙(𝑔) =
∑
𝑟 ∈𝐺̃

∑
𝑎𝑏

dim 𝑟

vol(𝐺) 𝜙
𝑟
𝑎𝑏𝑟𝑎𝑏 (𝑔)

Moreover, this allows us to promote the Bessel inequality to an equality:

Theorem. (Plancherel) We have∫
| 𝜙(𝑔) |2 𝑑𝑔 =

∑
𝑟 ∈𝐺̃

dim 𝑟∑
𝑎,𝑏=1

dim 𝑟

vol(𝐺) | 𝜙𝑟𝑎𝑏 |2

The original proof of Peter and Weyl used the theory of compact integral

operators, which had already been developed in Schmidt’s thesis with Hilbert.

This is still a good way of understanding the proof. We will make a digression
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to review the theory of such operators [28], which is also useful in many other

places in mathematical physics (e.g., the Green’s function of the Laplacian in

a compact manifold is such an operator). We won’t give complete proofs, only

a summary of the main ideas. A complete proof is given in the rigorous (yet

remarkably clear) course meant for mathematicians by P. Etingof at MIT, available

online [29].

13.6.1. Compact integral operators

Let us start by considering a self-adjoint linear operator (i.e., hermitian matrix)

𝐾 : 𝑉 → 𝑉 in a finite dimensional vector space 𝑉 with an inner product. A basic

result is the spectral theorem:

𝑉 = ker𝐾 ⊕
⊕
𝜆≠0

𝐸𝜆

That is, the vector space 𝑉 can be decomposed orthogonally into

• ker𝐾, the subspace of vectors 𝜓 such that 𝐾𝜓 = 0

• the eigenspaces 𝐸𝜆 of vectors 𝜓 satisfying 𝐾𝜓 = 𝜆𝜓. These eigenvalues are

real and non-zero; the eigenspaces corresponding to unequal eigenvalues are

orthogonal to each other

Since 𝑉 is finite dimensional, ker𝐾 and the eigenspaces 𝐸𝜆 are also finite

dimensional.

Hilbert and Schmidt found a generalization of this spectral theorem to integral

operators of the form

𝐾𝜓(𝑥) =

∫
𝑋

𝐾 (𝑥, 𝑦)𝜓(𝑦)𝑑𝑦

where 𝑋 is a compact topological space and 𝑑𝑦 is a measure on it with finite

volume

vol(𝑋) =

∫
𝑋

𝑑𝑥.

In the application of interest to us, 𝑋 will be a compact group and the measure

will be in the invariant volume element 𝑑𝑔. Self-adjointness means in this case

𝐾 (𝑥, 𝑦) = 𝐾∗ (𝑦, 𝑥)

In other words, we are treating 𝑥, 𝑦 as continuous matrix indices, with sums

replaced by integrals. The kernel of 𝐾 is again the subspace of vectors with
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eigenvalue zero:

ker𝐾 = {𝜓 | 𝐾𝜓 = 0}

The eigenspaces 𝐸𝜆 are again defined similarly:

𝐸𝜆 = {𝜓 | 𝐾𝜓 = 𝜆𝜓} , 𝜆 ≠ 0

The eigenvalues 𝜆 of hermitian integral operators such as 𝐾 are again real.

Each eigenspace 𝐸𝜆 with 𝜆 ≠ 0 is finite dimensional; in other words, non-zero

eigenvalues have finite multiplicity. (There can be an infinite number of such non-

zero eigenvalues.) But the degeneracy of a zero eigenvalue can be infinite (for

example, a compact operator can have finite rank. See below).

Remark 81. A word of explanation is perhaps needed to understand why non-

zero eigenvalues have finite multiplicity, but a zero eigenvalue can have infinite

multiplicity. Within each eigenspace, the operator 𝐾 reduces to a multiple of the

identity, 𝜆1 on 𝐸𝜆. A multiple of the identity is compact only if either

• the space 𝐸𝜆 is finite dimensional

• the multiple 𝜆 is zero; so ker𝐾can be infinite dimensional

Theorem 82. (Hilbert–Schmidt) A compact self-adjoint operator 𝐾 : 𝐿2(𝑋) →
𝐿2 (𝑋) yields an orthogonal decomposition

𝐿2 (𝑋) = ker𝐾 ⊕
⊕

𝜆≠0
𝐸𝜆 (13.6.1)

Since there can be an infinite number of non-zero eigenvalues, we must take

the a completion of their direct sums; this is the meaning of the
⊕

symbol.

An equivalent statement is that there is an orthonormal basis for 𝐿2(𝑋) con-

sisting of eigenvectors of 𝐾.

13.6.1.1. Example: Finite rank operators

Especially simple examples are finite rank operators. These have only a finite

number of non-zero eigenvalues. So for them we do not need do any completion

in (13.6.1).

They are finite linear combinations of the form

𝐾 (𝑥, 𝑦) =
∑
𝑎

𝜆𝑎𝜓𝑎 (𝑥)𝜓
∗
𝑎 (𝑦)

Note that ker𝐾 is infinite dimensional. The image of 𝐾 (i.e., the set of vectors

that can arise as 𝐾𝜓 for some 𝜓) is finite dimensional.This dimension is called the

rank of 𝐾.
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13.6.1.2. Example: Heat kernel

An example of a compact linear operator which is not of finite rank is the heat

kernel on the circle:

ℎ𝑡 (𝑥, 𝑦) =
∑
𝑛∈Z

𝑒−𝑛
2𝑡𝑒𝑖𝑛𝑥𝑒−𝑖𝑛𝑦 , 𝑡 > 0

13.6.1.3. The identity operator on an infinite dimensional Hilbert space

is not a compact operator!

Its integral kernel is the Dirac delta, which is not a continuous function on 𝑋 × 𝑋 .

Its only eigenvalue is 1, which has infinite multiplicity.

But a sequence of compact operators can provide an approximation to the

identity operator. For example, the heat kernel above satisfies∫
ℎ𝑡 (𝑥, 𝑦)𝜓(𝑦)𝑑𝑦 → 𝜓(𝑥)

as 𝑡 → 0, for all continuous functions on the circle. For each 𝑡 > 0, the operator

ℎ𝑡 is compact, but not in the limit 𝑡 → 0.

13.6.2. Proof of Peter-Weyl

Armed with this machinery, we can outline a proof of the Peter-Weyl theorem.

The idea is to approximate the identity operator on 𝐿2(𝑋) (the Dirac delta) by a

sequence of continuous functions. Each of these will define a compact self-adjoint

operator to which we can apply the above spectral decomposition. More precisely,

let 𝑘𝑁 : 𝐺 → R be a sequence of continuous functions satisfying∫
𝑘𝑁 (𝑔)𝑑𝑔 = 1, 𝑘𝑁 (𝑔) = 𝑘𝑁 (𝑔−1)

Also, we want the support of 𝑘𝑁 (the set of 𝑔 for which 𝑘𝑁 (𝑔) ≠ 0) to shrink

to just the identity element of 𝐺 as 𝑁 → ∞.

It is not hard to construct such functions. From such a sequence we can construct

the integral operators

𝐾𝑁𝜓(𝑔) =
∫

𝐾𝑁 (𝑔, ℎ)𝜓(ℎ)𝑑ℎ

with

𝐾𝑁 (𝑔, ℎ) = 𝑘𝑁 (𝑔ℎ−1)

Since 𝑘𝑁 (𝑔−1) = 𝑘𝑁 (𝑔) we get that 𝐾𝑁 (𝑔, ℎ) = 𝐾𝑁 (ℎ, 𝑔) . That is, 𝐾𝐾 is

symmetric. Since it 𝑘𝑁 (𝑔) is real we also get self-adjointness of 𝐾𝑁 . The group
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being compact we get that𝐾𝑁 is a compact integral operator. So, we have a spectral

decomposition

𝐿2 (𝐺) = ker𝐾𝑁 ⊕
⊕̄

𝜆≠0
𝐸𝜆<𝑁

where 𝐸𝜆,𝑁 are the eigenspaces with non-zero eigenvalues. They are finite

dimensional:

𝜓 ∈ 𝐸𝜆,𝑁 , 𝜓(𝑔) =
∑
𝜇

𝑐𝜇𝑢𝜇(𝑔),

the sum being finite.

Moreover, we can see that each 𝐸𝜆,𝑁 carries a representation of 𝐺. For this we

note the symmetry

𝐾𝑁 (𝑔ℎ′, ℎℎ′) = 𝐾𝑁 (𝑔, ℎ)

So 𝐾𝑁 commutes with the right-translation 𝑅ℎ′ :

𝑅ℎ′𝜓(𝑔) = 𝜓(𝑔ℎ′),

𝐾𝑁 𝑅ℎ′ = 𝑅ℎ′𝐾𝑁

Therefore

𝜓 ∈ 𝐸𝜆,𝑁 =⇒ 𝑅ℎ′𝜓 ∈ 𝐸𝜆

Thus there are matrices 𝜌𝜇𝜈 (𝑔) such that

𝑢𝜇 (𝑔ℎ′) =
∑
𝜈

𝜌𝜇𝜈 (ℎ′)𝑢𝜈 (𝑔)

These matrices provide a finite dimensional representation of 𝐺

𝜌𝜇𝜈 (ℎ′ℎ′′) =
∑
𝜎

𝜌𝜇𝜎 (ℎ)𝜌𝜎𝜈 (ℎ′).

Thus the elements of 𝐸𝜆 are algebraic functions: They are finite linear combi-

nations of irreducible representation matrices. Thus we see that

𝐿2 (𝐺) = 𝐿2
alg
(𝐺)

This is one statement of the Peter–Weyl theorem.
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Chapter 14

QUANTUM GROUPS

Modern theoretical physics needs notions of symmetries that go beyond groups.

The story begins with the solution by Bethe of the “isotropic spin chain” with

hamiltonian

𝐻 = 𝐽

𝑛∑
𝑖=1

𝜎𝑎
𝑖 𝜎

𝑎
𝑖+1, 𝜎𝑎

𝑛+1 ≡ 𝜎𝑎
1

where 𝜎𝑎
𝑖
= 1 ⊗ · · · ⊗ 𝜎𝑎 ⊗ 1 · · · ⊗ 1 are Pauli matrices associated to the 𝑖th site

on a chain (one dimensional lattice). It is invariant under rotations of all the spins

simultaneously (i.e., global 𝑆𝑈 (2) symmetry). This symmetry is crucial to solve

the problem, by a fiendishly clever guess (the Bethe ansatz).

Later, Yang and Baxter were able to solve this problem even when the rotation

invariance is broken:

𝐻 =

𝑛∑
𝑖=1

3∑
𝑎=1

𝐽𝑎𝜎
𝑎
𝑖 𝜎

𝑎
𝑖+1,

This was possible because of a mysterious identity satisfied by the scattering

matrix of the spin waves (the “Yang-Baxter Relation”). Faddeev and collaborators

discovered that this is related to the quantum analogue of the integrability of the

corresponding classical spin chains. Although the systems do not appear to be

rotation invariant at first, they are invariant under a “quantum deformation” of the

rotation group.

It was Drinfeld who realized that the underlying mathematical structure is

a “Hopf algebra”, a generalization of the idea of a group. Hopf had postulated

them, motivated by applications to Algebraic Topology. Even when a group is

non-abelian, the algebra of functions on the group (by point-wise multiplication)

is commutative. Hopf algebra is a generalization in which this operation is also

283
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non-commutative. Drinfeld coined the phrase “Quantum Group” to describe this

new kind of non-commutativity.

Hopf and followers (Sweedler, Taft) had discovered the “quantum” analogue of

finite groups while Faddeev et al. had found examples of “Quantum Lie Groups”.

All this happened over nearly a century (starting with Bethe). The forty years

since Drinfeld’s work were especially productive mathematically: The classifica-

tion of Hopf algebras and their modules (i.e., representations). There is no doubt

that this is a major breakthrough in mathematics.

Groups were discovered first in a corner of mathematics far from

physics(“exact” solution of polynomial equations by radicals) . Much later they

were found to be central to quantum mechanics and to modern particle physics.

“Quantum Groups” were discovered in a somewhat specialized area of

physics.It is possible that Hopf Algebras will be more broadly important to physics

and central to the next generation of fundamental physical theories. Glimpses

of the future we have today (e.g., quantum gravity might be described by non-

commutative geometry) point in this direction. There are already several textbooks

[31, 33] devoted entirely to Quantum Groups. We will discuss only one approach

to this rapidly evolving subject, along with the simplest examples.

14.1. Algebras and Co-Algebras

It is a theme of modern mathematics that the algebra of functions on an object

contains all the information about it. For example, the algebra of (continuous, dif-

ferentiable, analytic) functions of a (topological, differentiable, complex) manifold

determines it.

The idea is to first translate all the properties of a group to those of the space

of functions on it. Then we will generalize the idea of a group by generalizing the

properties of this space. The end result will be an algebraic structure (the Hopf

algebra) which may not any more be the space of functions on anything! This is

similar to the way observables of a quantum system are no longer functions on

any phase space: The process of quantization forces us to give up on the idea that

observables are some kind of functions.

Let 𝐺 be a finite group and let 𝐶 (𝐺) be the space of complex-valued functions

on it. This is a commutative algebra under point-wise multiplication:

𝑓1 𝑓2 (𝑔) = 𝑓1(𝑔) 𝑓2 (𝑔).

The dimension of the vector space 𝐶 (𝐺) is the number of elements of 𝐺; at

each element of the group, we can specify one independent complex number as
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the value of a function. By linearity we can extend this multiplication as a bilinear

map

𝑚 : 𝐶 (𝐺) ⊗ 𝐶 (𝐺) → 𝐶 (𝐺).

But this multiplication has no information about the underlying group multi-

plication law: We can define such a commutative algebra on functions over any

set. The group law allows us to take a function of one group element and turn it

into a function of two elements:

Δ( 𝑓 ) (𝑔1, 𝑔2) = 𝑓 (𝑔1𝑔2).

In other words, Δ takes a function of one variable and turns it into a function of

two variables.

We can think of a function of two elements as a “matrix”1 labelled by 𝑔1, 𝑔2.

More precisely, Δ( 𝑓 ) ∈ 𝐶 (𝐺) ⊗ 𝐶 (𝐺). Thus, Δ is a map that goes in the oppo-

site direction from a multiplication Δ : 𝐶 (𝐺) → 𝐶 (𝐺) ⊗ 𝐶 (𝐺): It is a co-

multiplication. We can make this precise by defining the idea of a co-algebra: A

kind of mirror image of an algebra.

Definition. An algebra is a vector space 𝐴 along with a linear map𝑚 : 𝐴⊗𝐴 → 𝐴.

A co-algebra is a linear map in the opposite direction Δ : 𝐵 → 𝐵 ⊗ 𝐵 on some

vector space 𝐵.

It is useful to recall how to think of an algebra in terms of its structure constants

in some basis 𝑒𝑎. (For now, let us think of finite dimensional algebras for simplicity.

Also, we will use the summation convention.) Then the product 𝑒𝑎𝑒𝑏 can be

expanded as a linear combination of the basis elements:

𝑒𝑎𝑒𝑏 = 𝑚𝑐
𝑎𝑏𝑒𝑐 .

The quantities 𝑚𝑐
𝑎𝑏

are the components, in this basis, of a third order tensor.

They are called the structure constants of the algebra. Various properties of the

algebra translate into identities satisfied by the structure constants

• Commutative: 𝑒𝑎𝑒𝑏 = 𝑒𝑏𝑒𝑎 ⇐⇒ 𝑚𝑐
𝑎𝑏

= 𝑚𝑐
𝑏𝑎

• Associative: 𝑒𝑎 (𝑒𝑏𝑒𝑐) = (𝑒𝑎𝑒𝑏)𝑒𝑐 ⇐⇒ 𝑚𝑒
𝑎𝑑
𝑚𝑑

𝑏𝑐
= 𝑚𝑑

𝑎𝑏
𝑚𝑒

𝑑𝑐

• Unit element: 𝜂 = 𝜂𝑎𝑒𝑎, 𝜂𝑏𝑚𝑐
𝑏𝑎

= 𝛿𝑐𝑎 = 𝑚𝑐
𝑎𝑏
𝜂𝑏

• Lie algebra: 𝑚𝑐
𝑎𝑏

= −𝑚𝑐
𝑏𝑎
, (anti-symmetry) and 𝑚𝑑

𝑎𝑏
𝑚𝑒

𝑑𝑐
+ 𝑚𝑑

𝑏𝑐
𝑚𝑒

𝑑𝑎
+

𝑚𝑑
𝑐𝑎 𝑚

𝑒
𝑑𝑏

= 0 (Jacobi identity)

The simplest way to construct a co-algebra is to take 𝐵 to be the dual vector space

of an algebra. The multiplication on 𝐴 induces a co-multiplication on its dual.

1We saw such integral kernels already in the proof of the Peter-Weyl theorem.



286 PHYSICS THROUGH SYMMETRIES

Recall that an element of the dual of 𝐴 is a linear function 𝑓 : 𝐴 → C. We can

identify 𝐵 ⊗ 𝐵 with the space of bi-linear functions of two elements of 𝐴. Thus a

co-algebra is a map

Δ( 𝑓 ) (𝑥, 𝑦) = 𝑓 (𝑥𝑦).

So a co-algebra is a kind of mirror image to an algebra: Its dual. Thus there

is a notion of a co-associative co-algebra, a notion of a co-unit etc. A co-unit for

example, is a linear map

𝜖 : 𝐵 → C

satisfying some conditions that are dual of the identity element in an algebra. Other

ideas of algebra can also be translated. For example a co-algebra is co-commutative

if Δ(𝑏) is a symmetric tensor in 𝐵 ⊗ 𝐵.

Translating all this into components is again useful. Let 𝑒𝑎 be a basis in 𝐵.

Then the element Δ(𝑒𝑎) ∈ 𝐵 ⊗ 𝐵 can be expanded in terms of 𝑒𝑏 ⊗ 𝑒𝑐 :

Δ(𝑒𝑎) = Δ
𝑏𝑐
𝑎 𝑒𝑏 ⊗ 𝑒𝑐

In this notation the various subtypes of co-algebras correspond to conditions

on the structure constants of the co-multiplication:

• Co-Commutative: Δ(𝑒𝑎) = Δ(𝑒𝑎)
𝑇 ⇐⇒ Δ

𝑏𝑐
𝑎 = Δ

𝑐𝑏
𝑎

• Co-Associative: Δ𝑎𝑑
𝑒 Δ

𝑏𝑐
𝑑

= Δ
𝑎𝑏
𝑑
Δ
𝑑𝑐
𝑒

• Co-unit element: 𝜖 : 𝐵 → C, 𝜖 (𝑒𝑎) = 𝜖𝑎 , satisfying 𝜖𝑏Δ
𝑏𝑎
𝑐 = 𝛿𝑎𝑐 = Δ

𝑎𝑏
𝑐 𝜖𝑏

• Co-Lie algebra:Δ𝑎𝑏
𝑐 = −Δ𝑐

𝑏𝑐
(anti-symmetry) andΔ𝑎𝑏

𝑑
Δ
𝑑𝑐
𝑒 +Δ𝑏𝑐

𝑑
Δ
𝑑𝑎
𝑒 +Δ𝑐𝑎

𝑑
Δ
𝑑𝑏
𝑒 =

0(co-Jacobi identity)

Thus a dual vector space of a co-Lie algebra is a Lie algebra and so on.

If the notion of a co-algebra is just the mirror image of an algebra, why do we

need a separate theory for them? The point is that you may have the notion of a

multiplication and a co-multiplication on the same vector space.

Definition. A bi-algebra is a vector space 𝐴 on which there is a multiplication

𝑚 : 𝐴⊗𝐴 → 𝐴 as well as a co-multiplicationΔ : 𝐴 → 𝐴⊗𝐴which are compatible

with each other. That is, the co-multiplication is an algebra homomorphism of 𝐴

to 𝐴 ⊗ 𝐴 .

Implicit here is that if 𝐴 is an algebra, there is a natural multiplication on 𝐴⊗ 𝐴:

(𝑥 ⊗ 𝑦) (𝑠 ⊗ 𝑡) = 𝑥𝑠 ⊗ 𝑦𝑡.
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Again, the conditions on the multiplication and co-multiplicationof a bi-algebra

can be translated into properties of the structure constants. Let us compute:

Δ(𝑒𝑎𝑒𝑏) = Δ(𝑒𝑎)Δ(𝑒𝑏), Δ(𝑒𝑎) = Δ
𝑓 𝑔
𝑎 𝑒 𝑓 ⊗ 𝑒𝑔, Δ(𝑒𝑏) = Δ

ℎ𝑖
𝑏
𝑒ℎ ⊗ 𝑒𝑖

𝑒 𝑓 𝑒ℎ = 𝑚𝑑
𝑓 ℎ
𝑒𝑑, 𝑒𝑔𝑒𝑖 = 𝑚𝑒

𝑔𝑖𝑒𝑒,

Δ(𝑒𝑎𝑒𝑏) = 𝑚𝑐
𝑎𝑏
Δ(𝑒𝑐) = 𝑚𝑐

𝑎𝑏
Δ
𝑑𝑒
𝑐 𝑒𝑑 ⊗ 𝑒𝑐,

so that the bi-algebra condition is

𝑚𝑐
𝑎𝑏Δ

𝑑𝑒
𝑐 = Δ

𝑓 𝑔
𝑎 𝑚𝑑

𝑓 ℎ𝑚
𝑒
𝑔𝑖Δ

ℎ𝑖
𝑏 .

Note that this condition is symmetric between the structure constants of the

algebra and the co-algebra. So the dual of a bi-algebra is again a bi-algebra with

the structure constants of multiplication and co-multiplication interchanged.

14.1.1. Examples

• The space of complex-valued functions of a group is a commutative bi-algebra:

The co-multiplication defined above using the group product is compatible with

the point-wise multiplication. The associativity of group multiplication implies

that the co-algebra 𝐶 (𝐺) is co-associative. The identity element 𝑒 ∈ 𝐺 in the

group defines a co-unit: 𝜖 ( 𝑓 ) = 𝑓 (𝑒).

• Since we haven’t used the existence of an inverse, we can get a commutative

bi-algebra on any semi-group.

• Given a Lie algebra with basis 𝑒𝑎, its universal envelope is the associative

algebra generated by 𝑒𝑎 satisfying the the relations [𝑒𝑎, 𝑒𝑏] = 𝑓 𝑐
𝑎𝑏
𝑒𝑐 . With the

co-product

Δ(𝑒𝑎) = 1 ⊗ 𝑒𝑎 + 𝑒𝑎 ⊗ 1,

this is a co-commutative (but usually non-commutative) Hopf algebra with the

co-unit defined by 𝜖 (𝑒𝑎) = 0.

14.1.2. Sweedler notation

There is an elegant notation [31] due to Sweedler that allows us to do computations

on bi-algebras more easily. Recall that Δ(𝑎) can be written as a linear combination
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of tensor products of elements of 𝐴:

Δ(𝑎) =
∑
𝑘

𝑎 (1)𝑘 ⊗ 𝑎 (2)𝑘

Sweedler suggests we drop the index on this and write it as

Δ(𝑎) =
∑

𝑎 (1) ⊗ 𝑎 (2)

or even drop the summation symbol and write

Δ(𝑎) = 𝑎 (1) ⊗ 𝑎 (2)

After a bit of practice this becomes natural and quite useful,just like Einstein’s

summation convention. But it has to be used cautiously until you are used to

it. Have fun going back and forth between the index notation and the Sweedler

notation.

As an example, let us consider the notion of a convolution on bi-algbras that

generalizes the convolution of functions on a group. Let 𝜙, 𝜓 : 𝐴 → 𝐴 be linear

maps in a bi-algebra. Then we can produce another linear map 𝜙 ∗ 𝜓 : 𝐴 → 𝐴

𝜙 ∗ 𝜓(𝑎) = 𝜙(𝑎 (1) )𝜓(𝑎 (2) )

Let us translate this into basis notation:

𝜙(𝑒𝑎) = 𝜙𝑏𝑎𝑒𝑏, 𝜓(𝑒𝑏) = 𝜓𝑏
𝑎𝑒𝑏

Δ(𝑒𝑎) = Δ
𝑏𝑐
𝑎 𝑒𝑏 ⊗ 𝑒𝑐

𝜙 ∗ 𝜓 (𝑒𝑎) = Δ
𝑏𝑐
𝑎 𝑚(𝜙(𝑒𝑏) ⊗ 𝜓(𝑒𝑐)) = Δ

𝑏𝑐
𝑎 𝜙𝑑

𝑏
𝜓𝑒
𝑐𝑚(𝑒𝑑𝑒𝑒) = Δ

𝑏𝑐
𝑎 𝜙𝑑

𝑏
𝜓𝑒
𝑐𝑚

ℎ
𝑑𝑒
𝑒ℎ

so that

(𝜙 ∗ 𝜓)ℎ𝑎 = Δ
𝑏𝑐
𝑎 𝜙𝑑

𝑏𝜓
𝑒
𝑐𝑚

ℎ
𝑑𝑒.

In particular if id is the identity map in 𝐴

𝜙 ∗ id(𝑎) = 𝜙(𝑎 (1) )𝑎 (2) ,

(𝜙 ∗ id)ℎ𝑎 = Δ
𝑏𝑐
𝑎 𝜙𝑑

𝑏
𝑚ℎ

𝑑𝑐
, (id ∗ 𝜓)ℎ𝑎 = Δ

𝑏𝑐
𝑎 𝜓𝑑

𝑐𝑚
ℎ
𝑏𝑑
.

This will be useful soon.

14.2. The AntiPode

We still haven’t used the existence of an inverse in the group. It defines an “antipode”

map on the group bi-algebra 𝐶 (𝐺)

𝑆( 𝑓 ) (𝑔) = 𝑓 (𝑔−1), 𝑓 : 𝐺 → C, 𝑔 ∈ 𝐺
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satisfying certain compatibility relations. Also, 𝑔𝑔−1 = 𝑒 becomes

(1 ⊗ 𝑆)Δ( 𝑓 ) = Δ(𝜖 ( 𝑓 ))

etc.Given a basis on 𝐶 (𝐺) the anti-pode can be thought of in terms of its compo-

nents: 𝑆(𝑒𝑎) = 𝑆𝑏𝑎𝑒𝑏 .

Definition. A Hopf algebra is a bi-algebra 𝐻 with a unit 𝜂 and a co-unit 𝜖 which

admits a linear map 𝑆 : 𝐻 → 𝐻 (called the antipode) satisfying

𝑆 ∗ id = 𝜂 ◦ 𝜖 = id ∗ 𝑆

In index notation this is Δ𝑏𝑐
𝑎 𝑆𝑑

𝑏
𝑚ℎ

𝑑𝑐
= 𝜖𝑎𝜂

ℎ
= Δ

𝑏𝑐
𝑎 𝑆𝑑𝑐𝑚

ℎ
𝑏𝑑

.

There are also some (more obvious) conditions on the unit and co-unit which

we omit [31]. Not all bi-algebras admit an antipode. If a bi-algebra does admit an

antipode, it is unique [31].

The antipode reverses the multiplication and the co-multiplication:

𝑆(𝑎𝑏) = 𝑆(𝑏)𝑆(𝑎), 𝑆𝑑𝑐𝑚
𝑐
𝑎𝑏 = 𝑆𝑒𝑏𝑆

𝑓
𝑎 𝑚

𝑑
𝑒 𝑓

Δ
op (𝑆(𝑑)) = (𝑆 ⊗ 𝑆)Δ(𝑑), 𝑆𝑐𝑑Δ

𝑎𝑏
𝑐 = 𝑆𝑏𝑒𝑆

𝑎
𝑓 Δ

𝑒 𝑓

𝑑

We have written out each statement in the index notation for clarity.

14.2.1. Elementary examples of Hopf algebras

• The bi-algebra of functions on a group become a Hopf algebra with the choice

𝑆( 𝑓 ) (𝑔) = 𝑓 (𝑔−1) mentioned above. This is commutative.

• The bi-algebra of a Lie algebra becomes a Hopf algebra with 𝑆(𝑒𝑎) = −𝑒𝑎. This

is co-commutative.

14.2.2. First example of a quantum group

To go beyond groups and Lie algebras, we should look for Hopf algebras which are

neither commutative nor co-commutative. Such Hopf algebras are called quantum

groups: In a sense they are more non-commutative than either groups or Lie

algebras.

The elements of such a general Hopf algebra may no longer be functions on

any set! To generalize any property of a group we first translate it to a property of

the space of functions on it; then find a way to generalize it to a Hopf algebra that

may not be either commutative or non-commutative.

The first example was found by Sweedler and a more general one by Taft. These

are the first “Quantum Groups” although that name was not coined until later.
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Example 83. The Taft Algebra [32]. (The special case 𝑛 = 2 is the Sweedler

algebra.) Let 𝜔 be a primitive root of unity of order 𝑛; i.e., 𝜔𝑛 = 1 and no smaller

power of 𝜔 is equal to one. Define an algebra generated by 𝑎, 𝑢 satisfying the

relations

𝑢𝑎 = 𝜔𝑎𝑢, 𝑢𝑛 = 1, 𝑎𝑛 = 0.

The co-multiplication is

Δ(𝑢) = 𝑢 ⊗ 𝑢, Δ(𝑎) = 𝑎 ⊗ 1 + 𝑢 ⊗ 𝑎

and the co-unit

𝜖 (𝑎) = 0, 𝜖 (𝑢) = 1

and anti-pode

𝑆(𝑎) = −𝑢−1𝑎, 𝑆(𝑢) = 𝑢−1

So this is neither commutative nor co-commutative. There is no underlying set

on which elements such as 𝑎 and 𝑢 are functions. This is what we give up in order

to have such a generalization.

Exercise 84. Verify that the above satisfies the axioms for a Hopf Algebra of

dimension 𝑛2.

14.2.2.1. “Classical limit”

In the limit 𝑛 → ∞ the Taft Algebra reduces to the co-commutative Hopf algebra

corresponding to a familiar Lie algebra. Thus, in a sense it is a “quantization” of

this Lie algebra. To see this, let us note that

𝜔 = 1 +
2𝜋𝑖

𝑛
+ O

(

1

𝑛2

)

Set

𝑢 = 𝑒
2𝜋𝑖
𝑛

𝐿0 , 𝑎 = 𝐿+

The condition 𝑢𝑎 = 𝜔𝑎𝑢 becomes

{

1 +
2𝜋𝑖

𝑛
𝐿0

}

𝐿+ =

{

1 +
2𝜋𝑖

𝑛

}

𝐿+

{

1 +
2𝜋𝑖

𝑛
𝐿0

}

+ O

(

1

𝑛2

)

⇐⇒
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Equating terms of order 1
𝑛

we get

[𝐿0, 𝐿+] = 𝐿+

which are the commutation relations of the two dimensional non-abelian Lie

algebra. Also,

Δ(𝑢) = Δ

(

1 + 2𝜋𝑖

𝑛
𝐿0

)

=

{

1 + 2𝜋𝑖

𝑛
𝐿0

}

⊗

{

1 +
2𝜋𝑖

𝑛
𝐿0

}

+ O

(

1

𝑛2

)

= 1 +
2𝜋𝑖

𝑛
(𝐿0 ⊗ 1 + 1 ⊗ 𝐿0) + O

(

1

𝑛2

)

so that to leading order

Δ(𝐿0) = 𝐿0 ⊗ 1 + 1 ⊗ 𝐿0.

And, again to leading order, Δ(𝑎) = 𝑎 ⊗ 1 + 𝑢 ⊗ 𝑎 reduces to

Δ(𝐿+) = 𝐿+ ⊗ 1 + 1 ⊗ 𝐿+.

14.3. Primitives, Group-Like Elements, Skew–Derivations

The following statements are easy to prove:

• Let 𝐻 be a Hopf algebra. The subset of elements of 𝐻satisfying

Δ(𝑔) = 𝑔 ⊗ 𝑔

form a group. Such elements said to be “group-like”.

In the example above, 𝑢 and its powers are group-like; they form the group 𝑍𝑛.

• Elements of 𝑣 ∈ 𝐻 satisfying

Δ(𝑣) = 𝑣 ⊗ 1 + 1 ⊗ 𝑣 (14.3.1)

are said to be “primitives”. If 𝑣 and 𝑤 are primitives, so is 𝑣𝑤 − 𝑤𝑣. Thus the

sub-space of primitives is a Lie algebra. The condition (14.3.1) is a version of

the Leibnitz identity of differentiation:

𝑣(𝜙𝜓) = 𝑣(𝜙)𝜓 + 𝜙𝑣(𝜓).

Primitives are derivations in some sense. This will become clear when we look

at Hopf modules.
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• Given a group-like element 𝑔 ∈ 𝐻 we can define a generalization of a primitive,

a skew primitive w.r.t. 𝑔 (also called a 𝑔−derivation ) by the condition

Δ(𝑣) = 𝑣 ⊗ 1 + 𝑔 ⊗ 𝑣

They are derivations up to an action by a group-like element:

𝑣(𝜙𝜓) = 𝑣(𝜙)𝜓 + 𝑔(𝜙)𝑣(𝜓)

In the Taft algebra, 𝑎 is a skew-primitive w.r.t. 𝑢. Indeed we will see it defines a

“quantum vector field” on a non-commutative torus.

14.4. Hopf-Modules

The idea of a group becomes concrete when we study its representations. The

analogue for a Hopf-algebra is a Hopf-module.

Definition 85. An algebra 𝐴 is a Hopf-module of the Hopf-algebra 𝐻 if there is a

linear map 𝐻 ⊗ 𝐴 → 𝐴 (denoted by ℎ ⊗ 𝜙 → ℎ(𝜙) ) such that

ℎℎ̃(𝜙) = ℎ( ℎ̃(𝜙)), ℎ(1) = 𝜖 (ℎ)1, ℎ(𝜙𝜓) = ℎ (1) (𝜙)ℎ (2) (𝜓)

We are using Sweedler’s notation here. The first condition is analogous the

condition for a Lie algebra representation. The last condition is a generalization of

the "Leibnitz rule" of differentiation.

14.4.1. Example: A Hopf-module of the Taft algebra

We seek an algebra 𝐴 of matrices and a map 𝐻 ⊗ 𝐴 → 𝐴. The conditions they

must satisfy are ℎ(𝜙𝜓) = ℎ (1) (𝜙)ℎ (2) (𝜓) when ℎ is each generator 𝑢, 𝑎 of 𝐻. If

we expand this out, we get

𝑢(𝜙𝜓) = 𝑢(𝜙)𝑢(𝜓), 𝑎(𝜙𝜓) = 𝑎(𝜙)𝜓 + 𝑢(𝜙)𝑎(𝜓)

If 𝐴 is generated by 𝑧1, 𝑧2 and

𝑢(𝜙) = 𝑧2𝜙𝑧
−1
2 , 𝑎(𝜙) = 𝑧1𝜙 − 𝑧2𝜙𝑧

−1
2 𝑧1

we can satisfy these conditions. The conditions on 𝑢𝑛 and 𝑎𝑛 can be satisfied if we

choose

𝑧2𝑧1 = 𝜔𝑧1𝑧2, 𝑧𝑛1 = 1, 𝑧𝑛2 = 1, 𝜔 = 𝑒
2𝜋𝑖
𝑛



QUANTUM GROUPS 293

This is a representation of the finite Heisenberg group, 𝐻𝑒𝑖𝑠(𝑍𝑛) where the

central generator takes the value of 𝜔 . We already know how to realize 𝑧1 and 𝑧2

as 𝑛 × 𝑛 matrices. It is not hard to see that any 𝑛 × 𝑛 matrix 𝜙 can be written as a

“polynomial” in 𝑧1 and 𝑧2:

𝜙 =

𝑛−1∑
𝑘,𝑙=0

𝜙𝑘𝑙𝑧
𝑘
1 𝑧

𝑙
2, 𝜙𝑘𝑙 ∈ C.

Thus we have the Taft algebra realized as transformations on the algebra 𝐴

of 𝑛 × 𝑛 matrices. The elements of 𝐴 can be viewed as functions on a Non-

Commutative Torus (NCT) with 𝑧1 and 𝑧2 as co-ordinates.Since the dimension of

𝐴 is 𝑛2, this NCT is a sort of non-commutative lattice with 𝑛2 points.

14.5. 𝑺𝑳𝒒 (2)

We saw that the Taft algebra is a quantization of the two dimensional Lie algebra.

There is also a Hopf-algebra that reduces in the classical limit to the Lie group of

2 × 2 matrices with determinant one. It is best to construct it as a symmetry of the

quantum plane [31].

Let us start with two variables 𝑧1, 𝑧2 satisfying

𝑧2𝑧1 = 𝑞𝑧1𝑧2 (14.5.1)

They are co-ordinates of the “quantum plane”. Here, 𝑞 ∈ C is a complex

number2. The special case 𝑞 = 𝑒
2𝜋𝑖
𝑛 (where 𝑛 is an integer greater than 2) will be

of special interest. The special case 𝑞 = 1 is the usual plane C2.

Suppose 𝑔 =

(

𝑔11 𝑔12

𝑔21 𝑔22

)

acts on 𝑧 to get some new variables 𝑧′, 𝑧′′:

(

𝑧′
1

𝑧′
2

)

=

(

𝑔11 𝑔12

𝑔21 𝑔22

) (

𝑧1

𝑧2

)

,

(

𝑧′′
1

𝑧′′
2

)

=

(

𝑔11 𝑔21

𝑔12 𝑔22

) (

𝑧1

𝑧2

)

We are not to think of 𝑔11 etc, as complex numbers: they are some abstract quantities

whose multiplication properties we are about to derive.

What conditions should be satisfied3 by 𝑔11, 𝑔12, 𝑔21, 𝑔22 in order that 𝑧′
1
, 𝑧′

2
as

well as 𝑧′′
1
, 𝑧′′

2
also satisfy the condition (14.5.1)? By direct calculation, they are

𝑔12𝑔11 = 𝑞𝑔11𝑔12, 𝑔22𝑔12 = 𝑞𝑔12𝑔22

𝑔21𝑔11 = 𝑞𝑔11𝑔21, 𝑔22𝑔21 = 𝑞𝑔21𝑔22 (14.5.2)

𝑔12𝑔21 = 𝑔21𝑔22, 𝑔11𝑔22 − 𝑞−1𝑔12𝑔21 = 𝑔22𝑔11 − 𝑞𝑔12𝑔21

2For reasons that will become clear later, we require that 𝑞2 ≠ 1.
3We are assuming that the elements of 𝑔 commute with the elements of 𝑧.
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These relations (14.5.2)imply that the “quantum determinant”: det𝑞𝑔 =

𝑔11𝑔22 − 𝑞−1𝑔12𝑔21 is central; i.e., that it commutes with 𝑔11, 𝑔12, 𝑔21, 𝑔22. So

we can set it to one:

𝑔11𝑔22 − 𝑞−1𝑔12𝑔21 = 1. (14.5.3)

The algebra defined by the relations (14.5.2,14.5.3) is called 𝑆𝐿𝑞 (2). We can

turn it into a bi-algebra with the co-product

Δ(𝑔11) = 𝑔11 ⊗ 𝑔11 + 𝑔12 ⊗ 𝑔21, Δ(𝑔12) = 𝑔11 ⊗ 𝑔12 + 𝑔12 ⊗ 𝑔22

Δ(𝑔21) = 𝑔21 ⊗ 𝑔11 + 𝑔22 ⊗ 𝑔21, Δ(𝑔22) = 𝑔21 ⊗ 𝑔12 + 𝑔22 ⊗ 𝑔22

etc. It has a co-unit given by

𝜖 (𝑔11) = 1 = 𝜖 (𝑔22), 𝜖 (𝑔12) = 0 = 𝜖 (𝑔21).

Also define

𝑆(𝑔11) = 𝑔22, 𝑆(𝑔12) = −𝑞𝑔12

𝑆(𝑔21) = −𝑞−1𝑔21, 𝑆(𝑔22) = 𝑔11

This can be verified to satisfy the conditions of an antipode. The Hopf algebra

𝑆𝐿𝑞 (2) is thus a symmetry of the quantum plane. That is, the quantum plane is a

Hopf-module of 𝑆𝐿𝑞 (2).

14.5.1. Finite approximations to Lie groups

We know that the Lie group𝑈 (1) can be approximated by the finite sub-group 𝑍𝑛:

In the limit 𝑛 → ∞ the group algebra of 𝑍𝑛tends to that of 𝑈 (1). This allows us

to approximate the Fourier series on 𝑈 (1) by finite series. For simple Lie groups

such as 𝑆𝑈 (2) or 𝑆𝐿(2, 𝐶) there is no obvious analogue for this. The obvious idea

of approximating by finite sub-groups fails: There are only a very small collection

of such finite subgroups (e.g., the symmetries of the Platonic solids in the case of

𝑆𝑂 (3)).

But if we look at the larger category of quantum groups (allowing for co-

products to be non-co-commutative) there is a way around this. We illustrate this

with the example of 𝑆𝐿𝑞 (2).

If 𝑞 is a primitive 𝑛th root of unity we can impose additional relations that

reduce the dimensions of the above algebras. For example, 𝑧𝑛
1

and 𝑧𝑛
2

are now

central and we can impose

𝑧𝑛1 = 1 = 𝑧𝑛2 .
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This is the NCT we discussed earlier. Then 𝑔𝑛
11
, 𝑔𝑛

22
, 𝑔𝑛

12
, 𝑔𝑛

21
are also central in

𝑆𝐿𝑞 (2) and we can impose

𝑔𝑛11 = 1 = 𝑔𝑛22, 𝑔𝑛12 = 0 = 𝑔𝑛21

This reduces the dimension of 𝑆𝐿𝑞 (2) to 𝑛3. Recall that the dimension of a

group algebra is the number of elements of the group (hence infinite for all Lie

groups). This 𝑆𝐿𝑞 (2) for 𝑞 a primitive 𝑛th root of unity can be thought of as a

“quantum group” with 𝑛3 points.

By setting 𝑞 = 𝑒
2𝜋𝑖
𝑛 , we get a sequence of finite dimensional Hopf algebras

which tend to the Hopf algebra of functions on the group 𝑆𝐿(2, 𝐶) as 𝑛 → ∞.

To get finite approximations to compact Lie groups such as 𝑆𝑈 (2) we need

a generalization of the hermitian conjugate: An anti-linear map which preserves

multiplication but reverses the co-multiplication.4

𝑎† = 𝑑, 𝑏† = −𝑞𝑐, 𝑐† = −𝑞−1∗𝑏, 𝑑† = 𝑎

Such finite approximationscould be useful in numerical computations in lattice

gauge theory [34].

4This differs slightly from [31] since we are allowing 𝑞 to be a complex number.
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Chapter 15

EULER-ARNOLD DYNAMICS

Let us begin with two important physical systems, both due to Euler.

15.1. The Rigid Body

A rigid body is one whose molecules remain at a constant distance between each

other as the body as a whole moves. We will consider the case when there is

no external force or torque on the body. So, the translational degree of freedom

is uninteresting: The center of mass moves at a constant velocity. Its rotations

can be quite intricate if the shape of the body is not symmetric, so that its three

principal moments of inertia are mutually unequal. Euler discovered the equations

that describe this rotation. It is a staple of classical mechanics courses [13]. But

we will briefly review it to set the stage for the vastly more complicated examples

to follow.

The absence of external torques mean that the angular momentum of the body

is constant in time, as measured by an inertial observer. But, the angular velocity

would not be constant as the moment of inertia (which is a symmetric matrix

in general)varies with the orientation of the body. A simpler description can be

obtained in the reference frame that is moving with the body. There is such a frame

in which the moment of inertia is a diagonal matrix. Then the components of the

angular momentum L and the angular velocity 𝛀 are proportional to each other :

Ω1 = ℎ1𝐿1, Ω2 = ℎ2𝐿2, Ω3 = ℎ3𝐿3 (15.1.1)

The constants ℎ1, ℎ2, ℎ3 are positive and are the inverses of the principal

moments of inertia. 𝐿1, 𝐿2, 𝐿3 depend on time, as they are measured in a reference

frame that is rotating with the body, with an angular velocity 𝛀. So the total time

297
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derivative, including the effect of this rotation, is zero:

𝑑L

𝑑𝑡
+𝛀 × L = 0 (15.1.2)

Combining (15.1.1,15.1.2) we get the Euler Equations for a rigid body

𝑑𝐿1

𝑑𝑡
+ (ℎ2 − ℎ3) 𝐿2𝐿3 = 0,

𝑑𝐿2

𝑑𝑡
+ (ℎ3 − ℎ1) 𝐿3𝐿1 = 0,

𝑑𝐿3

𝑑𝑡
+ (ℎ1 − ℎ2) 𝐿1𝐿2 = 0 (15.1.3)

When ℎ1 = ℎ2 = ℎ3 these equations simply say that L is a constant: The

angular momentum is constant even in the rotating reference frame. When just one

pair of the parameters are equal (say ℎ1 = ℎ2 ≠ ℎ3) a component of (here 𝐿3) of

angular momentum is constant. The remaining components of L and 𝛀 are then

expressible as trigonometric functions of time.

This is a good approximation for the rotation of the Earth. Because of the

bulge at the Equator, the moments of inertia are not all equal. But the shape is, to

a good approximation, circularly symmetric: A pair of the moments of inertia are

equal. The axis of rotation of the earth itself precesses around a fixed direction,

with a period of about 26,000 years. Ancient astronomers (e.g., Aryabhatta of 5th

century AD) knew of this precession. Newton himself gave the first mechanical

explanation.

Jacobi solved the general case of the Euler equations when ℎ1, ℎ2, ℎ3 are

mutually unequal. This depends on the conservation of the magnitude of angular

momentum

L2
= 𝐿2

1 + 𝐿2
2 + 𝐿2

3

even in this general case. In addition, the energy

𝐻 =
1

2
𝛀 · L =

1

2
(ℎ1𝐿

2
1 + ℎ2𝐿

2
2 + ℎ3𝐿

2
3)

is also conserved.

Exercise 86. Directly verify that 𝑑L2

𝑑𝑡
= 0 =

𝑑𝐻
𝑑𝑡

using the Euler equations of a

rigid body.

The solution L(𝑡) describes a curve in R3. This curve is the intersection of the

sphere given by constant L2 and the ellipsoid on which 𝐻 is a constant. Jacobi
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found the solution explicitly in terms of his elliptic functions

𝐿1 (𝑡) = 𝐴1cn(𝜈𝑡), 𝐿2 (𝑡) = 𝐴2sn(𝜈𝑡), 𝐿3(𝑡) = 𝐴3dn(𝜈𝑡)

These elliptic functions satisfy differential equations that generalize those of

the trigonometric functions

𝑑

𝑑𝑧
sn(𝑧) = cn(𝑧)dn(𝑧), 𝑑

𝑑𝑧
cn(𝑧) = −sn(𝑧)dn(𝑧), 𝑑

𝑑𝑧
dn(𝑧) = −𝑚cn(𝑧)sn(𝑧)

They also depend on a parameter 𝑚 called the modulus.

Exercise 87. Find the relation of the constants 𝐴1, 𝐴2, 𝐴3, 𝑚 and 𝜈 to ℎ1, ℎ2, ℎ3

and the two conserved quantities.

More details are in [13].

15.2. Euler Equations of a Fluid

There is another equation in physics also named for Euler. It describes the flow

of an ideal incompressible fluid. Unlike the rigid body, this is very far from being

exactly solvable. It exhibits a virulent, as yet mysterious, kind of chaos called

turbulence. Understanding turbulence is on everyone’s list of the most important

problems of physics.

The equations of motion of a fluid can be derived [35] from the mechanics of

a fluid element1:

div v = 0,
𝜕v

𝜕𝑡
+ v · ∇v = −∇𝑝 (15.2.1)

Here

• v is the velocity of the fluid, which depends on position and time.

• The first condition is the conservation of mass under the assumption that the

density is constant. (This is the meaning of incompressibility.)

• The second condition is Newton’s law for a fluid element. The left hand side is

the acceleration of a fluid element. In addition to the explicit time derivative,

it has a term describing the acceleration of a small fluid element being carried

along by the fluid flow itself.

1A fluid element is a region whose size is small compared to the vessel containing the fluid but large

compared to the distance between molecules. Fluid mechanics is the effective field theory of particle

mechanics in this approximation.
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• 𝑝 is the pressure divided by density. Even in the absence of external forces (e.g.,

gravity) the fluid has to exert some forces on itself to keep the density constant.

An equivalent point of view is that 𝑝 is the Lagrange multiplier that enforces

the condition of incompressibility.

We can eliminate 𝑝 from the equations by taking a curl. It is useful to think of the

fluid flow in terms of vorticity:

𝝎 = curl v

Given appropriate boundary conditions this equation can be inverted

v = curl−1𝝎.

curl−1 is an integral operator called Biot-Savart operator2.

Remark 88. These boundary conditions on v usually say that the normal com-

ponent of v vanishes at the boundary. In other words, that the fluid does not cross

the boundary. We will find it simpler to assume the fluid fills the whole of R3 with

the “boundary condition” that velocity and vorticity vanish at infinity faster than

any power.

The Euler equation in vorticity form is

𝜕𝝎

𝜕𝑡
+ [v,𝝎] = 0. (15.2.2)

Here

[u,w] = u · ∇w − w · ∇u

is the commutator of vector fields.

Exercise 89. Derive (15.2.2) from (15.2.1). The following identity will be useful:

curl (w × u) = wdiv u − udiv w + [u,w]

Show also that the commutator of two vector fields with zero divergence again has

zero divergence.

2It also arises in magnetism, relating a magnetic field to its current source.
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15.2.1. Energy of a fluid

The two assumptions we made

• there are no external forces (such as gravity)

• the fluid is incompressible

imply that all the energy of the fluid is kinetic. With density set to one

𝐻 =
1

2

∫

v2𝑑𝑥.

Exercise 90. Verify by direct calculation that 𝑑𝐻
𝑑𝑡

= 0.

15.2.2. Helicity

There is another conserved quantity, called Helicity:

H =

∫

v · 𝝎 𝑑𝑥, Helicity

The proof of its conservation is straightforward enough:

𝑑

𝑑𝑡
H = −2

∫

v.[v,𝝎]𝑑𝑥 = 2

∫

v.curl(v ×𝝎)𝑑𝑥 = 2

∫

𝝎.(v ×𝝎)𝑑𝑥 = 0.

In the last step we do an integration by parts using the identity

div (a × b) = (curl a) · b − (curl b) · a (15.2.3)

Traditionally, it is given a topological interpretation [36,37] .But in our context,

it is more appropriate to understand it as an invariant of the Lie algebra 𝑉 .

For more on Fluid Mechanics see [35, 37].

15.3. Euler–Arnold Equations on a Metric Lie Algebra

Now we will describe a theory of Arnold [37] which unifies the above two examples

into a single framework. It addition it gives us a host of examples of intermediate

complexity. Since turbulence is such a hard problem, it is useful to have these

simple examples. We will study one of them in more detail later.

Let 𝑉 be a real Lie algebra and 𝐺 a positive inner product3 on it. That is,

𝐺 : 𝑉 ×𝑉 → R

3We will not assume that 𝐺 is invariant. In fact the interesting cases are precisely the non-invariant

ones.
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is a symmetric bilinear on 𝑆. Positive means that

𝐺 (𝑢, 𝑢) ≥ 0

and that

𝐺 (𝑢, 𝑢) = 0 =⇒ 𝑢 = 0.

This means that there is an invertible linear map ( also denoted by 𝐺 to save

on notation)

𝐺 : 𝑉∗ → 𝑉

where 𝑉∗ is the dual vector space4 of 𝑉 .

Recall that every Lie algebra has a representation on itself, the adjoint repre-

sentation:

ad𝑢 (𝑤) = [𝑢, 𝑤], 𝑢, 𝑤 ∈ 𝑉

Therefore it also has a representation on its dual, the co-adjoint representation

ad∗𝑢𝛼(𝑤) = 𝛼 ( [𝑢, 𝑤]) , 𝑢, 𝑤 ∈ 𝑉, 𝛼 ∈ 𝑉∗

Definition 91. A dynamical system on 𝑉∗ evolving in time according to the

differential equation

𝑑𝜔

𝑑𝑡
+ ad∗𝐺𝜔𝜔 = 0

is called an Euler-Arnold system.

Thus, if 𝑉 is abelian or if 𝐺 is invariant, this dynamics would be trivial: 𝜔

would be time-independent.

15.3.1. Index notation

It is useful to express these ideas more explicitly, in a basis 𝑒𝑎 ∈ 𝑉 and a dual basis

𝑒𝑏 ∈ 𝑉∗; i.e.,

𝑒𝑏 (𝑒𝑎) = 𝛿𝑏𝑎

We will assume for the moment that 𝑉 is finite dimensional, although the

general theory makes sense even for infinite dimensional cases. The Lie algebra

4That is, 𝑉 ∗ is the space of real-valued linear functions on 𝑉 .
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structure constants 𝑓 𝑐
𝑎𝑏

are defined by

[𝑒𝑎, 𝑒𝑏] = 𝑓 𝑐𝑎𝑏𝑒𝑐

Then the positive inner product defines a symmetric matrix

𝐺𝑎𝑏 = 𝐺 (𝑒𝑎, 𝑒𝑏)

with an inverse 𝐺𝑎𝑏 defined by

𝐺𝑎𝑏𝐺𝑏𝑐 = 𝛿𝑎𝑐 .

The adjoint representation is, in component form

[ad𝑢𝑤]𝑎 = 𝑓 𝑎𝑏𝑐𝑢
𝑏𝑤𝑐 , 𝑢, 𝑤 ∈ 𝑉

Given 𝛼 ∈ 𝑉∗ the co-adjoint representation is determined by the condition

[
ad∗𝑢𝛼

]
𝑎
𝑤𝑎 + 𝛼𝑎 [ad𝑢𝑤]𝑎 = 0

That is

[
ad∗𝑢𝛼

]
𝑎
𝑤𝑎 + 𝛼𝑐 𝑓 𝑐𝑏𝑎𝑢

𝑏𝑤𝑎
= 0

so that

[
ad∗𝑢𝛼

]
𝑎
= −𝛼𝑐 𝑓 𝑐𝑏𝑎𝑢

𝑏

Thus

[
ad∗𝐺𝜔𝜔

]
𝑎
= −𝜔𝑐 𝑓

𝑐
𝑏𝑎𝐺

𝑏𝑑𝜔𝑑 = 𝐺𝑏𝑑 𝑓 𝑐𝑎𝑏𝜔𝑐𝜔𝑑 .

The Euler-Arnold equation is then

𝑑𝜔𝑎

𝑑𝑡
+ 𝐺𝑏𝑑 𝑓 𝑐𝑎𝑏𝜔𝑐𝜔𝑑 = 0

This can be thought of as a mechanical system with hamiltonian

𝐻 =
1

2
𝐺𝑏𝑑𝜔𝑏𝜔𝑑

and Poisson brackets

{𝜔𝑎, 𝜔𝑏} = 𝑓 𝑐𝑎𝑏𝜔𝑐
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for the dynamical variables. In particular, the hamiltonian is a conserved. So

these are ideal systems, where there is no dissipation of energy: Frictional effects

such as viscosity are ignored. There may be symmetric invariant tensors (Casimir

elements) in the Lie algebra which can lead to additional conserved quantities.

If there is an invariant inner product

〈𝑒𝑎, 𝑒𝑏〉 = 𝜂𝑎𝑏
we would have

〈𝑒𝑎, [𝑒𝑏, 𝑒𝑐]〉 + 〈[𝑒𝑏 , 𝑒𝑎] , 𝑒𝑐〉 = 0

which means

𝑓 𝑑𝑏𝑐𝜂𝑎𝑑 + 𝑓 𝑑𝑏𝑎𝜂𝑐𝑑 = 0.

The inverse matrix 𝜂𝑎𝑒 defines an inner product on 𝑉∗. By multiplying the

above equation by 𝜂𝑐𝑒𝜂𝑎 𝑓 we get

𝜂𝑐𝑒𝜂𝑎 𝑓
{
𝑓 𝑑𝑏𝑐𝜂𝑎𝑑 + 𝑓 𝑑𝑏𝑎𝜂𝑐𝑑

}
= 0 ⇐⇒

𝜂𝑐𝑒 𝑓
𝑓

𝑏𝑐
+ 𝜂𝑎 𝑓 𝑓 𝑒𝑏𝑎 = 0.

Switching indices 𝑓 → 𝑐, 𝑐→ 𝑎, in the first term and just 𝑓 → 𝑐 in the second

𝜂𝑎𝑒 𝑓 𝑐𝑏𝑎 + 𝜂
𝑎𝑐 𝑓 𝑒𝑏𝑎 = 0. (15.3.1)

The quantity

𝐶 = 𝜂𝑎𝑏𝜔𝑎𝜔𝑏

is then a conserved quantity. For,

𝑑𝐶

𝑑𝑡
= −2𝜂𝑎𝑒{𝐺𝑏𝑑 𝑓 𝑐𝑎𝑏𝜔𝑐𝜔𝑑}𝜔𝑒 = 2𝐺𝑏𝑑𝜂𝑎𝑒 𝑓 𝑐𝑏𝑎𝜔𝑐𝜔𝑑𝜔𝑒

We now symmetrize in 𝑒, 𝑐:

= 𝐺𝑏𝑑{𝜂𝑎𝑒 𝑓 𝑐𝑏𝑎 + 𝜂
𝑎𝑐 𝑓 𝑒𝑏𝑎}𝜔𝑐𝜔𝑑𝜔𝑒

which is zero by the above identity (15.3.1).

15.3.2. Special case: The rigid body

In this case the Lie algebra is 𝑠𝑜(3). The Lie bracket is the cross product of vectors

in R3. The angular momentum is the dynamical variable 𝐿𝑎 ≡ 𝜔𝑎. The Moment

of inertia matrix is the matrix 𝐺𝑎𝑏 of the inner product. Its inverse relates angular

velocity to angular momentum:

Ω
𝑎
= 𝐺𝑎𝑏𝐿𝑏
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Thus the energy of the rigid body is

𝐻 =
1

2
𝐺𝑎𝑏𝐿𝑎𝐿𝑏 .

The quantities ℎ1, ℎ2, ℎ3 are the eigenvalues of𝐺𝑎𝑏 (i.e., inverses of the eigen-

values of 𝐺𝑎𝑏, the moment of inertia).

The extra conserved quantity 𝐿2 arises from the fact the dot product

u · v = 𝛿𝑎𝑏𝑢
𝑎𝑣𝑏

is an invariant inner product in the Lie algebra5. Equivalently, L2 = 𝐿𝑎𝐿𝑏𝛿
𝑎𝑏 has

zero Poisson brackets with all the components of 𝐿𝑎.

{
L2, 𝐿𝑎

}
= 0.

Because of this invariant inner product, we can identify 𝑠𝑜(3) with its dual

space. In the index notation this is obvious as the covariant and contra-variant

components are the same because of the Kronecker delta. So in this case we can

think of Ω and 𝐿 as belonging to 𝑠𝑜(3).
The structure constants are completely anti-symmetric with 𝑓123 = 1. Thus the

Euler-Arnold equations become

𝑑𝐿𝑎

𝑑𝑡
+
∑
𝑏

ℎ𝑏 𝑓𝑎𝑏𝑐𝐿𝑐𝐿𝑏 = 0

For 𝑎 = 1 this reduces to

𝑑𝐿1

𝑑𝑡
+ (ℎ2 − ℎ3)𝜔2𝜔3 = 0

as needed. The remaining equations are cyclic permutations of this.

15.3.3. Special case: The incompressible fluid

Vector fields satisfying the condition of incompressibility

div𝑢 = 0

5Thus there are two inner products of interest here: 𝐺 is not invariant and gives the energy. The dot

product is invariant and gives another conserved quantity.
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form an infinite dimensional6 Lie algebra with the Lie bracket [u,w] = u · ∇w −
w · ∇u. (Recall the exercise showing that the commutator of two incompressible

vector fields is again incompressible). We will call it 𝑆. (There are analogous vector

fields on any manifold with a volume form.)

At constant density, (which we choose to be one by a choice of units) the total

energy of the fluid is

𝐻 =
1

2

∫
v2𝑑𝑥

15.3.3.1. Helicity as an invariant inner product

Let us define a bilinear

〈u,w〉 =
∫

u · curl−1w𝑑𝑥, u,w ∈ 𝑆

where curl−1 is the Biot–Savart operator we mentioned earlier. The first thing to

note is that this is symmetric.

If we put7

u = curl a, w = curl b, div a = 0 = div b

These a, b are unique due to the invertibility of curl. Then,

〈u,w〉 =
∫

(curl a) · b𝑑𝑥

so that

〈u,w〉 − 〈w, u〉 =
∫

{(curl a) · b − (curl b) · a} 𝑑𝑥

This is a total divergence because of the identity (15.2.3).

So, the anti-symmetric part is a surface integral which vanishes for our bound-

ary conditions.

Due to the invertibility of curl in 𝑆, we can see that this bilinear is non-

degenerate:

〈u,w〉 = 0, ∀w ∈ 𝑆 =⇒ u = 0.

Thus 〈u,w〉 is an inner product on 𝑆.

6Any such vector field is determined by two independent functions: Three components satisfying

one condition. Since there are an infinite number of linearly independent functions, the space of

incompressible vector fields is infinite dimensional.
7Recall that the curl of. a vector field is unchanged if we add a gradient to it. We impose the condition

of zero divergence on a and b to remove this ambiguity.
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It is however, not positive. For example, parity reverses its sign. (Recall that

curl u contains the cross-product which changes sign under parity).

Next we will see that 〈u,w〉 is an invariant inner product:

〈[s, u] ,w〉 + 〈u, [s,w]〉 = 0, ∀s, u,w ∈ 𝑆.

For,

[s,w] = curl(w × s)

so that

〈u, [s,w]〉 =
∫

u · (w × s)𝑑𝑥.

By the anti-symmetry of the triple product and the symmetry of 〈, 〉,

〈u, [s,w]〉 = −
∫

w · (s × u)𝑑𝑥 = −〈w, [s, u]〉 = −〈[s, u] ,w〉

proving the result.

Thus 〈u,w〉 is analogous to the dot product in 𝑠𝑜(3). Helicity is the special

case

H = 〈𝝎,𝝎〉

which is analogous to L · L. Its conservation is thus, a direct consequence of the

invariance of the inner product.The main difference with L2 is that helicity is not

positive.

15.3.3.2. Energy as a positive inner product

Expressed in terms of vorticity,

𝐻 =
1

2

∫
curl−1𝝎 · curl−1𝝎𝑑𝑥

After an integration by parts this can be written in terms of the Green’s function

of the Laplace operator on vector fields on R3.

𝐻 =
1

2

∫
𝜔𝑖 (𝑥)𝐺𝑖 𝑗 (𝑥, 𝑦)𝜔 𝑗 (𝑦)𝑑𝑥𝑑𝑦

This is a positive inner product on 𝑆∗ which is however, not invariant.

We can also write this in terms of the invariant inner product above as

𝐻 =
1

2
〈curl−1𝜔, 𝜔〉

which is analogous to the formula 𝐻 =
1
2
𝛀 · L for a rigid body.



308 PHYSICS THROUGH SYMMETRIES

15.4. Euler–Arnold Dynamics on 𝑺𝑶(3, 1)

When physicists are confronted with a problem that is too hard to solve, we

seek a simpler “toy model” which captures some of the essential aspects of the

original problem. The rigid body is not a useful toy model for fluids, because

it is exactly solvable. It does not exhibit the essential chaotic phenomena. We

seek an example which is close to being exactly solvable (so that we have hopes

of understanding it) but has some chaos as well. We would also like it to have

an invariant inner product (analogous to helicity) which is not positive. This

suggests a non-compact Lie algebra. It would be better for it to be simple,

as the Lie algebra of incompressible vector fields does not seem to have any

ideals.

The best choice appears to be 𝑆𝑂 (3,1), the Lorentz group. It is familiar to us

from studying relativistic wave equations: A completely unrelated use of the same

group. Thought of as a real Lie algebra it is six dimensional.

𝑆𝑂 (3, 1) is a rank two Lie algebra, only one step more complicated than 𝑆𝑂 (3)
of the rigid body.Other familiar rank two Lie algebras such as 𝑠𝑜(4) ∼ 𝑠𝑜(3)⊕𝑠𝑜(3)
and 𝑠𝑜(2, 2) ∼ 𝑠𝑜(1, 2) ⊕ 𝑠𝑜(1, 2) are not simple.

15.4.1. The Lie algebra

Let us begin by choosing a basis in 𝑠𝑜(3, 1). The Minkowski metric on R3,1 is8

𝜂 =

�				



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

�����

.

𝑠𝑜(3, 1) is the vector space of anti-symmetric 4 × 4 matrices with the Lie

bracket

[𝑋,𝑌 ] = 𝑋𝜂𝑌 − 𝑌𝜂𝑋.

The Minkowski metric onR1,3 induces not one, but two, invariant inner product

on the Lie algebra 𝑠𝑜(3, 1):

〈𝑋,𝑌〉1 =
1

4
𝜖𝜇𝜈𝜌𝜎𝑋𝜇𝜈𝑌𝜌𝜎 , 〈𝑋,𝑌〉2 =

1

4
(𝜂𝜇𝜌𝜂𝜈𝜎 − 𝜂𝜇𝜎𝜂𝜈𝜌) 𝑋𝜇𝜈𝑌𝜌𝜎

8We chose a different sign convention when we discussed wave equations earlier, because it is more

common in particle physics.
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Here 𝜖𝜇𝜈𝜌𝜎 is the completely anti-symmetric tensor with 𝜖0123 = 1. 〈𝑋,𝑌〉1
changes sign under parity, but it is still invariant under the connected component

of the Lorentz group.

15.4.2. A basis

A basis in 𝑠𝑜(3, 1) is the set of six matrices

𝛼1 =

�				


0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0

�����


, . . . , 𝛼4 =

�				


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

�����


, · · ·

The · · · denote the cyclic permutations 1 → 2 → 3 → 1, 4 → 5 → 6 → 4.

That the components of 𝑠𝑜(3, 1) can be split into two groups of three, with a cyclic

symmetry 𝑍3 in each subset is a common theme in the calculations below.The

inner products are brought to standard forms (for 𝑎, 𝑏 = 1, · · · 6) in this basis9:

〈𝛼𝑎, 𝛼𝑏〉1 =

(
03 13

13 03

)
, 𝜂𝑎𝑏 ≡ 〈𝛼𝑎, 𝛼𝑏〉2 =

(
13 03

03 −13

)

The structure constants are defined by

[𝛼𝑎, 𝛼𝑏] = 𝑓 𝑐𝑎𝑏𝛼𝑐 ⇐⇒ 𝑓 𝑐𝑎𝑏 = 𝜂𝑐𝑑 〈[𝛼𝑎, 𝛼𝑏], 𝛼𝑑〉2

It is not hard to compute them explicitly in Mathematica; we do not see the need

to list them as a table.

15.4.3. Aside: Embedding 𝒔𝒐(3, 1) in 𝑺

We note in passing that 𝑠𝑜(3, 1) is a Lie-sub-algebra of 𝑆, the Lie algebra of

incompressible vector fields. Thus, in some sense, we are studying a sub-system

of fluid mechanics. However, the metric of 𝑆 does not split as a direct sum of a

metric in 𝑠𝑜(3, 1) and 𝑆: Solutions of the Euler-Arnold equations on 𝑠𝑜(3, 1) are

not special solutions of the Euler equations for the fluid.

To see that 𝑠𝑜(3, 1) ⊂ 𝑆 we need to find a set of six incompressible vector

fields that satisfy the commutation relations of 𝑠𝑜(3, 1). Fact familiar to particle

physicists will help us do this. The Lorentz group acts on the time-like hyperboloid;

9We abuse notation slightly here. What is meant is that the inner product 〈𝛼𝑎 , 𝛼𝑏 〉1 is the 𝑎, 𝑏

component of the matrix on the RHS.
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this is the “mass-shell” of a particle of unit mass and positive energy. The Lorentnz

invariant volume measure is

𝑑3p√
1 + p2

= 2𝛿(𝑝2
0 − p2

= 1)𝜃 (𝑝0 > 0)𝑑𝑝0𝑑
3p

Knowing how 𝑠𝑜(3, 1) acts on vectors in R3,1 the basis above translates to

𝑒1 = −𝑝3
𝜕

𝜕𝑝2

+ 𝑝2
𝜕

𝜕𝑝3

, . . . 𝑒4 =

√
1 + p2

𝜕

𝜕𝑝1

, . . .

where again · · · denotes cyclic permutations over 1, 2, 3.

Now, the hyperboloid is diffeomorphic to R3 as a manifold. The change of

variables

x =
𝑠(|p|)
|p| p

with

𝑠3 (|p|)
3

=
1

2

(
|p|

√
1 + |p|2 + log

[
−|p| +

√
1 + |p|2

])
.

maps the volume
𝑑3p√
1+p2

to 𝑑3x. The expressions for the vector fields 𝑒𝑎 in these

coo-ordinates is quite messy. But we don’t need them, as commutation relations

are unchanged under such co-ordinate transformations.

15.4.4. The Poisson brackets

The Poisson brackets among the components 𝜉𝑎 of 𝜉 ∈ 𝑠𝑜(3, 1) (in the basis

above) are

{𝜉𝑎, 𝜉𝑏} = 𝑓 𝑐𝑎𝑏𝜉𝑐 .

These brackets are degenerate: There are functions (arising from the two invari-

ant inner products)

𝐶1 (𝜉) = 𝜉1𝜉4 + 𝜉2𝜉5 + 𝜉3𝜉6, 𝐶2 (𝜉) =
1

2

(
𝜉2

1 + 𝜉2
2 + 𝜉2

3 − 𝜉2
4 − 𝜉2

5 − 𝜉
2
6

)
that commute with every function of 𝜉𝑎. They are constants of motion and are

therefore determined by the initial conditions.
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15.4.5. The phase space

In the case of the rigid body, the constraint L2 = constant picks out a two dimen-

sional sphere. The dynamics of the rigid body takes places on this space: It is the

phase space.10 In our case, we can take an element 𝜉 ∈ 𝑠𝑜(3, 1) and hold fixed two

quantities 𝐶1, 𝐶2 coming from the two invariant metrics:

The resulting four-dimensional manifold is the phase space of our system. Thus

we study a hamiltonian system with two degrees of freedom: The minimum needed

to have chaos. If we have one more conserved quantity (in addition to 𝐻,𝐶1, 𝐶2)

our system would be integrable.

The geometric shape of the phase space depends on the values of the constants

𝐶1 and 𝐶2. The simplest choice 𝐶1 = 0 = 𝐶2 corresponds to a kind of cone.

15.4.6. The hamiltonian and the equations of motion

The hamiltonian should be a quadratic function of the components of 𝜉. For

simplicity, we will choose this to be diagonal quadratic form (in the basis above)

𝐻 (ℎ) = 1

2

6∑
𝑎=1

ℎ𝑎𝜉
2
𝑎 .

The six parameters ℎ𝑎, along with the Poisson bracket relations

{𝜉𝑎, 𝜉𝑏} = 𝑓 𝑐𝑎𝑏𝜉𝑐

determine the equations of motion.

𝑑𝜉1

𝑑𝑡
= 𝜉2𝜉3 (ℎ2 − ℎ3) + 𝜉5𝜉6 (ℎ5 − ℎ6) , · · ·

𝑑𝜉4

𝑑𝑡
= 𝜉3𝜉5 (−ℎ3 − ℎ5) + 𝜉2𝜉6 (ℎ2 + ℎ6) · · ·

The · · · denote the permutations 1 → 2 → 3 → 1, 4 → 5 → 6 → 4 as usual.

10More geometrically, S2 is a co-adjoint orbit of the rotation group with a standard symplectic structure

given by a construction of Kirillov. But we do not need this more abstract perspective.
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15.4.7. Commuting hamiltonians

Now we use a remarkable discovery11 of [38–40]. If a certain function of the

parameters ℎ𝑎 is zero, the system is integrable. So the magnitude of this quantity

is a measure of the chaos in the system.

Theorem 92. If 𝐾 (ℎ) ≡ (ℎ1ℎ2− ℎ3ℎ6) (ℎ4− ℎ5) + · · · = 0 the system is integrable

The original proof of [39, 40] uses the idea of a Lax pair, a technique popular

in the field of integrable systems. We will describe a more direct proof, which may

be along the lines of [38]. This price for the directness is more calculations, which

can be done in Mathematica.

Proof. We can calculate the Poisson Brackets {𝐻 (ℎ), 𝐻 (ℎ′)} for two different

choices ℎ, ℎ′ of the parameters. The result is a cubic polynomial in the six variables

𝜉𝑎. By inspection, there are four conditions for it to vanish:

ℎ1ℎ
′
2
− ℎ2ℎ

′
1
+ · · · = 0

ℎ1(ℎ′6 − ℎ
′
5
) − (ℎ6 − ℎ5)ℎ′1 + ℎ5ℎ

′
6
− ℎ6ℎ

′
5
= 0, · · ·

The first equation is a single condition. The second condition its cyclic permu-

tations give the remaining ones.

A little algebra (again in Mathematica) shows that if there are six parameters

𝑌𝑎 such that

ℎ =

(
𝑌5 − 𝑌6

𝑌2 − 𝑌3

,
𝑌6 − 𝑌4

𝑌3 − 𝑌1

,
𝑌4 − 𝑌5

𝑌1 − 𝑌2

,−𝑌4

𝑌1

,−𝑌5

𝑌2

,−𝑌6

𝑌3

)

ℎ′ =

(
𝑌 ′

5
− 𝑌 ′

6

𝑌2 − 𝑌3

,
𝑌 ′

6
− 𝑌 ′

4

𝑌3 − 𝑌1

,
𝑌 ′

4
− 𝑌 ′

5

𝑌1 − 𝑌2

,−
𝑌 ′

4

𝑌1

,−
𝑌 ′

5

𝑌2

,−
𝑌 ′

6

𝑌3

)

these conditions are satisfied, for any choice of 𝑌 ′. Then there would be another

conserved quantity 𝐻 (ℎ′), making the system integrable.

Thus the question reduces to: “ when is there such 𝑌𝑎”?

11They were studying a closely related system on 𝑠𝑜(4); a few tweaks of signs is all that is needed to

use there work for our purpose.
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We can rewrite the first set of these equations as a system of linear equations

for 𝑌

�										



0 ℎ1 −ℎ1 0 −1 1

−ℎ2 0 ℎ2 1 0 −1

ℎ3 −ℎ3 0 −1 1 0

ℎ4 0 0 1 0 0

0 ℎ5 0 0 1 0

0 0 ℎ6 0 0 1

�����������


�										



𝑌1

𝑌2

𝑌3

𝑌4

𝑌5

𝑌6

�����������


= 0

So, the condition is that the matrix above must have zero determinant. This

determinant is

𝐾 (ℎ) ≡ (ℎ1ℎ2 − ℎ3ℎ6) (ℎ4 − ℎ5) + · · ·

Which proves what we claimed. �

15.4.8. Numerical examples

We still do not know if the system is chaotic when 𝐾 ≠ 0. It is hard to prove that

a system is chaotic; indeed there isn’t even a precise definition of what chaos is.

There is a quantity due to Kolmogorov and Sinai measuring the rate of entropy

production which comes close to quantifying chaos. Here we have a system where

such ideas can be tried out. For now, the test for chaos is,12

“I know it when I see it.”

It is not difficult to solve the six ODEs for different choices 𝜉𝑎 and ℎ𝑎. We can

choose𝐾, 𝐶1, 𝐶2 and choose the remaining parameters randomly to generate many

examples.

By plotting these solutions,13 it is obvious to the eye that the cases 𝐾 = 0 (in

Blue in the diagram) and 𝐾 = 3.1 (in Red) look very different, even with exactly

the same initial conditions.

12This is a quote of Justice Potter of the US Supreme Court. He was talking about something else.
13To visualize a curve in six dimensions is not easy. We have chosen to plot the projection to two

different planes.
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Exercise 93. Write a Mathematica program to (1) pick 𝜉𝑎 and ℎ𝑎 at random

for agiven choice of 𝐾, 𝐶1, 𝐶2; (2) Solve the equations of motion numerically for

these choices (3) Plot the solutions in different projections. By generating many

examples this way, understand the difference between 𝐾 = 0 and 𝐾 ≠ 0.

More work is needed to bring ideas from statistical physics to study this system

in detail: Markov Chain Monte Carlo looks like a promising idea to apply here.
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Schrödinger equation, 11, 32
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